Skip to main content
Top
Published in: Journal of Translational Medicine 1/2012

Open Access 01-12-2012 | Review

TGF-β – an excellent servant but a bad master

Authors: Lenka Kubiczkova, Lenka Sedlarikova, Roman Hajek, Sabina Sevcikova

Published in: Journal of Translational Medicine | Issue 1/2012

Login to get access

Abstract

The transforming growth factor (TGF-β) family of growth factors controls an immense number of cellular responses and figures prominently in development and homeostasis of most human tissues. Work over the past decades has revealed significant insight into the TGF-β signal transduction network, such as activation of serine/threonine receptors through ligand binding, activation of SMAD proteins through phosphorylation, regulation of target genes expression in association with DNA-binding partners and regulation of SMAD activity and degradation. Disruption of the TGF-β pathway has been implicated in many human diseases, including solid and hematopoietic tumors. As a potent inhibitor of cell proliferation, TGF-β acts as a tumor suppressor; however in tumor cells, TGF-β looses anti-proliferative response and become an oncogenic factor. This article reviews current understanding of TGF-β signaling and different mechanisms that lead to its impairment in various solid tumors and hematological malignancies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013.PubMed Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013.PubMed
2.
go back to reference Tian M, Neil JR, Schiemann WP: Transforming growth factor-β and the hallmarks of cancer. Cell Signal. 2011, 23: 951-962. 10.1016/j.cellsig.2010.10.015.PubMedPubMedCentral Tian M, Neil JR, Schiemann WP: Transforming growth factor-β and the hallmarks of cancer. Cell Signal. 2011, 23: 951-962. 10.1016/j.cellsig.2010.10.015.PubMedPubMedCentral
3.
go back to reference Derynck R: The TGF-β Family.: Cold Spring Harbor Laboratory. 2008, Press Derynck R: The TGF-β Family.: Cold Spring Harbor Laboratory. 2008, Press
4.
go back to reference Sporn MB, Todaro GJ: Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980, 303: 878-880. 10.1056/NEJM198010093031511.PubMed Sporn MB, Todaro GJ: Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980, 303: 878-880. 10.1056/NEJM198010093031511.PubMed
5.
go back to reference de Larco JE, Todaro GJ: Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA. 1978, 75: 4001-4005. 10.1073/pnas.75.8.4001.PubMedPubMedCentral de Larco JE, Todaro GJ: Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA. 1978, 75: 4001-4005. 10.1073/pnas.75.8.4001.PubMedPubMedCentral
6.
go back to reference Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB: New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastictissues. Proc Natl Acad Sci USA. 1981, 78: 5339-5343. 10.1073/pnas.78.9.5339.PubMedPubMedCentral Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB: New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastictissues. Proc Natl Acad Sci USA. 1981, 78: 5339-5343. 10.1073/pnas.78.9.5339.PubMedPubMedCentral
7.
go back to reference Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH: Transforming growth factor type beta: rapid induction of fibrosis and angiogenesisin vivoand stimulation of collagen formationin vitro. Proc. Natl. Acad. Sci. USA. 1986, 83: 4167-4171. 10.1073/pnas.83.12.4167.PubMedPubMedCentral Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH: Transforming growth factor type beta: rapid induction of fibrosis and angiogenesisin vivoand stimulation of collagen formationin vitro. Proc. Natl. Acad. Sci. USA. 1986, 83: 4167-4171. 10.1073/pnas.83.12.4167.PubMedPubMedCentral
8.
go back to reference Tucker RF, Shipley GD, Moses HL, Holley RW: Growth inhibitor from BSC-1 cells closely related to platelet type β transforming growth factor. Science. 1984, 226: 705-707. 10.1126/science.6093254.PubMed Tucker RF, Shipley GD, Moses HL, Holley RW: Growth inhibitor from BSC-1 cells closely related to platelet type β transforming growth factor. Science. 1984, 226: 705-707. 10.1126/science.6093254.PubMed
9.
go back to reference Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB: Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci. 1985, 82: 119-123. 10.1073/pnas.82.1.119.PubMedPubMedCentral Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB: Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci. 1985, 82: 119-123. 10.1073/pnas.82.1.119.PubMedPubMedCentral
10.
go back to reference Massagué J, Blain SW, Lo RS: TGF[beta] signaling in growth control, cancer, and heritable disorders. Cell. 2000, 103: 295-309. 10.1016/S0092-8674(00)00121-5.PubMed Massagué J, Blain SW, Lo RS: TGF[beta] signaling in growth control, cancer, and heritable disorders. Cell. 2000, 103: 295-309. 10.1016/S0092-8674(00)00121-5.PubMed
11.
go back to reference Patterson GI, Padgett RW: TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet. 2000, 16: 27-33. 10.1016/S0168-9525(99)01916-2.PubMed Patterson GI, Padgett RW: TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet. 2000, 16: 27-33. 10.1016/S0168-9525(99)01916-2.PubMed
12.
go back to reference Ohta M, Greenberger JS, Anklesaria P, Bassols A, Massagué J: Two forms of transforming growth factor-beta distinguished by multipotential haematopoieticprogenitor cells. Nature. 1987, 329: 539-541. 10.1038/329539a0.PubMed Ohta M, Greenberger JS, Anklesaria P, Bassols A, Massagué J: Two forms of transforming growth factor-beta distinguished by multipotential haematopoieticprogenitor cells. Nature. 1987, 329: 539-541. 10.1038/329539a0.PubMed
13.
go back to reference Cheifetz S, Weatherbee JA, Tsang ML, Anderson JK, Mole JE, Lucas R, Massagué J: The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors. Cell. 1987, 48: 409-415. 10.1016/0092-8674(87)90192-9.PubMed Cheifetz S, Weatherbee JA, Tsang ML, Anderson JK, Mole JE, Lucas R, Massagué J: The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors. Cell. 1987, 48: 409-415. 10.1016/0092-8674(87)90192-9.PubMed
14.
go back to reference Mittl PR, Priestle JP, Cox DA, McMaster G, Cerletti N, Grütter MG: The crystal structure of TGF-beta 3 and comparison to TGF-beta 2: implications for receptorbinding. Protein Sci. 1996, 5: 1261-1271. 10.1002/pro.5560050705.PubMedPubMedCentral Mittl PR, Priestle JP, Cox DA, McMaster G, Cerletti N, Grütter MG: The crystal structure of TGF-beta 3 and comparison to TGF-beta 2: implications for receptorbinding. Protein Sci. 1996, 5: 1261-1271. 10.1002/pro.5560050705.PubMedPubMedCentral
15.
go back to reference Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV: Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985, 316: 701-705. 10.1038/316701a0.PubMed Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV: Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985, 316: 701-705. 10.1038/316701a0.PubMed
16.
go back to reference Dickinson ME, Kobrin MS, Silan CM, Kingsley DM, Justice MJ, Miller DA, Ceci JD, Lock LF, Lee A, Buchberg AM: Chromosomal localization of seven members of the murine TGF-beta superfamily suggests close linkage to several morphogenetic mutantloci. Genomics. 1990, 6: 505-520. 10.1016/0888-7543(90)90480-I.PubMed Dickinson ME, Kobrin MS, Silan CM, Kingsley DM, Justice MJ, Miller DA, Ceci JD, Lock LF, Lee A, Buchberg AM: Chromosomal localization of seven members of the murine TGF-beta superfamily suggests close linkage to several morphogenetic mutantloci. Genomics. 1990, 6: 505-520. 10.1016/0888-7543(90)90480-I.PubMed
17.
go back to reference Flanders KC, Lüdecke G, Engels S, Cissel DS, Roberts AB, Kondaiah P, Lafyatis R, Sporn MB, Unsicker K: Localization and actions of transforming growth factor-beta s in the embryonic nervous system. Development. 1991, 113: 183-191.PubMed Flanders KC, Lüdecke G, Engels S, Cissel DS, Roberts AB, Kondaiah P, Lafyatis R, Sporn MB, Unsicker K: Localization and actions of transforming growth factor-beta s in the embryonic nervous system. Development. 1991, 113: 183-191.PubMed
18.
go back to reference de Martin R, Haendler B, Hofer-Warbinek R, Gaugitsch H, Wrann M, Schlüsener H, Seifert JM, Bodmer S, Fontana A, Hofer E: Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforminggrowth factor-beta gene family. EMBO J. 1987, 6: 3673-3677.PubMedPubMedCentral de Martin R, Haendler B, Hofer-Warbinek R, Gaugitsch H, Wrann M, Schlüsener H, Seifert JM, Bodmer S, Fontana A, Hofer E: Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforminggrowth factor-beta gene family. EMBO J. 1987, 6: 3673-3677.PubMedPubMedCentral
19.
go back to reference ten Dijke P, Hansen P, Iwata KK, Pieler C, Foulkes JG: Identification of another member of the transforming growth factor type beta gene family. Proc Natl Acad Sci USA. 1988, 85: 4715-4719. 10.1073/pnas.85.13.4715.PubMedPubMedCentral ten Dijke P, Hansen P, Iwata KK, Pieler C, Foulkes JG: Identification of another member of the transforming growth factor type beta gene family. Proc Natl Acad Sci USA. 1988, 85: 4715-4719. 10.1073/pnas.85.13.4715.PubMedPubMedCentral
20.
go back to reference Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T: Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet. 1995, 11: 409-414. 10.1038/ng1295-409.PubMed Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T: Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet. 1995, 11: 409-414. 10.1038/ng1295-409.PubMed
21.
go back to reference Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J: Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 1995, 11: 415-421. 10.1038/ng1295-415.PubMed Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J: Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 1995, 11: 415-421. 10.1038/ng1295-415.PubMed
22.
go back to reference Dubois CM, Laprise M-H, Blanchette F, Gentry LE, Leduc R: Processing of transforming growth factor 1 Precursor by human furin convertase. J Biol Chem. 1995, 270: 10618-10624. 10.1074/jbc.270.18.10618.PubMed Dubois CM, Laprise M-H, Blanchette F, Gentry LE, Leduc R: Processing of transforming growth factor 1 Precursor by human furin convertase. J Biol Chem. 1995, 270: 10618-10624. 10.1074/jbc.270.18.10618.PubMed
23.
go back to reference Gray AM, Mason AJ: Requirement for activin A and transforming growth factor– beta 1 pro-regions in homodimer assembly. Science. 1990, 247: 1328-1330. 10.1126/science.2315700.PubMed Gray AM, Mason AJ: Requirement for activin A and transforming growth factor– beta 1 pro-regions in homodimer assembly. Science. 1990, 247: 1328-1330. 10.1126/science.2315700.PubMed
24.
go back to reference Miyazono K, Hellman U, Wernstedt C: Heldin CH: Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J Biol Chem. 1988, 263: 6407-6415.PubMed Miyazono K, Hellman U, Wernstedt C: Heldin CH: Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J Biol Chem. 1988, 263: 6407-6415.PubMed
25.
go back to reference Gleizes PE, Beavis RC, Mazzieri R, Shen B, Rifkin DB: Identification and characterization of an eight-cysteine repeat of the latent transforming growth factorbetabinding protein-1 that mediates bonding to the latent transforming growth factorbeta1. J Biol Chem. 1996, 271: 29891-29896. 10.1074/jbc.271.47.29891.PubMed Gleizes PE, Beavis RC, Mazzieri R, Shen B, Rifkin DB: Identification and characterization of an eight-cysteine repeat of the latent transforming growth factorbetabinding protein-1 that mediates bonding to the latent transforming growth factorbeta1. J Biol Chem. 1996, 271: 29891-29896. 10.1074/jbc.271.47.29891.PubMed
26.
go back to reference Taipale J, Miyazono K, Heldin CH, Keski-Oja J: Latent transforming growth factorbeta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J Cell Biol. 1994, 124: 171-181. 10.1083/jcb.124.1.171.PubMed Taipale J, Miyazono K, Heldin CH, Keski-Oja J: Latent transforming growth factorbeta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J Cell Biol. 1994, 124: 171-181. 10.1083/jcb.124.1.171.PubMed
27.
go back to reference Kojima S, Nara K, Rifkin DB: Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells. J Cell Biol. 1993, 121: 439-448. 10.1083/jcb.121.2.439.PubMed Kojima S, Nara K, Rifkin DB: Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells. J Cell Biol. 1993, 121: 439-448. 10.1083/jcb.121.2.439.PubMed
28.
go back to reference Flaumenhaft R, Abe M, Mignatti P, Rifkin DB: Basic fibroblast growth factor-induced activation of latent transforming growth factor beta in endothelial cells: regulation ofplasminogen activator activity. J Cell Biol. 1992, 118: 901-909. 10.1083/jcb.118.4.901.PubMed Flaumenhaft R, Abe M, Mignatti P, Rifkin DB: Basic fibroblast growth factor-induced activation of latent transforming growth factor beta in endothelial cells: regulation ofplasminogen activator activity. J Cell Biol. 1992, 118: 901-909. 10.1083/jcb.118.4.901.PubMed
29.
go back to reference Nunes I, Shapiro RL, Rifkin DB: Characterization of latent TGF-beta activation by murine peritoneal macrophages. J Immunol. 1995, 155: 1450-1459.PubMed Nunes I, Shapiro RL, Rifkin DB: Characterization of latent TGF-beta activation by murine peritoneal macrophages. J Immunol. 1995, 155: 1450-1459.PubMed
30.
go back to reference Sato Y, Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule byplasmin during co-culture. J Cell Biol. 1989, 109: 309-315. 10.1083/jcb.109.1.309.PubMed Sato Y, Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule byplasmin during co-culture. J Cell Biol. 1989, 109: 309-315. 10.1083/jcb.109.1.309.PubMed
31.
go back to reference Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000, 14: 163-176.PubMedPubMedCentral Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000, 14: 163-176.PubMedPubMedCentral
32.
go back to reference Schultz-Cherry S, Murphy-Ullrich JE: Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol. 1993, 122: 923-932. 10.1083/jcb.122.4.923.PubMed Schultz-Cherry S, Murphy-Ullrich JE: Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol. 1993, 122: 923-932. 10.1083/jcb.122.4.923.PubMed
33.
go back to reference Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA: The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999, 96: 319-328. 10.1016/S0092-8674(00)80545-0.PubMed Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA: The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999, 96: 319-328. 10.1016/S0092-8674(00)80545-0.PubMed
34.
go back to reference Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H, Sheppard D, Broaddus VC, Nishimura SL: The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol. 2002, 157: 493-507. 10.1083/jcb.200109100.PubMedPubMedCentral Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H, Sheppard D, Broaddus VC, Nishimura SL: The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol. 2002, 157: 493-507. 10.1083/jcb.200109100.PubMedPubMedCentral
35.
go back to reference Barcellos-Hoff MH, Dix TA: Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol. 1996, 10: 1077-1083. 10.1210/me.10.9.1077.PubMed Barcellos-Hoff MH, Dix TA: Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol. 1996, 10: 1077-1083. 10.1210/me.10.9.1077.PubMed
36.
go back to reference Lyons RM, Keski-Oja J, Moses HL: Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol. 1988, 106: 1659-1665. 10.1083/jcb.106.5.1659.PubMed Lyons RM, Keski-Oja J, Moses HL: Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol. 1988, 106: 1659-1665. 10.1083/jcb.106.5.1659.PubMed
37.
go back to reference Cheifetz S, Like B, Massagué J: Cellular distribution of type I and type II receptors for transforming growth factor-beta. J Biol Chem. 1986, 261: 9972-9978.PubMed Cheifetz S, Like B, Massagué J: Cellular distribution of type I and type II receptors for transforming growth factor-beta. J Biol Chem. 1986, 261: 9972-9978.PubMed
38.
go back to reference Cheifetz S, Andres JL, Massagué J: The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor. J Biol Chem. 1988, 263: 16984-16991.PubMed Cheifetz S, Andres JL, Massagué J: The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor. J Biol Chem. 1988, 263: 16984-16991.PubMed
39.
go back to reference Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, Letarte M: Endoglin is a component of the transforming growth factor-beta receptor system in humanendothelial cells. J Biol Chem. 1992, 267: 19027-19030.PubMed Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, Letarte M: Endoglin is a component of the transforming growth factor-beta receptor system in humanendothelial cells. J Biol Chem. 1992, 267: 19027-19030.PubMed
40.
go back to reference Segarini PR, Rosen DM, Seyedin SM: Binding of transforming growth factor-beta to cell surface proteins varies with cell type. Mol Endocrinol. 1989, 3: 261-272. 10.1210/mend-3-2-261.PubMed Segarini PR, Rosen DM, Seyedin SM: Binding of transforming growth factor-beta to cell surface proteins varies with cell type. Mol Endocrinol. 1989, 3: 261-272. 10.1210/mend-3-2-261.PubMed
41.
go back to reference Gougos A, Letarte M: Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem. 1990, 265: 8361-8364.PubMed Gougos A, Letarte M: Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem. 1990, 265: 8361-8364.PubMed
42.
go back to reference Robledo MM, Ursa MA, Sánchez-Madrid F, Teixidó J: Associations between TGFbeta1 receptors in human bone marrow stromal cells. Br J Haematol. 1998, 102: 804-811. 10.1046/j.1365-2141.1998.00820.x.PubMed Robledo MM, Ursa MA, Sánchez-Madrid F, Teixidó J: Associations between TGFbeta1 receptors in human bone marrow stromal cells. Br J Haematol. 1998, 102: 804-811. 10.1046/j.1365-2141.1998.00820.x.PubMed
43.
go back to reference Matsubara S, Bourdeau A, terBrugge KG, Wallace C, Letarte M: Analysis of endoglin expression in normal brain tissue and in cerebral arteriovenous malformations. Stroke. 2000, 31: 2653-2660. 10.1161/01.STR.31.11.2653.PubMed Matsubara S, Bourdeau A, terBrugge KG, Wallace C, Letarte M: Analysis of endoglin expression in normal brain tissue and in cerebral arteriovenous malformations. Stroke. 2000, 31: 2653-2660. 10.1161/01.STR.31.11.2653.PubMed
44.
go back to reference Henry LA, Johnson DA, Sarrió D, Lee S, Quinlan PR, Crook T, Thompson AM, Reis- Filho JS, Isacke CM: Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome. Oncogene. 2011, 30: 1046-1058. 10.1038/onc.2010.488.PubMed Henry LA, Johnson DA, Sarrió D, Lee S, Quinlan PR, Crook T, Thompson AM, Reis- Filho JS, Isacke CM: Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome. Oncogene. 2011, 30: 1046-1058. 10.1038/onc.2010.488.PubMed
45.
go back to reference Sandlund J, Hedberg Y, Bergh A, Grankvist K, Ljungberg B, Rasmuson T: Endoglin (CD105) expression in human renal cell carcinoma. BJU Int. 2006, 97: 706-710. 10.1111/j.1464-410X.2006.06006.x.PubMed Sandlund J, Hedberg Y, Bergh A, Grankvist K, Ljungberg B, Rasmuson T: Endoglin (CD105) expression in human renal cell carcinoma. BJU Int. 2006, 97: 706-710. 10.1111/j.1464-410X.2006.06006.x.PubMed
46.
go back to reference Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM, Okadome T, Miyazono K, López- Casillas F: Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions fortransforming growth factor-beta and inhibin A. J Biol Chem. 2001, 276: 14588-14596. 10.1074/jbc.M008866200.PubMed Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM, Okadome T, Miyazono K, López- Casillas F: Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions fortransforming growth factor-beta and inhibin A. J Biol Chem. 2001, 276: 14588-14596. 10.1074/jbc.M008866200.PubMed
47.
go back to reference López-Casillas F, Wrana JL, Massagué J: Betaglycan presents ligand to the TGF beta signaling receptor. Cell. 1993, 73: 1435-1444. 10.1016/0092-8674(93)90368-Z.PubMed López-Casillas F, Wrana JL, Massagué J: Betaglycan presents ligand to the TGF beta signaling receptor. Cell. 1993, 73: 1435-1444. 10.1016/0092-8674(93)90368-Z.PubMed
48.
go back to reference Yamashita H, Ichijo H, Grimsby S, Morén A, ten Dijke P, Miyazono K: Endoglin forms a heteromeric complex with the signaling receptors for transforming growth factorbeta. J Biol Chem. 1994, 269: 1995-2001.PubMed Yamashita H, Ichijo H, Grimsby S, Morén A, ten Dijke P, Miyazono K: Endoglin forms a heteromeric complex with the signaling receptors for transforming growth factorbeta. J Biol Chem. 1994, 269: 1995-2001.PubMed
49.
go back to reference Massagué J: Receptors for the TGF-beta family. Cell. 1992, 69: 1067-1070.PubMed Massagué J: Receptors for the TGF-beta family. Cell. 1992, 69: 1067-1070.PubMed
50.
go back to reference Lu S-L, Zhang W-C, Akiyama Y, Nomizu T, Yuasa Y: Genomic structure of the transforming growth factor β Type II receptor gene and its mutations in hereditarynonpolyposis colorectal cancers. Cancer Res. 1996, 56: 4595-4598.PubMed Lu S-L, Zhang W-C, Akiyama Y, Nomizu T, Yuasa Y: Genomic structure of the transforming growth factor β Type II receptor gene and its mutations in hereditarynonpolyposis colorectal cancers. Cancer Res. 1996, 56: 4595-4598.PubMed
51.
go back to reference Sun PD, Davies DR: The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct. 1995, 24: 269-291. 10.1146/annurev.bb.24.060195.001413.PubMed Sun PD, Davies DR: The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct. 1995, 24: 269-291. 10.1146/annurev.bb.24.060195.001413.PubMed
52.
go back to reference Shi Y, Massagué J: Mechanisms of TGF-[beta] Signaling from Cell Membrane to the Nucleus. Cell. 2003, 113: 685-700. 10.1016/S0092-8674(03)00432-X.PubMed Shi Y, Massagué J: Mechanisms of TGF-[beta] Signaling from Cell Membrane to the Nucleus. Cell. 2003, 113: 685-700. 10.1016/S0092-8674(03)00432-X.PubMed
53.
go back to reference Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J: Mechanism of activation of the TGF-beta receptor. Nature. 1994, 370: 341-347. 10.1038/370341a0.PubMed Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J: Mechanism of activation of the TGF-beta receptor. Nature. 1994, 370: 341-347. 10.1038/370341a0.PubMed
54.
go back to reference Derynck R, Feng X-H: TGF-[beta] receptor signaling.Biochimica et Biophysica Acta (BBA). Reviews on Cancer. 1997, 1333: F105-F150. Derynck R, Feng X-H: TGF-[beta] receptor signaling.Biochimica et Biophysica Acta (BBA). Reviews on Cancer. 1997, 1333: F105-F150.
55.
go back to reference Finnson KW, Parker WL, Chi Y, Hoemann CD, Goldring MB, Antoniou J, Philip A: Endoglin differentially regulates TGF-β-induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and cellulardifferentiation state in human chondrocytes. Osteoarthr Cartil. 2010, 18: 1518-1527. 10.1016/j.joca.2010.09.002.PubMed Finnson KW, Parker WL, Chi Y, Hoemann CD, Goldring MB, Antoniou J, Philip A: Endoglin differentially regulates TGF-β-induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and cellulardifferentiation state in human chondrocytes. Osteoarthr Cartil. 2010, 18: 1518-1527. 10.1016/j.joca.2010.09.002.PubMed
56.
go back to reference Kerscher O, Felberbaum R, Hochstrasser M: Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 2006, 22: 159-180. 10.1146/annurev.cellbio.22.010605.093503.PubMed Kerscher O, Felberbaum R, Hochstrasser M: Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 2006, 22: 159-180. 10.1146/annurev.cellbio.22.010605.093503.PubMed
57.
go back to reference Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000, 6: 1365-1375. 10.1016/S1097-2765(00)00134-9.PubMed Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000, 6: 1365-1375. 10.1016/S1097-2765(00)00134-9.PubMed
58.
go back to reference Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K: Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001, 276: 12477-12480. 10.1074/jbc.C100008200.PubMed Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K: Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001, 276: 12477-12480. 10.1074/jbc.C100008200.PubMed
59.
go back to reference Kang JS, Saunier EF, Akhurst RJ, Derynck R: The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol. 2008, 10: 654-664. 10.1038/ncb1728.PubMedPubMedCentral Kang JS, Saunier EF, Akhurst RJ, Derynck R: The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol. 2008, 10: 654-664. 10.1038/ncb1728.PubMedPubMedCentral
60.
go back to reference Chen YG: Endocytic regulation of TGF-beta signaling. Cell Res. 2009, 19: 58-70. 10.1038/cr.2008.315.PubMed Chen YG: Endocytic regulation of TGF-beta signaling. Cell Res. 2009, 19: 58-70. 10.1038/cr.2008.315.PubMed
61.
go back to reference Attisano L, Wrana JL: Smads as transcriptional co-modulators. Curr Opin Cell Biol. 2000, 12: 235-243. 10.1016/S0955-0674(99)00081-2.PubMed Attisano L, Wrana JL: Smads as transcriptional co-modulators. Curr Opin Cell Biol. 2000, 12: 235-243. 10.1016/S0955-0674(99)00081-2.PubMed
62.
go back to reference Liu F, Hata A, Baker JC, Doody J, Cárcamo J, Harland RM, Massagué J: A human Mad protein acting as a BMP-regulated transcriptional activator. Nature. 1996, 381: 620-623. 10.1038/381620a0.PubMed Liu F, Hata A, Baker JC, Doody J, Cárcamo J, Harland RM, Massagué J: A human Mad protein acting as a BMP-regulated transcriptional activator. Nature. 1996, 381: 620-623. 10.1038/381620a0.PubMed
63.
go back to reference Massagué J, Seoane J, Wotton D: Smad transcription factors. Genes & Development. 2005, 19: 2783-2810. Massagué J, Seoane J, Wotton D: Smad transcription factors. Genes & Development. 2005, 19: 2783-2810.
64.
go back to reference Hayashi H, Abdollah S, Qiu Y, Cai J, Xu Y-Y, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Wrana JL, Falb D: The MAD-related protein smad7 associates with the TGF[beta] receptor and Functions as an antagonist of TGF[beta] signaling. Cell. 1997, 89: 1165-1173. 10.1016/S0092-8674(00)80303-7.PubMed Hayashi H, Abdollah S, Qiu Y, Cai J, Xu Y-Y, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Wrana JL, Falb D: The MAD-related protein smad7 associates with the TGF[beta] receptor and Functions as an antagonist of TGF[beta] signaling. Cell. 1997, 89: 1165-1173. 10.1016/S0092-8674(00)80303-7.PubMed
65.
go back to reference Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A: Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 1998, 12: 186-197. 10.1101/gad.12.2.186.PubMedPubMedCentral Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A: Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 1998, 12: 186-197. 10.1101/gad.12.2.186.PubMedPubMedCentral
66.
go back to reference Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL: SARA, a FYVE Domain Protein that Recruits Smad2 to the TGF[beta] Receptor. Cell. 1998, 95: 779-791. 10.1016/S0092-8674(00)81701-8.PubMed Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL: SARA, a FYVE Domain Protein that Recruits Smad2 to the TGF[beta] Receptor. Cell. 1998, 95: 779-791. 10.1016/S0092-8674(00)81701-8.PubMed
67.
go back to reference Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L: TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell. 2010, 37: 123-134. 10.1016/j.molcel.2009.10.028.PubMed Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L: TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell. 2010, 37: 123-134. 10.1016/j.molcel.2009.10.028.PubMed
68.
go back to reference Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R: Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell. 2001, 8: 1277-1289. 10.1016/S1097-2765(01)00421-X.PubMed Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R: Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell. 2001, 8: 1277-1289. 10.1016/S1097-2765(01)00421-X.PubMed
69.
go back to reference Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH: A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999, 400: 687-693. 10.1038/23293.PubMed Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH: A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999, 400: 687-693. 10.1038/23293.PubMed
70.
go back to reference Xiao Z, Liu X, Henis YI, Lodish HF: A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc Natl Acad Sci USA. 2000, 97: 7853-7858. 10.1073/pnas.97.14.7853.PubMedPubMedCentral Xiao Z, Liu X, Henis YI, Lodish HF: A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc Natl Acad Sci USA. 2000, 97: 7853-7858. 10.1073/pnas.97.14.7853.PubMedPubMedCentral
71.
go back to reference Xu L, Chen YG, Massagué J: The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation. Nat Cell Biol. 2000, 2: 559-562. 10.1038/35019649.PubMed Xu L, Chen YG, Massagué J: The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation. Nat Cell Biol. 2000, 2: 559-562. 10.1038/35019649.PubMed
72.
go back to reference Xu L, Kang Y, Cöl S, Massagué J: Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in thecytoplasm and nucleus. Mol Cell. 2002, 10: 271-282. 10.1016/S1097-2765(02)00586-5.PubMed Xu L, Kang Y, Cöl S, Massagué J: Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in thecytoplasm and nucleus. Mol Cell. 2002, 10: 271-282. 10.1016/S1097-2765(02)00586-5.PubMed
73.
go back to reference Inman GJ, Nicolás FJ, Hill CS: Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell. 2002, 10: 283-294. 10.1016/S1097-2765(02)00585-3.PubMed Inman GJ, Nicolás FJ, Hill CS: Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell. 2002, 10: 283-294. 10.1016/S1097-2765(02)00585-3.PubMed
74.
go back to reference Chen CR, Kang Y, Massagué J: Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA. 2001, 98: 992-999. 10.1073/pnas.98.3.992.PubMedPubMedCentral Chen CR, Kang Y, Massagué J: Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA. 2001, 98: 992-999. 10.1073/pnas.98.3.992.PubMedPubMedCentral
75.
go back to reference Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP: Genetic programs of epithelial cell plasticity directed by transforming growth factorbeta. Proc Natl Acad Sci USA. 2001, 98: 6686-6691. 10.1073/pnas.111614398.PubMedPubMedCentral Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP: Genetic programs of epithelial cell plasticity directed by transforming growth factorbeta. Proc Natl Acad Sci USA. 2001, 98: 6686-6691. 10.1073/pnas.111614398.PubMedPubMedCentral
76.
go back to reference Feng X-H, Zhang Y, Wu R-Y, Derynck R: The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-inducedtranscriptional activation. Genes Dev. 1998, 12: 2153-2163. 10.1101/gad.12.14.2153.PubMedPubMedCentral Feng X-H, Zhang Y, Wu R-Y, Derynck R: The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-inducedtranscriptional activation. Genes Dev. 1998, 12: 2153-2163. 10.1101/gad.12.14.2153.PubMedPubMedCentral
77.
go back to reference Pouponnot C, Jayaraman L, Massagué J: Physical and Functional Interaction of SMADs and p300/CBP. J Biol Chem. 1998, 273: 22865-22868. 10.1074/jbc.273.36.22865.PubMed Pouponnot C, Jayaraman L, Massagué J: Physical and Functional Interaction of SMADs and p300/CBP. J Biol Chem. 1998, 273: 22865-22868. 10.1074/jbc.273.36.22865.PubMed
78.
go back to reference Pearson KL, Hunter T, Janknecht R: Activation of Smad1-mediated transcription by p300/CBP.Biochimica et Biophysica Acta (BBA). Gene Structure and Expression. 1999, 1489: 354-364. 10.1016/S0167-4781(99)00166-9. Pearson KL, Hunter T, Janknecht R: Activation of Smad1-mediated transcription by p300/CBP.Biochimica et Biophysica Acta (BBA). Gene Structure and Expression. 1999, 1489: 354-364. 10.1016/S0167-4781(99)00166-9.
79.
go back to reference Topper JN, DiChiara MR, Brown JD, Williams AJ, Falb D, Collins T, Gimbrone MA: CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor β transcriptional responses in endothelial cells. Proc Natl Acad Sci. 1998, 95: 9506-9511. 10.1073/pnas.95.16.9506.PubMedPubMedCentral Topper JN, DiChiara MR, Brown JD, Williams AJ, Falb D, Collins T, Gimbrone MA: CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor β transcriptional responses in endothelial cells. Proc Natl Acad Sci. 1998, 95: 9506-9511. 10.1073/pnas.95.16.9506.PubMedPubMedCentral
80.
go back to reference Ross S, Hill CS: How the Smads regulate transcription. Int J Biochem Cell Biol. 2008, 40: 383-408. 10.1016/j.biocel.2007.09.006.PubMed Ross S, Hill CS: How the Smads regulate transcription. Int J Biochem Cell Biol. 2008, 40: 383-408. 10.1016/j.biocel.2007.09.006.PubMed
81.
go back to reference Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A: Smad proteins bind a conserved RNA sequence to promote MicroRNA maturation by Drosha. Mol Cell. 2010, 39: 373-384. 10.1016/j.molcel.2010.07.011.PubMedPubMedCentral Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A: Smad proteins bind a conserved RNA sequence to promote MicroRNA maturation by Drosha. Mol Cell. 2010, 39: 373-384. 10.1016/j.molcel.2010.07.011.PubMedPubMedCentral
82.
go back to reference Davis BN, Hilyard AC, Lagna G, Hata A: SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008, 454: 56-61. 10.1038/nature07086.PubMedPubMedCentral Davis BN, Hilyard AC, Lagna G, Hata A: SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008, 454: 56-61. 10.1038/nature07086.PubMedPubMedCentral
83.
go back to reference Moustakas A, Heldin C-H: Non-Smad TGF-β signals. J Cell Sci. 2005, 118: 3573-3584. 10.1242/jcs.02554.PubMed Moustakas A, Heldin C-H: Non-Smad TGF-β signals. J Cell Sci. 2005, 118: 3573-3584. 10.1242/jcs.02554.PubMed
84.
go back to reference Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL: p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cellmigration. J Cell Sci. 2002, 115: 3193-3206.PubMed Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL: p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cellmigration. J Cell Sci. 2002, 115: 3193-3206.PubMed
85.
go back to reference Engel ME, McDonnell MA, Law BK, Moses HL: Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem. 1999, 274: 37413-37420. 10.1074/jbc.274.52.37413.PubMed Engel ME, McDonnell MA, Law BK, Moses HL: Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem. 1999, 274: 37413-37420. 10.1074/jbc.274.52.37413.PubMed
86.
go back to reference Yu L, Hébert MC, Zhang YE: TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J. 2002, 21: 3749-3759. 10.1093/emboj/cdf366.PubMedPubMedCentral Yu L, Hébert MC, Zhang YE: TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J. 2002, 21: 3749-3759. 10.1093/emboj/cdf366.PubMedPubMedCentral
87.
go back to reference Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL: Phosphatidylinositol 3-kinase function is required for transforming growth factor β- mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000, 275: 36803-36810. 10.1074/jbc.M005912200.PubMed Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL: Phosphatidylinositol 3-kinase function is required for transforming growth factor β- mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000, 275: 36803-36810. 10.1074/jbc.M005912200.PubMed
88.
go back to reference Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL: Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001, 12: 27-36.PubMedPubMedCentral Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL: Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001, 12: 27-36.PubMedPubMedCentral
89.
go back to reference Lamouille S, Derynck R: Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol. 2007, 178: 437-451. 10.1083/jcb.200611146.PubMedPubMedCentral Lamouille S, Derynck R: Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol. 2007, 178: 437-451. 10.1083/jcb.200611146.PubMedPubMedCentral
90.
go back to reference Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES, Cui Z, Thannickal VJ: Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal. 2007, 19: 761-771. 10.1016/j.cellsig.2006.10.001.PubMedPubMedCentral Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES, Cui Z, Thannickal VJ: Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal. 2007, 19: 761-771. 10.1016/j.cellsig.2006.10.001.PubMedPubMedCentral
91.
go back to reference Galliher AJ, Schiemann WP: β3 Integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammaryepithelial cells. Breast Cancer Res. 2006, 8 (4): R42-10.1186/bcr1524.PubMedPubMedCentral Galliher AJ, Schiemann WP: β3 Integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammaryepithelial cells. Breast Cancer Res. 2006, 8 (4): R42-10.1186/bcr1524.PubMedPubMedCentral
92.
go back to reference Park SS, Eom Y-W, Kim EH, Lee JH, Min DS, Kim S, Kim S-J, Choi KS: Involvement of c-Src kinase in the regulation of TGF-[beta]1-induced apoptosis. Oncogene. 2004, 23: 6272-6281. 10.1038/sj.onc.1207856.PubMed Park SS, Eom Y-W, Kim EH, Lee JH, Min DS, Kim S, Kim S-J, Choi KS: Involvement of c-Src kinase in the regulation of TGF-[beta]1-induced apoptosis. Oncogene. 2004, 23: 6272-6281. 10.1038/sj.onc.1207856.PubMed
93.
go back to reference Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ: TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promoteosteoclast survival. Exp Cell Res. 2008, 314: 2725-2738. 10.1016/j.yexcr.2008.06.006.PubMedPubMedCentral Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ: TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promoteosteoclast survival. Exp Cell Res. 2008, 314: 2725-2738. 10.1016/j.yexcr.2008.06.006.PubMedPubMedCentral
94.
go back to reference Derynck R, Akhurst RJ, Balmain A: TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001, 29: 117-129. 10.1038/ng1001-117.PubMed Derynck R, Akhurst RJ, Balmain A: TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001, 29: 117-129. 10.1038/ng1001-117.PubMed
95.
go back to reference Bierie B, Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006, 6: 506-520. 10.1038/nrc1926.PubMed Bierie B, Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006, 6: 506-520. 10.1038/nrc1926.PubMed
96.
go back to reference Pangas SA, Matzuk MM: Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development. Mol Cell Endocrinol. 2004, 225: 83-91. 10.1016/j.mce.2004.02.017.PubMed Pangas SA, Matzuk MM: Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development. Mol Cell Endocrinol. 2004, 225: 83-91. 10.1016/j.mce.2004.02.017.PubMed
97.
go back to reference Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, Akhurst RJ: TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasivespindle carcinomas in transgenic mice. Cell. 1996, 86: 531-542. 10.1016/S0092-8674(00)80127-0.PubMed Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, Akhurst RJ: TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasivespindle carcinomas in transgenic mice. Cell. 1996, 86: 531-542. 10.1016/S0092-8674(00)80127-0.PubMed
98.
go back to reference Amendt C, Schirmacher P, Weber H, Blessing M: Expression of a dominant negative type II TGF-beta receptor in mouse skin results in an increase in carcinoma incidenceand an acceleration of carcinoma development. Oncogene. 1998, 17: 25-34. 10.1038/sj.onc.1202161.PubMed Amendt C, Schirmacher P, Weber H, Blessing M: Expression of a dominant negative type II TGF-beta receptor in mouse skin results in an increase in carcinoma incidenceand an acceleration of carcinoma development. Oncogene. 1998, 17: 25-34. 10.1038/sj.onc.1202161.PubMed
99.
go back to reference Wang XJ, Liefer KM, Tsai S, O'Malley BW, Roop DR: Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in theepidermis. Proc Natl Acad Sci USA. 1999, 96: 8483-8488. 10.1073/pnas.96.15.8483.PubMedPubMedCentral Wang XJ, Liefer KM, Tsai S, O'Malley BW, Roop DR: Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in theepidermis. Proc Natl Acad Sci USA. 1999, 96: 8483-8488. 10.1073/pnas.96.15.8483.PubMedPubMedCentral
100.
go back to reference Weeks BH, He W, Olson KL, Wang XJ: Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. Cancer Res. 2001, 61: 7435-7443.PubMed Weeks BH, He W, Olson KL, Wang XJ: Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. Cancer Res. 2001, 61: 7435-7443.PubMed
101.
go back to reference Hannon GJ: Beach D: pl5INK4B is a potentia| effector of TGF-[beta]-induced cell cycle arrest. Nature. 1994, 371: 257-261. 10.1038/371257a0.PubMed Hannon GJ: Beach D: pl5INK4B is a potentia| effector of TGF-[beta]-induced cell cycle arrest. Nature. 1994, 371: 257-261. 10.1038/371257a0.PubMed
102.
go back to reference Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA. 1995, 92: 5545-5549. 10.1073/pnas.92.12.5545.PubMedPubMedCentral Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA. 1995, 92: 5545-5549. 10.1073/pnas.92.12.5545.PubMedPubMedCentral
103.
go back to reference Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A: p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition tocell cycle arrest. Genes Dev. 1994, 8: 9-22. 10.1101/gad.8.1.9.PubMed Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A: p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition tocell cycle arrest. Genes Dev. 1994, 8: 9-22. 10.1101/gad.8.1.9.PubMed
104.
go back to reference Kang Y, Chen C-R, Massagué J: A self-enabling TGF[beta] response coupled to stress signaling: smad engages stress response factor ATF3 for Id1 repression inepithelial cells. Mol Cell. 2003, 11: 915-926. 10.1016/S1097-2765(03)00109-6.PubMed Kang Y, Chen C-R, Massagué J: A self-enabling TGF[beta] response coupled to stress signaling: smad engages stress response factor ATF3 for Id1 repression inepithelial cells. Mol Cell. 2003, 11: 915-926. 10.1016/S1097-2765(03)00109-6.PubMed
105.
go back to reference Isoe S, Naganuma H, Nakano S, Sasaki A, Satoh E, Nagasaka M, Maeda S, Nukui H: Resistance to growth inhibition by transforming growth factor—β in malignant glioma cells with functional receptors. J Neurosurg. 1998, 88: 529-534. 10.3171/jns.1998.88.3.0529.PubMed Isoe S, Naganuma H, Nakano S, Sasaki A, Satoh E, Nagasaka M, Maeda S, Nukui H: Resistance to growth inhibition by transforming growth factor—β in malignant glioma cells with functional receptors. J Neurosurg. 1998, 88: 529-534. 10.3171/jns.1998.88.3.0529.PubMed
106.
go back to reference Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13: 1501-1512. 10.1101/gad.13.12.1501.PubMed Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13: 1501-1512. 10.1101/gad.13.12.1501.PubMed
107.
go back to reference Reynisdóttir I, Massagué J: The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev. 1997, 11: 492-503. 10.1101/gad.11.4.492.PubMed Reynisdóttir I, Massagué J: The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev. 1997, 11: 492-503. 10.1101/gad.11.4.492.PubMed
108.
go back to reference Sandhu C, Garbe J, Bhattacharya N, Daksis J, Pan CH, Yaswen P, Koh J, Slingerland JM, Stampfer MR: Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in humanmammary epithelial cells. Mol Cell Biol. 1997, 17: 2458-2467.PubMedPubMedCentral Sandhu C, Garbe J, Bhattacharya N, Daksis J, Pan CH, Yaswen P, Koh J, Slingerland JM, Stampfer MR: Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in humanmammary epithelial cells. Mol Cell Biol. 1997, 17: 2458-2467.PubMedPubMedCentral
109.
go back to reference Iavarone A, Massague J: E2F and histone deacetylase mediate transforming growth factor beta repression of cdc25A during keratinocyte cell cycle arrest. Mol Cell Biol. 1999, 19: 916-922.PubMedPubMedCentral Iavarone A, Massague J: E2F and histone deacetylase mediate transforming growth factor beta repression of cdc25A during keratinocyte cell cycle arrest. Mol Cell Biol. 1999, 19: 916-922.PubMedPubMedCentral
110.
go back to reference Chen C-R, Kang Y, Siegel PM, Massagué J: E2F4/5 and p107 as smad cofactors linking the TGF[beta] Receptor to c-myc Repression. Cell. 2002, 110: 19-32. 10.1016/S0092-8674(02)00801-2.PubMed Chen C-R, Kang Y, Siegel PM, Massagué J: E2F4/5 and p107 as smad cofactors linking the TGF[beta] Receptor to c-myc Repression. Cell. 2002, 110: 19-32. 10.1016/S0092-8674(02)00801-2.PubMed
111.
go back to reference Levy L, Hill CS: Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006, 17: 41-58. 10.1016/j.cytogfr.2005.09.009.PubMed Levy L, Hill CS: Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006, 17: 41-58. 10.1016/j.cytogfr.2005.09.009.PubMed
112.
go back to reference Teicher BA: Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer Metastasis Rev. 2001, 20: 133-143. 10.1023/A:1013177011767.PubMed Teicher BA: Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer Metastasis Rev. 2001, 20: 133-143. 10.1023/A:1013177011767.PubMed
113.
go back to reference Biswas S, Chytil A, Washington K, Romero-Gallo J, Gorska AE, Wirth PS, Gautam S, Moses HL, Grady WM: Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res. 2004, 64: 4687-4692. 10.1158/0008-5472.CAN-03-3255.PubMed Biswas S, Chytil A, Washington K, Romero-Gallo J, Gorska AE, Wirth PS, Gautam S, Moses HL, Grady WM: Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res. 2004, 64: 4687-4692. 10.1158/0008-5472.CAN-03-3255.PubMed
114.
go back to reference Gobbi H, Arteaga CL, Jensen RA, Simpson JF, Dupont WD, Olson SJ, Schuyler PA, Plummer WD, Page DL: Loss of expression of transforming growth factor beta type II receptor correlates with high tumour grade in human breast in-situ and invasivecarcinomas. Histopathology. 2000, 36: 168-177. 10.1046/j.1365-2559.2000.00841.x.PubMed Gobbi H, Arteaga CL, Jensen RA, Simpson JF, Dupont WD, Olson SJ, Schuyler PA, Plummer WD, Page DL: Loss of expression of transforming growth factor beta type II receptor correlates with high tumour grade in human breast in-situ and invasivecarcinomas. Histopathology. 2000, 36: 168-177. 10.1046/j.1365-2559.2000.00841.x.PubMed
115.
go back to reference Bardeesy N, Cheng K-H, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006, 20: 3130-3146. 10.1101/gad.1478706.PubMedPubMedCentral Bardeesy N, Cheng K-H, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006, 20: 3130-3146. 10.1101/gad.1478706.PubMedPubMedCentral
116.
go back to reference Muñoz-Antonia T, Torrellas-Ruiz M, Clavell J, Mathews LA, Muro-Cacho CA, Báez A: Aberrant methylation inactivates transforming growth factor Beta receptor I in head and neck squamous cell carcinoma. Int. J. Otolaryngol. 2009, 2009: 848695-848695.PubMedPubMedCentral Muñoz-Antonia T, Torrellas-Ruiz M, Clavell J, Mathews LA, Muro-Cacho CA, Báez A: Aberrant methylation inactivates transforming growth factor Beta receptor I in head and neck squamous cell carcinoma. Int. J. Otolaryngol. 2009, 2009: 848695-848695.PubMedPubMedCentral
117.
go back to reference Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D, Li AG, Tang CF, Siddiqui Y, Nord J: Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 2006, 20: 1331-1342. 10.1101/gad.1413306.PubMedPubMedCentral Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D, Li AG, Tang CF, Siddiqui Y, Nord J: Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 2006, 20: 1331-1342. 10.1101/gad.1413306.PubMedPubMedCentral
118.
go back to reference Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, Imamura T: NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4–2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducingubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Biochem J. 2005, 386: 461-470. 10.1042/BJ20040738.PubMedPubMedCentral Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, Imamura T: NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4–2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducingubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Biochem J. 2005, 386: 461-470. 10.1042/BJ20040738.PubMedPubMedCentral
119.
go back to reference Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K: Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene. 2004, 23: 6914-6923. 10.1038/sj.onc.1207885.PubMed Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K: Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene. 2004, 23: 6914-6923. 10.1038/sj.onc.1207885.PubMed
120.
go back to reference Fukuchi M, Fukai Y, Masuda N, Miyazaki T, Nakajima M, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H: High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cellcarcinoma. Cancer Res. 2002, 62: 7162-7165.PubMed Fukuchi M, Fukai Y, Masuda N, Miyazaki T, Nakajima M, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H: High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cellcarcinoma. Cancer Res. 2002, 62: 7162-7165.PubMed
121.
go back to reference Kim SJ, Im YH, Markowitz SD, Bang YJ: Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000, 11: 159-168. 10.1016/S1359-6101(99)00039-8.PubMed Kim SJ, Im YH, Markowitz SD, Bang YJ: Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000, 11: 159-168. 10.1016/S1359-6101(99)00039-8.PubMed
122.
go back to reference Kang SH, Bang YJ, Im YH, Yang HK, Lee DA, Lee HY, Lee HS, Kim NK, Kim SJ: Transcriptional repression of the transforming growth factor-beta type I receptor gene by DNA methylation results in the development of TGF-beta resistance in humangastric cancer. Oncogene. 1999, 18: 7280-7286. 10.1038/sj.onc.1203146.PubMed Kang SH, Bang YJ, Im YH, Yang HK, Lee DA, Lee HY, Lee HS, Kim NK, Kim SJ: Transcriptional repression of the transforming growth factor-beta type I receptor gene by DNA methylation results in the development of TGF-beta resistance in humangastric cancer. Oncogene. 1999, 18: 7280-7286. 10.1038/sj.onc.1203146.PubMed
123.
go back to reference Hinshelwood RA, Huschtscha LI, Melki J, Stirzaker C, Abdipranoto A, Vissel B, Ravasi T, Wells CA, Hume DA, Reddel RR, Clark SJ: Concordant epigenetic silencing of transforming growth factor-beta signaling pathway genes occurs early in breastcarcinogenesis. Cancer Res. 2007, 67: 11517-11527. 10.1158/0008-5472.CAN-07-1284.PubMed Hinshelwood RA, Huschtscha LI, Melki J, Stirzaker C, Abdipranoto A, Vissel B, Ravasi T, Wells CA, Hume DA, Reddel RR, Clark SJ: Concordant epigenetic silencing of transforming growth factor-beta signaling pathway genes occurs early in breastcarcinogenesis. Cancer Res. 2007, 67: 11517-11527. 10.1158/0008-5472.CAN-07-1284.PubMed
124.
go back to reference Bristow RG, Hill RP: Hypoxia and metabolism: Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008, 8: 180-192. 10.1038/nrc2344.PubMed Bristow RG, Hill RP: Hypoxia and metabolism: Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008, 8: 180-192. 10.1038/nrc2344.PubMed
125.
go back to reference Mareel M, Leroy A: Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev. 2003, 83: 337-376.PubMed Mareel M, Leroy A: Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev. 2003, 83: 337-376.PubMed
126.
go back to reference Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004, 303: 848-851. 10.1126/science.1090922.PubMed Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004, 303: 848-851. 10.1126/science.1090922.PubMed
127.
go back to reference Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL: Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGFalpha-,MSP- and HGF-mediated signaling networks. Oncogene. 2005, 24: 5053-5068. 10.1038/sj.onc.1208685.PubMedPubMedCentral Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL: Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGFalpha-,MSP- and HGF-mediated signaling networks. Oncogene. 2005, 24: 5053-5068. 10.1038/sj.onc.1208685.PubMedPubMedCentral
128.
go back to reference Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008, 133: 66-77. 10.1016/j.cell.2008.01.046.PubMedPubMedCentral Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008, 133: 66-77. 10.1016/j.cell.2008.01.046.PubMedPubMedCentral
129.
go back to reference Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner KU, Moses HL: Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008, 68: 1809-1819. 10.1158/0008-5472.CAN-07-5597.PubMed Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner KU, Moses HL: Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008, 68: 1809-1819. 10.1158/0008-5472.CAN-07-5597.PubMed
130.
go back to reference Lee MS, Kim TY, Kim YB, Lee SY, Ko SG, Jong HS, Bang YJ, Lee JW: The signaling network of transforming growth factor beta1, protein kinase Cdelta, and integrinunderlies the spreading and invasiveness of gastric carcinoma cells. Mol Cell Biol. 2005, 25: 6921-6936. 10.1128/MCB.25.16.6921-6936.2005.PubMedPubMedCentral Lee MS, Kim TY, Kim YB, Lee SY, Ko SG, Jong HS, Bang YJ, Lee JW: The signaling network of transforming growth factor beta1, protein kinase Cdelta, and integrinunderlies the spreading and invasiveness of gastric carcinoma cells. Mol Cell Biol. 2005, 25: 6921-6936. 10.1128/MCB.25.16.6921-6936.2005.PubMedPubMedCentral
131.
go back to reference Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002, 2: 442-454. 10.1038/nrc822.PubMed Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002, 2: 442-454. 10.1038/nrc822.PubMed
132.
go back to reference Thiery JP, Chopin D: Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev. 1999, 18: 31-42. 10.1023/A:1006256219004.PubMed Thiery JP, Chopin D: Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev. 1999, 18: 31-42. 10.1023/A:1006256219004.PubMed
133.
go back to reference Yang L, Pang Y, Moses HL: TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010, 31: 220-227. 10.1016/j.it.2010.04.002.PubMedPubMedCentral Yang L, Pang Y, Moses HL: TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010, 31: 220-227. 10.1016/j.it.2010.04.002.PubMedPubMedCentral
134.
go back to reference Lebman DA, Edmiston JS: The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes. Microbes Infect. 1999, 1: 1297-1304. 10.1016/S1286-4579(99)00254-3.PubMed Lebman DA, Edmiston JS: The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes. Microbes Infect. 1999, 1: 1297-1304. 10.1016/S1286-4579(99)00254-3.PubMed
135.
go back to reference Gilbert KM, Thoman M, Bauche K, Pham T, Weigle WO: Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells. Immunol Invest. 1997, 26: 459-472. 10.3109/08820139709022702.PubMed Gilbert KM, Thoman M, Bauche K, Pham T, Weigle WO: Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells. Immunol Invest. 1997, 26: 459-472. 10.3109/08820139709022702.PubMed
136.
go back to reference Bommireddy R, Ormsby I, Yin M, Boivin GP, Babcock GF, Doetschman T: TGF beta 1 inhibits Ca2 + −calcineurin-mediated activation in thymocytes. J Immunol. 2003, 170: 3645-3652.PubMedPubMedCentral Bommireddy R, Ormsby I, Yin M, Boivin GP, Babcock GF, Doetschman T: TGF beta 1 inhibits Ca2 + −calcineurin-mediated activation in thymocytes. J Immunol. 2003, 170: 3645-3652.PubMedPubMedCentral
137.
go back to reference Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB: Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci USA. 1987, 84: 5788-5792. 10.1073/pnas.84.16.5788.PubMedPubMedCentral Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB: Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci USA. 1987, 84: 5788-5792. 10.1073/pnas.84.16.5788.PubMedPubMedCentral
138.
go back to reference Monteleone G, Mann J, Monteleone I, Vavassori P, Bremner R, Fantini M, Del Vecchio Blanco G, Tersigni R, Alessandroni L, Mann D: A failure of transforming growth factor-beta1 negative regulation maintains sustained NF-kappaB activation in gutinflammation. J Biol Chem. 2004, 279: 3925-3932.PubMed Monteleone G, Mann J, Monteleone I, Vavassori P, Bremner R, Fantini M, Del Vecchio Blanco G, Tersigni R, Alessandroni L, Mann D: A failure of transforming growth factor-beta1 negative regulation maintains sustained NF-kappaB activation in gutinflammation. J Biol Chem. 2004, 279: 3925-3932.PubMed
139.
go back to reference Korpal M, Kang Y: Targeting the transforming growth factor-beta signalling pathway in metastatic cancer. Eur J Cancer. 2010, 46: 1232-1240. 10.1016/j.ejca.2010.02.040.PubMed Korpal M, Kang Y: Targeting the transforming growth factor-beta signalling pathway in metastatic cancer. Eur J Cancer. 2010, 46: 1232-1240. 10.1016/j.ejca.2010.02.040.PubMed
140.
go back to reference Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG: TGF-beta signalling in colon carcinogenesis. Cancer Lett. 2012, 314: 1-7. 10.1016/j.canlet.2011.09.041.PubMed Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG: TGF-beta signalling in colon carcinogenesis. Cancer Lett. 2012, 314: 1-7. 10.1016/j.canlet.2011.09.041.PubMed
141.
go back to reference Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J, Shawler DL: Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther. 2006, 13: 1052-1060. 10.1038/sj.cgt.7700975.PubMed Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J, Shawler DL: Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther. 2006, 13: 1052-1060. 10.1038/sj.cgt.7700975.PubMed
142.
go back to reference Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J, Tong A, Kumar P, Pappen B, Hamilton C: Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cellvaccine in non-small-cell lung cancer. J Clin Oncol. 2006, 24: 4721-4730. 10.1200/JCO.2005.05.5335.PubMed Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J, Tong A, Kumar P, Pappen B, Hamilton C: Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cellvaccine in non-small-cell lung cancer. J Clin Oncol. 2006, 24: 4721-4730. 10.1200/JCO.2005.05.5335.PubMed
143.
go back to reference Gadir N, Jackson DN, Lee E, Foster DA: Defective TGF-beta signaling sensitizes human cancer cells to rapamycin. Oncogene. 2008, 27: 1055-1062. 10.1038/sj.onc.1210721.PubMed Gadir N, Jackson DN, Lee E, Foster DA: Defective TGF-beta signaling sensitizes human cancer cells to rapamycin. Oncogene. 2008, 27: 1055-1062. 10.1038/sj.onc.1210721.PubMed
144.
go back to reference Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S: Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA. 1993, 90: 770-774. 10.1073/pnas.90.2.770.PubMedPubMedCentral Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S: Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA. 1993, 90: 770-774. 10.1073/pnas.90.2.770.PubMedPubMedCentral
145.
go back to reference Böttner M, Krieglstein K, Unsicker K: The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem. 2000, 75: 2227-2240.PubMed Böttner M, Krieglstein K, Unsicker K: The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem. 2000, 75: 2227-2240.PubMed
147.
go back to reference Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK: The WHO classification of tumors of the nervous system. J Neuropath Exp Neur. 2002, 61: 215-225. discussion 226-229-215-225; discussion 226–229PubMed Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK: The WHO classification of tumors of the nervous system. J Neuropath Exp Neur. 2002, 61: 215-225. discussion 226-229-215-225; discussion 226–229PubMed
148.
go back to reference Izumoto S, Arita N, Ohnishi T, Hiraga S, Taki T, Tomita N, Ohue M, Hayakawa T: Microsatellite instability and mutated type II transforming growth factor-[beta] receptor gene in gliomas. Cancer Lett. 1997, 112: 251-256. 10.1016/S0304-3835(96)04583-1.PubMed Izumoto S, Arita N, Ohnishi T, Hiraga S, Taki T, Tomita N, Ohue M, Hayakawa T: Microsatellite instability and mutated type II transforming growth factor-[beta] receptor gene in gliomas. Cancer Lett. 1997, 112: 251-256. 10.1016/S0304-3835(96)04583-1.PubMed
149.
go back to reference Fujiwara K, Ikeda H, Yoshimoto T: Abnormalities in expression of genes, mRNA, and proteins of transforming growth factor-beta receptor type I and type II in humanpituitary adenomas. Clin Neuropathol. 1998, 17: 19-26.PubMed Fujiwara K, Ikeda H, Yoshimoto T: Abnormalities in expression of genes, mRNA, and proteins of transforming growth factor-beta receptor type I and type II in humanpituitary adenomas. Clin Neuropathol. 1998, 17: 19-26.PubMed
150.
go back to reference Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren HO, Widegren B: Expression of TGF-β isoforms, TGF-β receptors, and Smad molecules at different stages of human glioma. Int J Cancer. 2000, 89: 251-258. 10.1002/1097-0215(20000520)89:3<251::AID-IJC7>3.0.CO;2-5.PubMed Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren HO, Widegren B: Expression of TGF-β isoforms, TGF-β receptors, and Smad molecules at different stages of human glioma. Int J Cancer. 2000, 89: 251-258. 10.1002/1097-0215(20000520)89:3<251::AID-IJC7>3.0.CO;2-5.PubMed
151.
go back to reference Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K: Enhanced expression of transforming growth factor-β and its type-I and type-II receptors in human glioblastoma. Int J Cancer. 1995, 62: 386-392. 10.1002/ijc.2910620405.PubMed Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K: Enhanced expression of transforming growth factor-β and its type-I and type-II receptors in human glioblastoma. Int J Cancer. 1995, 62: 386-392. 10.1002/ijc.2910620405.PubMed
152.
go back to reference Jachimczak P, Hessdörfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U: Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisenseoligonucleotides. Int. J. CancerJournal Int Du Cancer. 1996, 65: 332-337. Jachimczak P, Hessdörfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U: Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisenseoligonucleotides. Int. J. CancerJournal Int Du Cancer. 1996, 65: 332-337.
153.
go back to reference Zhang L, Sato E, Amagasaki K, Nakao A, Naganuma H: Participation of an abnormality in the transforming growth factor-β signaling pathway in resistance ofmalignant glioma cells to growth inhibition induced by that factor. J Neurosurg. 2006, 105: 119-128. 10.3171/jns.2006.105.1.119.PubMed Zhang L, Sato E, Amagasaki K, Nakao A, Naganuma H: Participation of an abnormality in the transforming growth factor-β signaling pathway in resistance ofmalignant glioma cells to growth inhibition induced by that factor. J Neurosurg. 2006, 105: 119-128. 10.3171/jns.2006.105.1.119.PubMed
154.
go back to reference Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, Seoane J: High TGFβ-smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B Gene. Cancer Cell. 2007, 11: 147-160. 10.1016/j.ccr.2006.11.023.PubMed Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, Seoane J: High TGFβ-smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B Gene. Cancer Cell. 2007, 11: 147-160. 10.1016/j.ccr.2006.11.023.PubMed
155.
go back to reference Copland JA, Luxon BA, Ajani L, Maity T, Campagnaro E, Guo H, LeGrand SN, Tamboli P, Wood CG: Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis andprogression. Oncogene. 2003, 22: 8053-8062. 10.1038/sj.onc.1206835.PubMed Copland JA, Luxon BA, Ajani L, Maity T, Campagnaro E, Guo H, LeGrand SN, Tamboli P, Wood CG: Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis andprogression. Oncogene. 2003, 22: 8053-8062. 10.1038/sj.onc.1206835.PubMed
156.
go back to reference Hung T-T, Wang H, Kingsley EA, Risbridger GP, Russell PJ: Molecular profiling of bladder cancer: Involvement of the TGF-[beta] pathway in bladder cancer progression. Cancer Lett. 2008, 265: 27-38. 10.1016/j.canlet.2008.02.034.PubMed Hung T-T, Wang H, Kingsley EA, Risbridger GP, Russell PJ: Molecular profiling of bladder cancer: Involvement of the TGF-[beta] pathway in bladder cancer progression. Cancer Lett. 2008, 265: 27-38. 10.1016/j.canlet.2008.02.034.PubMed
157.
go back to reference Li Y, Yang K, Mao Q, Zheng X, Kong D, Xie L: Inhibition of TGF-β receptor I by siRNA suppresses the motility and invasiveness of T24 bladder cancer cells viamodulation of integrins and matrix metalloproteinase. Int Urol Nephrol. 2009, 42: 315-323.PubMed Li Y, Yang K, Mao Q, Zheng X, Kong D, Xie L: Inhibition of TGF-β receptor I by siRNA suppresses the motility and invasiveness of T24 bladder cancer cells viamodulation of integrins and matrix metalloproteinase. Int Urol Nephrol. 2009, 42: 315-323.PubMed
158.
go back to reference Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C: Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev. 2008, 34: 193-205. 10.1016/j.ctrv.2007.12.001.PubMed Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C: Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev. 2008, 34: 193-205. 10.1016/j.ctrv.2007.12.001.PubMed
159.
go back to reference Sjölund J, Boström AK, Lindgren D, Manna S, Moustakas A, Ljungberg B, Johansson M, Fredlund E, Axelson H: The Notch and TGF-β Signaling Pathways Contribute to the Aggressiveness of Clear Cell Renal Cell Carcinoma. PLoS One. 2011, 6: e23057-10.1371/journal.pone.0023057.PubMedPubMedCentral Sjölund J, Boström AK, Lindgren D, Manna S, Moustakas A, Ljungberg B, Johansson M, Fredlund E, Axelson H: The Notch and TGF-β Signaling Pathways Contribute to the Aggressiveness of Clear Cell Renal Cell Carcinoma. PLoS One. 2011, 6: e23057-10.1371/journal.pone.0023057.PubMedPubMedCentral
160.
go back to reference Komiyama S, Kurahashi T, Ishikawa M, Tanaka K, Komiyama M, Mikami M, Udagawa Y: Expression of TGFß1 and its receptors is associated with biological features of ovarian cancer and sensitivity to paclitaxel/carboplatin. Oncol Rep. 2011, 25: 1131-1138.PubMed Komiyama S, Kurahashi T, Ishikawa M, Tanaka K, Komiyama M, Mikami M, Udagawa Y: Expression of TGFß1 and its receptors is associated with biological features of ovarian cancer and sensitivity to paclitaxel/carboplatin. Oncol Rep. 2011, 25: 1131-1138.PubMed
161.
go back to reference Antony ML, Nair R, Sebastian P, Karunagaran D: Changes in expression, and/or mutations in TGF-β receptors (TGF-β RI and TGF-β RII) and Smad 4 in humanovarian tumors. J Cancer Res Clin Oncol. 2009, 136: 351-361. Antony ML, Nair R, Sebastian P, Karunagaran D: Changes in expression, and/or mutations in TGF-β receptors (TGF-β RI and TGF-β RII) and Smad 4 in humanovarian tumors. J Cancer Res Clin Oncol. 2009, 136: 351-361.
162.
go back to reference Chen T, Triplett J, Dehner B, Hurst B, Colligan B, Pemberton J, Graff JR, Carter JH: Transforming growth factor-beta receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Res. 2001, 61: 4679-4682.PubMed Chen T, Triplett J, Dehner B, Hurst B, Colligan B, Pemberton J, Graff JR, Carter JH: Transforming growth factor-beta receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Res. 2001, 61: 4679-4682.PubMed
163.
go back to reference Kaklamani VG, Hou N, Bian Y, Reich J, Offit K, Michel LS, Rubinstein WS, Rademaker A, Pasche B: TGFBR1*6A and cancer risk: a meta-analysis of seven case–control studies. J Clin Oncol: Official Journal of the Am J Clin Oncol. 2003, 21: 3236-3243. 10.1200/JCO.2003.11.524. Kaklamani VG, Hou N, Bian Y, Reich J, Offit K, Michel LS, Rubinstein WS, Rademaker A, Pasche B: TGFBR1*6A and cancer risk: a meta-analysis of seven case–control studies. J Clin Oncol: Official Journal of the Am J Clin Oncol. 2003, 21: 3236-3243. 10.1200/JCO.2003.11.524.
164.
go back to reference Biswas S, Trobridge P, Romero-Gallo J, Billheimer D, Myeroff LL, Willson JKV, Markowitz SD, Grady WM: Mutational inactivation of TGFBR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonaloutgrowth of transforming growth factor beta resistant cells. Genes Chromosomes Cancer. 2008, 47: 95-106. 10.1002/gcc.20511.PubMed Biswas S, Trobridge P, Romero-Gallo J, Billheimer D, Myeroff LL, Willson JKV, Markowitz SD, Grady WM: Mutational inactivation of TGFBR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonaloutgrowth of transforming growth factor beta resistant cells. Genes Chromosomes Cancer. 2008, 47: 95-106. 10.1002/gcc.20511.PubMed
165.
go back to reference Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H: DPC4 Gene in Various Tumor Types. Cancer Res. 1996, 56: 2527-2530.PubMed Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H: DPC4 Gene in Various Tumor Types. Cancer Res. 1996, 56: 2527-2530.PubMed
166.
go back to reference Do T-V, Kubba LA, Du H, Sturgis CD, Woodruff TK: Transforming growth Factor-β1, transforming growth factor-β2, and transforming growth factor-β3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymaltransition. Mol Cancer Res. 2008, 6: 695-705. 10.1158/1541-7786.MCR-07-0294.PubMedPubMedCentral Do T-V, Kubba LA, Du H, Sturgis CD, Woodruff TK: Transforming growth Factor-β1, transforming growth factor-β2, and transforming growth factor-β3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymaltransition. Mol Cancer Res. 2008, 6: 695-705. 10.1158/1541-7786.MCR-07-0294.PubMedPubMedCentral
167.
go back to reference Chan MWY, Huang Y-W, Hartman-Frey C, Kuo C-T, Deatherage D, Qin H, Cheng ASL, Yan PS, Davuluri RV, Huang THM: Aberrant Transforming Growth Factor β1 Signaling and SMAD4 Nuclear Translocation Confer Epigenetic Repression ofADAM19 in Ovarian Cancer. Neoplasia (New York, NY). 2008, 10: 908-919.PubMedCentral Chan MWY, Huang Y-W, Hartman-Frey C, Kuo C-T, Deatherage D, Qin H, Cheng ASL, Yan PS, Davuluri RV, Huang THM: Aberrant Transforming Growth Factor β1 Signaling and SMAD4 Nuclear Translocation Confer Epigenetic Repression ofADAM19 in Ovarian Cancer. Neoplasia (New York, NY). 2008, 10: 908-919.PubMedCentral
168.
go back to reference Rodriguez GC, Haisley C, Hurteau J, Moser TL, Whitaker R, Bast RC, Stack MS: Regulation of invasion of epithelial ovarian cancer by transforming growth factor-β. Gynecol Oncol. 2001, 80: 245-253. 10.1006/gyno.2000.6042.PubMed Rodriguez GC, Haisley C, Hurteau J, Moser TL, Whitaker R, Bast RC, Stack MS: Regulation of invasion of epithelial ovarian cancer by transforming growth factor-β. Gynecol Oncol. 2001, 80: 245-253. 10.1006/gyno.2000.6042.PubMed
169.
go back to reference Yeh KT, Chen TH, Yang HW, Chou JL, Chen LY, Yeh CM, Chen YH, Lin RI, Su HY, Chen GCW: Aberrant TGFβ/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1 in ovarian cancer. Epigenetics: Official Journal of the DNA Methylation Society. 2011, 6: 727-739. 10.4161/epi.6.6.15856. Yeh KT, Chen TH, Yang HW, Chou JL, Chen LY, Yeh CM, Chen YH, Lin RI, Su HY, Chen GCW: Aberrant TGFβ/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1 in ovarian cancer. Epigenetics: Official Journal of the DNA Methylation Society. 2011, 6: 727-739. 10.4161/epi.6.6.15856.
170.
go back to reference Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MW, Nephew KP, Huang TH, Jin VX: ChIP-seq Defined Genome-Wide Map of TGFβ/SMAD4 Targets: Implications with Clinical Outcome of Ovarian Cancer. PLoS One. 2011, 6: e22606-10.1371/journal.pone.0022606.PubMedPubMedCentral Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MW, Nephew KP, Huang TH, Jin VX: ChIP-seq Defined Genome-Wide Map of TGFβ/SMAD4 Targets: Implications with Clinical Outcome of Ovarian Cancer. PLoS One. 2011, 6: e22606-10.1371/journal.pone.0022606.PubMedPubMedCentral
171.
go back to reference Wikström P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A: Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome inprostate cancer. Prostate. 1998, 37: 19-29. 10.1002/(SICI)1097-0045(19980915)37:1<19::AID-PROS4>3.0.CO;2-3.PubMed Wikström P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A: Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome inprostate cancer. Prostate. 1998, 37: 19-29. 10.1002/(SICI)1097-0045(19980915)37:1<19::AID-PROS4>3.0.CO;2-3.PubMed
172.
go back to reference Yu N, Kozlowski JM, Park II, Chen L, Zhang Q, Xu D, Doll JA, Crawford SE, Brendler CB, Lee C: Overexpression of transforming growth factor [beta]1 in malignant prostate cells is partly caused by a runaway of TGF-[beta]1 auto-induction mediated through adefective recruitment of protein phosphatase 2A by TGF-[beta] type I receptor. Urology. 2010, 76: 1519-e1518-1519.e1513-1519.e1518-1519.e1513PubMedPubMedCentral Yu N, Kozlowski JM, Park II, Chen L, Zhang Q, Xu D, Doll JA, Crawford SE, Brendler CB, Lee C: Overexpression of transforming growth factor [beta]1 in malignant prostate cells is partly caused by a runaway of TGF-[beta]1 auto-induction mediated through adefective recruitment of protein phosphatase 2A by TGF-[beta] type I receptor. Urology. 2010, 76: 1519-e1518-1519.e1513-1519.e1518-1519.e1513PubMedPubMedCentral
173.
go back to reference Kim IY, Ahn HJ, Zelner DJ, Shaw JW, Lang S, Kato M, Oefelein MG, Miyazono K, Nemeth JA, Kozlowski JM, Lee C: Loss of expression of transforming growth factor beta type I and type II receptors correlates with tumor grade in human prostate cancertissues. Clin Cancer Res. 1996, 2: 1255-1261.PubMed Kim IY, Ahn HJ, Zelner DJ, Shaw JW, Lang S, Kato M, Oefelein MG, Miyazono K, Nemeth JA, Kozlowski JM, Lee C: Loss of expression of transforming growth factor beta type I and type II receptors correlates with tumor grade in human prostate cancertissues. Clin Cancer Res. 1996, 2: 1255-1261.PubMed
174.
go back to reference Guo Y, Jacobs SC, Kyprianou N: Down‐regulation of protein and mRNA expression for transforming growth factor‐β (TGF‐β1) type I and type II receptors in humanprostate cancer. Int J Cancer. 1997, 71: 573-579. 10.1002/(SICI)1097-0215(19970516)71:4<573::AID-IJC11>3.0.CO;2-D.PubMed Guo Y, Jacobs SC, Kyprianou N: Down‐regulation of protein and mRNA expression for transforming growth factor‐β (TGF‐β1) type I and type II receptors in humanprostate cancer. Int J Cancer. 1997, 71: 573-579. 10.1002/(SICI)1097-0215(19970516)71:4<573::AID-IJC11>3.0.CO;2-D.PubMed
175.
go back to reference Turley RS, Finger EC, Hempel N, How T, Fields TA, Blobe GC: The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostatecancer. Cancer Res. 2007, 67: 1090-1098. 10.1158/0008-5472.CAN-06-3117.PubMed Turley RS, Finger EC, Hempel N, How T, Fields TA, Blobe GC: The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostatecancer. Cancer Res. 2007, 67: 1090-1098. 10.1158/0008-5472.CAN-06-3117.PubMed
176.
go back to reference Zhang Q, Rubenstein JN, Jang TL, Pins M, Javonovic B, Yang X, Kim S-J, Park I, Lee C: Insensitivity to transforming growth factor-β results from promoter methylation of cognate receptors in human prostate cancer cells (LNCaP). Mol Endocrinol. 2005, 19: 2390-2399. 10.1210/me.2005-0096.PubMed Zhang Q, Rubenstein JN, Jang TL, Pins M, Javonovic B, Yang X, Kim S-J, Park I, Lee C: Insensitivity to transforming growth factor-β results from promoter methylation of cognate receptors in human prostate cancer cells (LNCaP). Mol Endocrinol. 2005, 19: 2390-2399. 10.1210/me.2005-0096.PubMed
177.
go back to reference Latil A, Pesche S, Valéri A, Fournier G, Cussenot O, Lidereau R: Expression and mutational analysis of the MADR2/smad2 gene in human prostate cancer. Prostate. 1999, 40: 225-231. 10.1002/(SICI)1097-0045(19990901)40:4<225::AID-PROS3>3.0.CO;2-3.PubMed Latil A, Pesche S, Valéri A, Fournier G, Cussenot O, Lidereau R: Expression and mutational analysis of the MADR2/smad2 gene in human prostate cancer. Prostate. 1999, 40: 225-231. 10.1002/(SICI)1097-0045(19990901)40:4<225::AID-PROS3>3.0.CO;2-3.PubMed
178.
go back to reference Yin Z, Babaian RJ, Troncoso P, Strom SS, Spitz MR, Caudell JJ, Stein JD, Kagan J: Limiting the location of putative human prostate cancer tumor suppressor genes on chromosome 18q. Oncogene. 2001, 20: 2273-2280. 10.1038/sj.onc.1204310.PubMed Yin Z, Babaian RJ, Troncoso P, Strom SS, Spitz MR, Caudell JJ, Stein JD, Kagan J: Limiting the location of putative human prostate cancer tumor suppressor genes on chromosome 18q. Oncogene. 2001, 20: 2273-2280. 10.1038/sj.onc.1204310.PubMed
179.
go back to reference Yang J, Wahdan-Alaswad R, Danielpour D: Critical role of smad2 in tumor suppression and transforming growth factor-β–induced apoptosis of prostate epithelialcells. Cancer Res. 2009, 69: 2185-2190. 10.1158/0008-5472.CAN-08-3961.PubMedPubMedCentral Yang J, Wahdan-Alaswad R, Danielpour D: Critical role of smad2 in tumor suppression and transforming growth factor-β–induced apoptosis of prostate epithelialcells. Cancer Res. 2009, 69: 2185-2190. 10.1158/0008-5472.CAN-08-3961.PubMedPubMedCentral
180.
go back to reference Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW: Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms inmouse mammary gland development. Development. 1991, 113: 867-878.PubMed Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW: Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms inmouse mammary gland development. Development. 1991, 113: 867-878.PubMed
181.
go back to reference Serra R, Crowley MR: Mouse models of transforming growth factor beta impact in breast development and cancer. Endocr Relat Cancer. 2005, 12: 749-760. 10.1677/erc.1.00936.PubMed Serra R, Crowley MR: Mouse models of transforming growth factor beta impact in breast development and cancer. Endocr Relat Cancer. 2005, 12: 749-760. 10.1677/erc.1.00936.PubMed
182.
go back to reference Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, Dickson RB: Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell. 1987, 48: 417-428. 10.1016/0092-8674(87)90193-0.PubMed Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, Dickson RB: Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell. 1987, 48: 417-428. 10.1016/0092-8674(87)90193-0.PubMed
183.
go back to reference Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El Habashi A, Marrogi OL, Freeman SM: Study of tumor infiltrating lymphocytes and transforming growth factor β as prognostic factors in breast carcinoma. Int J Cancer. 1997, 74: 492-501. 10.1002/(SICI)1097-0215(19971021)74:5<492::AID-IJC3>3.0.CO;2-Z.PubMed Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El Habashi A, Marrogi OL, Freeman SM: Study of tumor infiltrating lymphocytes and transforming growth factor β as prognostic factors in breast carcinoma. Int J Cancer. 1997, 74: 492-501. 10.1002/(SICI)1097-0215(19971021)74:5<492::AID-IJC3>3.0.CO;2-Z.PubMed
184.
go back to reference Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA: Immunohistochemical Staining for Transforming Growth Factor β1 Associates with Disease Progression inHuman Breast Cancer. Cancer Res. 1992, 52: 6949-6952.PubMed Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA: Immunohistochemical Staining for Transforming Growth Factor β1 Associates with Disease Progression inHuman Breast Cancer. Cancer Res. 1992, 52: 6949-6952.PubMed
185.
go back to reference Desruisseau S, Palmari J, Giusti C, Romain S, Martin PM, Berthois Y: Determination of TGF[beta]1 protein level in human primary breast cancers and its relationship withsurvival. Br J Cancer. 2006, 94: 239-246. 10.1038/sj.bjc.6602920.PubMedPubMedCentral Desruisseau S, Palmari J, Giusti C, Romain S, Martin PM, Berthois Y: Determination of TGF[beta]1 protein level in human primary breast cancers and its relationship withsurvival. Br J Cancer. 2006, 94: 239-246. 10.1038/sj.bjc.6602920.PubMedPubMedCentral
186.
go back to reference Dalal BI, Keown PA, Greenberg AH: Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and tolymph node metastases of human mammary carcinoma. Am J Pathol. 1993, 143: 381-389.PubMedPubMedCentral Dalal BI, Keown PA, Greenberg AH: Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and tolymph node metastases of human mammary carcinoma. Am J Pathol. 1993, 143: 381-389.PubMedPubMedCentral
187.
go back to reference Barlow J, Yandell D, Weaver D, Casey T, Plaut K: Higher stromal expression of transforming growth factor-beta Type II Receptors is associated with poorer prognosisbreast tumors. Breast Cancer Res Treat. 2003, 79: 149-159. 10.1023/A:1023918026437.PubMed Barlow J, Yandell D, Weaver D, Casey T, Plaut K: Higher stromal expression of transforming growth factor-beta Type II Receptors is associated with poorer prognosisbreast tumors. Breast Cancer Res Treat. 2003, 79: 149-159. 10.1023/A:1023918026437.PubMed
188.
go back to reference Takenoshita S, Mogi A, Tani M, Osawa H, Sunaga H, Kakegawa H, Yanagita Y, Koida T, Kimura M, Fujita KI: Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-beta type II receptor gene in sporadic humanbreast cancers. Oncol Rep. 1998, 5: 367-371.PubMed Takenoshita S, Mogi A, Tani M, Osawa H, Sunaga H, Kakegawa H, Yanagita Y, Koida T, Kimura M, Fujita KI: Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-beta type II receptor gene in sporadic humanbreast cancers. Oncol Rep. 1998, 5: 367-371.PubMed
189.
go back to reference Kalkhoven E, Roelen BA, De Winter JP, Mummery CL, Van Den E-V, Raaij AJ, Van Der Saag PT, Van Der Burg B: Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ. 1995, 6: 1151-1161.PubMed Kalkhoven E, Roelen BA, De Winter JP, Mummery CL, Van Den E-V, Raaij AJ, Van Der Saag PT, Van Der Burg B: Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ. 1995, 6: 1151-1161.PubMed
190.
go back to reference Chen T, Carter D, Garrigue-Antar L, Reiss M: Transforming Growth Factor β Type I Receptor Kinase Mutant Associated with Metastatic Breast Cancer. Cancer Res. 1998, 58: 4805-4810.PubMed Chen T, Carter D, Garrigue-Antar L, Reiss M: Transforming Growth Factor β Type I Receptor Kinase Mutant Associated with Metastatic Breast Cancer. Cancer Res. 1998, 58: 4805-4810.PubMed
191.
go back to reference Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, Kelly P, Moeller BJ, Marks JR, Blobe GC: The type III TGF-β receptor suppresses breast cancer progression. J Clin Invest. 2007, 117: 206-217. 10.1172/JCI29293.PubMedPubMedCentral Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, Kelly P, Moeller BJ, Marks JR, Blobe GC: The type III TGF-β receptor suppresses breast cancer progression. J Clin Invest. 2007, 117: 206-217. 10.1172/JCI29293.PubMedPubMedCentral
192.
go back to reference Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, Reiss M: Alterations of smad signaling in human breast carcinoma are associated with poor outcome. Cancer Res. 2002, 62: 497-505.PubMed Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, Reiss M: Alterations of smad signaling in human breast carcinoma are associated with poor outcome. Cancer Res. 2002, 62: 497-505.PubMed
193.
go back to reference Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu C-G, Negrini M: E2F1-Regulated MicroRNAs Impair TGFβ-Dependent Cell-Cycle Arrest and Apoptosis in Gastric Cancer. Cancer Cell. 2008, 13: 272-286. 10.1016/j.ccr.2008.02.013.PubMed Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu C-G, Negrini M: E2F1-Regulated MicroRNAs Impair TGFβ-Dependent Cell-Cycle Arrest and Apoptosis in Gastric Cancer. Cancer Cell. 2008, 13: 272-286. 10.1016/j.ccr.2008.02.013.PubMed
194.
go back to reference Park K, Kim SJ, Bang YJ, Park JG, Kim NK, Roberts AB, Sporn MB: Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in humangastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci USA. 1994, 91: 8772-8776. 10.1073/pnas.91.19.8772.PubMedPubMedCentral Park K, Kim SJ, Bang YJ, Park JG, Kim NK, Roberts AB, Sporn MB: Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in humangastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci USA. 1994, 91: 8772-8776. 10.1073/pnas.91.19.8772.PubMedPubMedCentral
195.
go back to reference Hahm KB, Lee KM, Kim YB, Hong WS, Lee WH, Han SU, Kim MW, Ahn BO, Oh TY, Lee MH: Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther. 2002, 16 (Suppl 2): 115-127.PubMed Hahm KB, Lee KM, Kim YB, Hong WS, Lee WH, Han SU, Kim MW, Ahn BO, Oh TY, Lee MH: Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther. 2002, 16 (Suppl 2): 115-127.PubMed
196.
go back to reference Fu H, Hu Z, Wen J, Wang K, Liu Y: TGF-beta promotes invasion and metastasis of gastric cancer cells by increasing fascin1 expression via ERK and JNK signal pathways. Acta Biochim Biophys Sin (Shanghai). 2009, 41: 648-656. 10.1093/abbs/gmp053. Fu H, Hu Z, Wen J, Wang K, Liu Y: TGF-beta promotes invasion and metastasis of gastric cancer cells by increasing fascin1 expression via ERK and JNK signal pathways. Acta Biochim Biophys Sin (Shanghai). 2009, 41: 648-656. 10.1093/abbs/gmp053.
197.
go back to reference Shinto O, Yashiro M, Toyokawa T, Nishii T, Kaizaki R, Matsuzaki T, Noda S, Kubo N, Tanaka H, Doi Y: Phosphorylated smad2 in advanced stage gastric carcinoma. BMC Cancer. 2010, 10: 652-10.1186/1471-2407-10-652.PubMedPubMedCentral Shinto O, Yashiro M, Toyokawa T, Nishii T, Kaizaki R, Matsuzaki T, Noda S, Kubo N, Tanaka H, Doi Y: Phosphorylated smad2 in advanced stage gastric carcinoma. BMC Cancer. 2010, 10: 652-10.1186/1471-2407-10-652.PubMedPubMedCentral
198.
go back to reference Han SU, Kim HT, Seong DH, Kim YS, Park YS, Bang YJ, Yang HK, Kim SJ: Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastriccancer. Oncogene. 2004, 23: 1333-1341. 10.1038/sj.onc.1207259.PubMed Han SU, Kim HT, Seong DH, Kim YS, Park YS, Bang YJ, Yang HK, Kim SJ: Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastriccancer. Oncogene. 2004, 23: 1333-1341. 10.1038/sj.onc.1207259.PubMed
199.
go back to reference Yoo YA, Kang MH, Kim JS, Oh SC: Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis. 2008, 29: 480-490.PubMed Yoo YA, Kang MH, Kim JS, Oh SC: Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis. 2008, 29: 480-490.PubMed
200.
go back to reference Mamiya T, Yamazaki K, Masugi Y, Mori T, Effendi K, Du W, Hibi T, Tanabe M, Ueda M, Takayama T, Sakamoto M: Reduced transforming growth factor-beta receptor II expression in hepatocellular carcinoma correlates with intrahepatic metastasis. Lab Invest. 2010, 90: 1339-1345. 10.1038/labinvest.2010.105.PubMed Mamiya T, Yamazaki K, Masugi Y, Mori T, Effendi K, Du W, Hibi T, Tanabe M, Ueda M, Takayama T, Sakamoto M: Reduced transforming growth factor-beta receptor II expression in hepatocellular carcinoma correlates with intrahepatic metastasis. Lab Invest. 2010, 90: 1339-1345. 10.1038/labinvest.2010.105.PubMed
201.
go back to reference Longerich T, Breuhahn K, Odenthal M, Petmecky K, Schirmacher P: Factors of transforming growth factor beta signalling are co-regulated in human hepatocellular carcinoma. Virchows Arch. 2004, 445: 589-596. 10.1007/s00428-004-1118-x.PubMed Longerich T, Breuhahn K, Odenthal M, Petmecky K, Schirmacher P: Factors of transforming growth factor beta signalling are co-regulated in human hepatocellular carcinoma. Virchows Arch. 2004, 445: 589-596. 10.1007/s00428-004-1118-x.PubMed
202.
go back to reference Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M: Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene. 1999, 18: 4879-4883. 10.1038/sj.onc.1202866.PubMed Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M: Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene. 1999, 18: 4879-4883. 10.1038/sj.onc.1202866.PubMed
203.
go back to reference Yang YA, Zhang GM, Feigenbaum L, Zhang YE: Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation ofBcl-2. Cancer Cell. 2006, 9: 445-457. 10.1016/j.ccr.2006.04.025.PubMedPubMedCentral Yang YA, Zhang GM, Feigenbaum L, Zhang YE: Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation ofBcl-2. Cancer Cell. 2006, 9: 445-457. 10.1016/j.ccr.2006.04.025.PubMedPubMedCentral
204.
go back to reference Yamamura Y, Hua X, Bergelson S, Lodish HF: Critical Role of Smads and AP-1 complex in transforming growth factor-β-dependent Apoptosis. J Biol Chem. 2000, 275: 36295-36302. 10.1074/jbc.M006023200.PubMed Yamamura Y, Hua X, Bergelson S, Lodish HF: Critical Role of Smads and AP-1 complex in transforming growth factor-β-dependent Apoptosis. J Biol Chem. 2000, 275: 36295-36302. 10.1074/jbc.M006023200.PubMed
205.
go back to reference Mazzocca A, Fransvea E, Lavezzari G, Antonaci S, Giannelli G: Inhibition of transforming growth factor beta receptor I kinase blocks hepatocellular carcinomagrowth through neo-angiogenesis regulation. Hepatology. 2009, 50: 1140-1151. 10.1002/hep.23118.PubMed Mazzocca A, Fransvea E, Lavezzari G, Antonaci S, Giannelli G: Inhibition of transforming growth factor beta receptor I kinase blocks hepatocellular carcinomagrowth through neo-angiogenesis regulation. Hepatology. 2009, 50: 1140-1151. 10.1002/hep.23118.PubMed
206.
go back to reference Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Giannelli G: Down-regulation of connective tissue growth factor by inhibition of transforming growth factor betablocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology. 2010, 51: 523-534. 10.1002/hep.23285.PubMed Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Giannelli G: Down-regulation of connective tissue growth factor by inhibition of transforming growth factor betablocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology. 2010, 51: 523-534. 10.1002/hep.23285.PubMed
207.
go back to reference Flechsig P, Dadrich M, Bickelhaupt S, Jenne J, Hauser K, Timke C, Peschke P, Hahn EW, Gröne HJ, Yingling J: LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory andproangiogenic signals. Clin Cancer Res. 2012, 18: 3616-3627. 10.1158/1078-0432.CCR-11-2855.PubMed Flechsig P, Dadrich M, Bickelhaupt S, Jenne J, Hauser K, Timke C, Peschke P, Hahn EW, Gröne HJ, Yingling J: LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory andproangiogenic signals. Clin Cancer Res. 2012, 18: 3616-3627. 10.1158/1078-0432.CCR-11-2855.PubMed
208.
go back to reference Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A: High levels of transforming growth factor beta 1 correlate with disease progression in human coloncancer. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology. 1995, 4: 549-554. Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A: High levels of transforming growth factor beta 1 correlate with disease progression in human coloncancer. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology. 1995, 4: 549-554.
209.
go back to reference Yan Z, Winawer S, Friedman E: Two different signal transduction pathways can be activated by transforming growth factor beta 1 in epithelial cells. J Biol Chem. 1994, 269: 13231-13237.PubMed Yan Z, Winawer S, Friedman E: Two different signal transduction pathways can be activated by transforming growth factor beta 1 in epithelial cells. J Biol Chem. 1994, 269: 13231-13237.PubMed
210.
go back to reference Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui L-C, Bapat B, Gallinger S, Andrulis IL: MADR2 Maps to 18q21 and Encodes a TGF[beta]-Regulated MAD-Related Protein That Is Functionally Mutated in Colorectal Carcinoma. Cell. 1996, 86: 543-552. 10.1016/S0092-8674(00)80128-2.PubMed Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui L-C, Bapat B, Gallinger S, Andrulis IL: MADR2 Maps to 18q21 and Encodes a TGF[beta]-Regulated MAD-Related Protein That Is Functionally Mutated in Colorectal Carcinoma. Cell. 1996, 86: 543-552. 10.1016/S0092-8674(00)80128-2.PubMed
211.
go back to reference Ku JL, Park SH, Yoon KA, Shin YK, Kim KH, Choi JS, Kang HC, Kim IJ, Han IO, Park JG: Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines: a novel mutation in Smad3 associated with the inactivation of TGF-beta-inducedtranscriptional activation. Cancer Lett. 2007, 247: 283-292. 10.1016/j.canlet.2006.05.008.PubMed Ku JL, Park SH, Yoon KA, Shin YK, Kim KH, Choi JS, Kang HC, Kim IJ, Han IO, Park JG: Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines: a novel mutation in Smad3 associated with the inactivation of TGF-beta-inducedtranscriptional activation. Cancer Lett. 2007, 247: 283-292. 10.1016/j.canlet.2006.05.008.PubMed
212.
go back to reference Ando T, Sugai T, Habano W, Jiao Y-F, Suzuki K: Analysis of SMAD4/DPC4 gene alterations in multiploid colorectal carcinomas. J Gastroenterol. 2005, 40: 708-715. 10.1007/s00535-005-1614-z.PubMed Ando T, Sugai T, Habano W, Jiao Y-F, Suzuki K: Analysis of SMAD4/DPC4 gene alterations in multiploid colorectal carcinomas. J Gastroenterol. 2005, 40: 708-715. 10.1007/s00535-005-1614-z.PubMed
213.
go back to reference Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K, Saji S: Somatic alterations of the DPC4 gene in human colorectal cancersin vivo. Gastroenterology. 1996, 111: 1369-1372. 10.1053/gast.1996.v111.pm8898652.PubMed Takagi Y, Kohmura H, Futamura M, Kida H, Tanemura H, Shimokawa K, Saji S: Somatic alterations of the DPC4 gene in human colorectal cancersin vivo. Gastroenterology. 1996, 111: 1369-1372. 10.1053/gast.1996.v111.pm8898652.PubMed
214.
go back to reference Wang H, Rajan S, Liu G, Chakrabarty S: Transforming growth factor [beta] suppresses [beta]-catenin/Wnt signaling and stimulates an adhesion response in humancolon carcinoma cells in a Smad4/DPC4 independent manner. Cancer Lett. 2008, 264: 281-287. 10.1016/j.canlet.2008.01.039.PubMedPubMedCentral Wang H, Rajan S, Liu G, Chakrabarty S: Transforming growth factor [beta] suppresses [beta]-catenin/Wnt signaling and stimulates an adhesion response in humancolon carcinoma cells in a Smad4/DPC4 independent manner. Cancer Lett. 2008, 264: 281-287. 10.1016/j.canlet.2008.01.039.PubMedPubMedCentral
215.
go back to reference Ali NA, McKay MJ, Molloy MP: Proteomics of Smad4 regulated transforming growth factor-beta signalling in colon cancer cells. Mol Biosyst. 2010, 6: 2332-2332. 10.1039/c0mb00016g.PubMed Ali NA, McKay MJ, Molloy MP: Proteomics of Smad4 regulated transforming growth factor-beta signalling in colon cancer cells. Mol Biosyst. 2010, 6: 2332-2332. 10.1039/c0mb00016g.PubMed
216.
go back to reference Nikolic A, Kojic S, Knezevic S, Krivokapic Z, Ristanovic M, Radojkovic D: Structural and functional analysis of SMAD4 gene promoter in malignant pancreatic andcolorectal tissues: Detection of two novel polymorphic nucleotide repeats. Cancer Epidemiol. 2011, 35: 265-271. 10.1016/j.canep.2010.10.002.PubMed Nikolic A, Kojic S, Knezevic S, Krivokapic Z, Ristanovic M, Radojkovic D: Structural and functional analysis of SMAD4 gene promoter in malignant pancreatic andcolorectal tissues: Detection of two novel polymorphic nucleotide repeats. Cancer Epidemiol. 2011, 35: 265-271. 10.1016/j.canep.2010.10.002.PubMed
217.
go back to reference Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B: Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science (New York, NY). 1995, 268: 1336-1338. 10.1126/science.7761852. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B: Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science (New York, NY). 1995, 268: 1336-1338. 10.1126/science.7761852.
218.
go back to reference Parsons R, Myeroff LL, Liu B, Willson JKV, Markowitz SD, Kinzler KW, Vogelstein B: Microsatellite Instability and Mutations of the Transforming Growth Factor β Type II Receptor Gene in Colorectal Cancer. Cancer Res. 1995, 55: 5548-5550.PubMed Parsons R, Myeroff LL, Liu B, Willson JKV, Markowitz SD, Kinzler KW, Vogelstein B: Microsatellite Instability and Mutations of the Transforming Growth Factor β Type II Receptor Gene in Colorectal Cancer. Cancer Res. 1995, 55: 5548-5550.PubMed
219.
go back to reference Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, Neumann A, Brattain MG, Chang J, Kim SJ: Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res. 1999, 59: 320-324.PubMed Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, Neumann A, Brattain MG, Chang J, Kim SJ: Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res. 1999, 59: 320-324.PubMed
220.
go back to reference Liu XQ, Rajput A, Geng L, Ongchin M, Chaudhuri A, Wang J: Restoration of transforming growth factor-beta receptor II expression in colon cancer cells withmicrosatellite instability increases metastatic potentialin vivo. J Biol Chem. 2011, 286: 16082-16090. 10.1074/jbc.M111.221697.PubMedPubMedCentral Liu XQ, Rajput A, Geng L, Ongchin M, Chaudhuri A, Wang J: Restoration of transforming growth factor-beta receptor II expression in colon cancer cells withmicrosatellite instability increases metastatic potentialin vivo. J Biol Chem. 2011, 286: 16082-16090. 10.1074/jbc.M111.221697.PubMedPubMedCentral
221.
go back to reference Pasche B, Wisinski KB, Sadim M, Kaklamani V, Pennison MJ, Zeng Q, Bellam N, Zimmerman J, Yi N, Zhang K: Constitutively decreased TGFBR1 allelic expression is a common finding in colorectal cancer and is associated with three TGFBR1 SNPs. J Exp Clin Cancer Res. 2010, 29: 57-57. 10.1186/1756-9966-29-57.PubMedPubMedCentral Pasche B, Wisinski KB, Sadim M, Kaklamani V, Pennison MJ, Zeng Q, Bellam N, Zimmerman J, Yi N, Zhang K: Constitutively decreased TGFBR1 allelic expression is a common finding in colorectal cancer and is associated with three TGFBR1 SNPs. J Exp Clin Cancer Res. 2010, 29: 57-57. 10.1186/1756-9966-29-57.PubMedPubMedCentral
222.
go back to reference Gatza CE, Holtzhausen A, Kirkbride KC, Morton A, Gatza ML, Datto MB, Blobe GC: Type III TGF-β Receptor Enhances Colon Cancer Cell Migration and Anchorage- Independent Growth. Neoplasia. 2011, 13: 758-770.PubMedPubMedCentral Gatza CE, Holtzhausen A, Kirkbride KC, Morton A, Gatza ML, Datto MB, Blobe GC: Type III TGF-β Receptor Enhances Colon Cancer Cell Migration and Anchorage- Independent Growth. Neoplasia. 2011, 13: 758-770.PubMedPubMedCentral
223.
go back to reference Tian X, Du H, Fu X, Li K, Li A, Zhang Y: Smad4 restoration leads to a suppression of Wnt/[beta]-catenin signaling activity and migration capacity in human coloncarcinoma cells. Biochem Biophys Res Commun. 2009, 380: 478-483. 10.1016/j.bbrc.2009.01.124.PubMed Tian X, Du H, Fu X, Li K, Li A, Zhang Y: Smad4 restoration leads to a suppression of Wnt/[beta]-catenin signaling activity and migration capacity in human coloncarcinoma cells. Biochem Biophys Res Commun. 2009, 380: 478-483. 10.1016/j.bbrc.2009.01.124.PubMed
224.
go back to reference Cottonham CL, Kaneko S, Xu L: miR-21 and miR-31 Converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 2010, 285: 35293-35302. 10.1074/jbc.M110.160069.PubMedPubMedCentral Cottonham CL, Kaneko S, Xu L: miR-21 and miR-31 Converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 2010, 285: 35293-35302. 10.1074/jbc.M110.160069.PubMedPubMedCentral
225.
go back to reference Furukawa T: Molecular pathology of pancreatic cancer: implications for molecular targeting therapy. Clin Gastroenterol H: Clin Prac J Am Gastroen Assoc. 2009, 7: S35-S39. Furukawa T: Molecular pathology of pancreatic cancer: implications for molecular targeting therapy. Clin Gastroenterol H: Clin Prac J Am Gastroen Assoc. 2009, 7: S35-S39.
226.
go back to reference Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H: Loss of heterozygosity on chromosome 10 is more extensive in primary (De Novo) than in secondary glioblastomas. Lab Invest. 2000, 80: 65-72. 10.1038/labinvest.3780009.PubMed Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H: Loss of heterozygosity on chromosome 10 is more extensive in primary (De Novo) than in secondary glioblastomas. Lab Invest. 2000, 80: 65-72. 10.1038/labinvest.3780009.PubMed
227.
go back to reference Hahn SA, Shamsul Hoque ATM, Moskaluk CA, da Costa LT, Schutte M, Rozenblum E, Seymour AB, Weinstein CL, Yeo CJ, Hruban RH, Kern SE: Homozygous Deletion Map at 18q21.1 in Pancreatic Cancer. Cancer Res. 1996, 56: 490-494.PubMed Hahn SA, Shamsul Hoque ATM, Moskaluk CA, da Costa LT, Schutte M, Rozenblum E, Seymour AB, Weinstein CL, Yeo CJ, Hruban RH, Kern SE: Homozygous Deletion Map at 18q21.1 in Pancreatic Cancer. Cancer Res. 1996, 56: 490-494.PubMed
228.
go back to reference Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE: Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliaryadenocarcinomas. Cancer Res. 1998, 58: 5329-5332.PubMed Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE: Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliaryadenocarcinomas. Cancer Res. 1998, 58: 5329-5332.PubMed
229.
go back to reference Pasche B, Kolachana P, Nafa K, Satagopan J, Chen YG, Lo RS, Brener D, Yang D, Kirstein L, Oddoux C: TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 1999, 59: 5678-5682.PubMed Pasche B, Kolachana P, Nafa K, Satagopan J, Chen YG, Lo RS, Brener D, Yang D, Kirstein L, Oddoux C: TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 1999, 59: 5678-5682.PubMed
230.
go back to reference Smirne C, Camandona M, Alabiso O, Bellone G, Emanuelli G: [High serum levels of transforming growth factor-beta1, Interleukin-10 and Vascular endothelial growthfactor in pancreatic adenocarcinoma patients]. Minerva Gastroenterol Dietol. 1999, 45: 21-27.PubMed Smirne C, Camandona M, Alabiso O, Bellone G, Emanuelli G: [High serum levels of transforming growth factor-beta1, Interleukin-10 and Vascular endothelial growthfactor in pancreatic adenocarcinoma patients]. Minerva Gastroenterol Dietol. 1999, 45: 21-27.PubMed
231.
go back to reference Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, Abbruzzese JL, Chiao PJ: LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancermetastasis. Mol Cancer Ther. 2008, 7: 829-840. 10.1158/1535-7163.MCT-07-0337.PubMedPubMedCentral Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, Abbruzzese JL, Chiao PJ: LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancermetastasis. Mol Cancer Ther. 2008, 7: 829-840. 10.1158/1535-7163.MCT-07-0337.PubMedPubMedCentral
232.
go back to reference Sterlacci W, Wolf D, Savic S, Hilbe W, Schmid T, Jamnig H, Fiegl M, Tzankov A: High transforming growth factor β expression represents an important prognostic parameter for surgically resected non-small cell lung cancer. Hum Pathol. 2011, 43 (3): 339-349.PubMed Sterlacci W, Wolf D, Savic S, Hilbe W, Schmid T, Jamnig H, Fiegl M, Tzankov A: High transforming growth factor β expression represents an important prognostic parameter for surgically resected non-small cell lung cancer. Hum Pathol. 2011, 43 (3): 339-349.PubMed
233.
go back to reference González-Santiago AE, Mendoza-Topete LA, Sánchez-Llamas F, Troyo-Sanromán R, Gurrola-Díaz CM: TGF-β1 serum concentration as a complementary diagnostic biomarker of lung cancer: establishment of a cut-point value. J Clin Lab Anal. 2011, 25: 238-243. 10.1002/jcla.20465.PubMed González-Santiago AE, Mendoza-Topete LA, Sánchez-Llamas F, Troyo-Sanromán R, Gurrola-Díaz CM: TGF-β1 serum concentration as a complementary diagnostic biomarker of lung cancer: establishment of a cut-point value. J Clin Lab Anal. 2011, 25: 238-243. 10.1002/jcla.20465.PubMed
234.
go back to reference Zhang H-T, Chen X-F, Wang M-H, Wang J-C, Qi Q-Y, Zhang R-M, Xu W-Q, Fei Q-Y, Wang F, Cheng Q-Q: Defective expression of transforming growth factor β Receptor Type II is associated with CpG methylated promoter in primary non-smallcell lung cancer. Clin Cancer Res. 2004, 10: 2359-2367. 10.1158/1078-0432.CCR-0959-3.PubMed Zhang H-T, Chen X-F, Wang M-H, Wang J-C, Qi Q-Y, Zhang R-M, Xu W-Q, Fei Q-Y, Wang F, Cheng Q-Q: Defective expression of transforming growth factor β Receptor Type II is associated with CpG methylated promoter in primary non-smallcell lung cancer. Clin Cancer Res. 2004, 10: 2359-2367. 10.1158/1078-0432.CCR-0959-3.PubMed
235.
go back to reference Jiang X, Liu R, Lei Z, You J, Zhou Q, Zhang H: [Defective expression of TGFBR3 gene and its molecular mechanisms in non-small cell lung cancer cell lines]. Zhongguo Fei Ai Za Zhi = Chinese Journal of Lung Cancer. 2010, 13: 451-457.PubMed Jiang X, Liu R, Lei Z, You J, Zhou Q, Zhang H: [Defective expression of TGFBR3 gene and its molecular mechanisms in non-small cell lung cancer cell lines]. Zhongguo Fei Ai Za Zhi = Chinese Journal of Lung Cancer. 2010, 13: 451-457.PubMed
236.
go back to reference Jeon H-S, Dracheva T, Yang S-H, Meerzaman D, Fukuoka J, Shakoori A, Shilo K, Travis WD, Jen J: SMAD6 contributes to patient survival in non-small cell lung cancer and its knockdown reestablishes TGF-beta homeostasis in lung cancer cells. Cancer Res. 2008, 68: 9686-9692. 10.1158/0008-5472.CAN-08-1083.PubMedPubMedCentral Jeon H-S, Dracheva T, Yang S-H, Meerzaman D, Fukuoka J, Shakoori A, Shilo K, Travis WD, Jen J: SMAD6 contributes to patient survival in non-small cell lung cancer and its knockdown reestablishes TGF-beta homeostasis in lung cancer cells. Cancer Res. 2008, 68: 9686-9692. 10.1158/0008-5472.CAN-08-1083.PubMedPubMedCentral
237.
go back to reference Xu C-C, Wu L-M, Sun W, Zhang N, Chen W-S, Fu X-N: Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines. Molecular Medicine Reports. 2011, 4: 1007-1015.PubMed Xu C-C, Wu L-M, Sun W, Zhang N, Chen W-S, Fu X-N: Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines. Molecular Medicine Reports. 2011, 4: 1007-1015.PubMed
238.
go back to reference Hu X, Cui D, Moscinski LC, Zhang X, Maccachero V, Zuckerman KS: TGFbeta regulates the expression and activities of G2 checkpoint kinases in human myeloidleukemia cells. Cytokine. 2007, 37: 155-162. 10.1016/j.cyto.2007.03.009.PubMed Hu X, Cui D, Moscinski LC, Zhang X, Maccachero V, Zuckerman KS: TGFbeta regulates the expression and activities of G2 checkpoint kinases in human myeloidleukemia cells. Cytokine. 2007, 37: 155-162. 10.1016/j.cyto.2007.03.009.PubMed
239.
go back to reference Jakubowiak A, Pouponnot C, Berguido F, Frank R, Mao S, Massague J, Nimer SD: Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem. 2000, 275: 40282-40287. 10.1074/jbc.C000485200.PubMed Jakubowiak A, Pouponnot C, Berguido F, Frank R, Mao S, Massague J, Nimer SD: Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem. 2000, 275: 40282-40287. 10.1074/jbc.C000485200.PubMed
240.
go back to reference Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Maki K, Ogawa S, Chiba S, Mitani K, Hirai H: Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis. Oncogene. 2001, 20: 88-96. 10.1038/sj.onc.1204057.PubMed Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Maki K, Ogawa S, Chiba S, Mitani K, Hirai H: Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis. Oncogene. 2001, 20: 88-96. 10.1038/sj.onc.1204057.PubMed
241.
go back to reference Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H: The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factorbeta-mediated growth inhibition of myeloid cells. Blood. 1998, 92: 4003-4012.PubMed Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H: The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factorbeta-mediated growth inhibition of myeloid cells. Blood. 1998, 92: 4003-4012.PubMed
242.
go back to reference Jones L, Wei G, Sevcikova S, Phan V, Jain S, Shieh A, Wong JC, Li M, Dubansky J, Maunakea ML: Gain of MYC underlies recurrent trisomy of the MYC chromosome in acute promyelocytic leukemia. J Exp Med. 2010, 207: 2581-2594. 10.1084/jem.20091071.PubMedPubMedCentral Jones L, Wei G, Sevcikova S, Phan V, Jain S, Shieh A, Wong JC, Li M, Dubansky J, Maunakea ML: Gain of MYC underlies recurrent trisomy of the MYC chromosome in acute promyelocytic leukemia. J Exp Med. 2010, 207: 2581-2594. 10.1084/jem.20091071.PubMedPubMedCentral
243.
go back to reference Lin HK, Bergmann S, Pandolfi PP: Cytoplasmic PML function in TGF-beta signalling. Nature. 2004, 431: 205-211. 10.1038/nature02783.PubMed Lin HK, Bergmann S, Pandolfi PP: Cytoplasmic PML function in TGF-beta signalling. Nature. 2004, 431: 205-211. 10.1038/nature02783.PubMed
244.
go back to reference Ernst T, La Rosée P, Müller MC, Hochhaus A: BCR-ABL mutations in chronic myeloid leukemia. Hematol Oncol Clin North Am. 2011, 25: 997-1008. 10.1016/j.hoc.2011.09.005. v-viPubMed Ernst T, La Rosée P, Müller MC, Hochhaus A: BCR-ABL mutations in chronic myeloid leukemia. Hematol Oncol Clin North Am. 2011, 25: 997-1008. 10.1016/j.hoc.2011.09.005. v-viPubMed
245.
go back to reference Atfi A, Abécassis L, Bourgeade MF: Bcr-Abl activates the AKT/Fox O3 signalling pathway to restrict transforming growth factor-beta-mediated cytostatic signals. EMBO Rep. 2005, 6: 985-991. 10.1038/sj.embor.7400501.PubMedPubMedCentral Atfi A, Abécassis L, Bourgeade MF: Bcr-Abl activates the AKT/Fox O3 signalling pathway to restrict transforming growth factor-beta-mediated cytostatic signals. EMBO Rep. 2005, 6: 985-991. 10.1038/sj.embor.7400501.PubMedPubMedCentral
246.
go back to reference Jonuleit T, van der Kuip H, Miething C, Michels H, Hallek M, Duyster J, Aulitzky WE: Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood. 2000, 96: 1933-1939.PubMed Jonuleit T, van der Kuip H, Miething C, Michels H, Hallek M, Duyster J, Aulitzky WE: Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood. 2000, 96: 1933-1939.PubMed
247.
go back to reference Ogawa S, Kurokawa M, Tanaka T, Tanaka K, Hangaishi A, Mitani K, Kamada N, Yazaki Y, Hirai H: Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia. 1996, 10: 788-794.PubMed Ogawa S, Kurokawa M, Tanaka T, Tanaka K, Hangaishi A, Mitani K, Kamada N, Yazaki Y, Hirai H: Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia. 1996, 10: 788-794.PubMed
248.
go back to reference Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S, Yazaki Y, Matsumoto K, Hirai H: The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature. 1998, 394: 92-96. 10.1038/27945.PubMed Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S, Yazaki Y, Matsumoto K, Hirai H: The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature. 1998, 394: 92-96. 10.1038/27945.PubMed
249.
go back to reference Møller GM, Frost V, Melo JV, Chantry A: Upregulation of the TGFbeta signalling pathway by Bcr-Abl: implications for haemopoietic cell growth and chronic myeloidleukaemia. FEBS Lett. 2007, 581: 1329-1334. 10.1016/j.febslet.2007.02.048.PubMed Møller GM, Frost V, Melo JV, Chantry A: Upregulation of the TGFbeta signalling pathway by Bcr-Abl: implications for haemopoietic cell growth and chronic myeloidleukaemia. FEBS Lett. 2007, 581: 1329-1334. 10.1016/j.febslet.2007.02.048.PubMed
250.
go back to reference Wolfraim LA, Fernandez TM, Mamura M, Fuller WL, Kumar R, Cole DE, Byfield S, Felici A, Flanders KC, Walz TM: Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med. 2004, 351: 552-559. 10.1056/NEJMoa031197.PubMed Wolfraim LA, Fernandez TM, Mamura M, Fuller WL, Kumar R, Cole DE, Byfield S, Felici A, Flanders KC, Walz TM: Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med. 2004, 351: 552-559. 10.1056/NEJMoa031197.PubMed
251.
go back to reference Ford AM, Palmi C, Bueno C, Hong D, Cardus P, Knight D, Cazzaniga G, Enver T, Greaves M: The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J Clin Invest. 2009, 119: 826-836.PubMedPubMedCentral Ford AM, Palmi C, Bueno C, Hong D, Cardus P, Knight D, Cazzaniga G, Enver T, Greaves M: The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J Clin Invest. 2009, 119: 826-836.PubMedPubMedCentral
252.
go back to reference Scott SA, Kimura T, Dong WF, Ichinohasama R, Bergen S, Kerviche A, Sheridan D, DeCoteau JF: Methylation status of cyclin-dependent kinase inhibitor genes within the transforming growth factor beta pathway in human T-cell lymphoblasticlymphoma/leukemia. Leuk Res. 2004, 28: 1293-1301. 10.1016/j.leukres.2004.03.019.PubMed Scott SA, Kimura T, Dong WF, Ichinohasama R, Bergen S, Kerviche A, Sheridan D, DeCoteau JF: Methylation status of cyclin-dependent kinase inhibitor genes within the transforming growth factor beta pathway in human T-cell lymphoblasticlymphoma/leukemia. Leuk Res. 2004, 28: 1293-1301. 10.1016/j.leukres.2004.03.019.PubMed
253.
go back to reference Mori N, Morishita M, Tsukazaki T, Giam CZ, Kumatori A, Tanaka Y, Yamamoto N: Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-bindingprotein/p300. Blood. 2001, 97: 2137-2144. 10.1182/blood.V97.7.2137.PubMed Mori N, Morishita M, Tsukazaki T, Giam CZ, Kumatori A, Tanaka Y, Yamamoto N: Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-bindingprotein/p300. Blood. 2001, 97: 2137-2144. 10.1182/blood.V97.7.2137.PubMed
254.
go back to reference Lee DK, Kim BC, Brady JN, Jeang KT, Kim SJ: Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-beta signaling by blocking theassociation of Smad proteins with Smad-binding element. J Biol Chem. 2002, 277: 33766-33775. 10.1074/jbc.M200150200.PubMed Lee DK, Kim BC, Brady JN, Jeang KT, Kim SJ: Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-beta signaling by blocking theassociation of Smad proteins with Smad-binding element. J Biol Chem. 2002, 277: 33766-33775. 10.1074/jbc.M200150200.PubMed
255.
go back to reference Arnulf B, Villemain A, Nicot C, Mordelet E, Charneau P, Kersual J, Zermati Y, Mauviel A, Bazarbachi A, Hermine O: Human T-cell lymphotropic virus oncoprotein Tax represses TGF-beta 1 signaling in human T cells via c-Jun activation: a potentialmechanism of HTLV-I leukemogenesis. Blood. 2002, 100: 4129-4138. 10.1182/blood-2001-12-0372.PubMed Arnulf B, Villemain A, Nicot C, Mordelet E, Charneau P, Kersual J, Zermati Y, Mauviel A, Bazarbachi A, Hermine O: Human T-cell lymphotropic virus oncoprotein Tax represses TGF-beta 1 signaling in human T cells via c-Jun activation: a potentialmechanism of HTLV-I leukemogenesis. Blood. 2002, 100: 4129-4138. 10.1182/blood-2001-12-0372.PubMed
256.
go back to reference Shehata M, Schwarzmeier JD, Hilgarth M, Hubmann R, Duechler M, Gisslinger H: TGF-beta1 induces bone marrow reticulin fibrosis in hairy cell leukemia. J Clin Invest. 2004, 113: 676-685.PubMedPubMedCentral Shehata M, Schwarzmeier JD, Hilgarth M, Hubmann R, Duechler M, Gisslinger H: TGF-beta1 induces bone marrow reticulin fibrosis in hairy cell leukemia. J Clin Invest. 2004, 113: 676-685.PubMedPubMedCentral
257.
go back to reference Kadin ME, Cavaille-Coll MW, Gertz R, Massagué J, Cheifetz S, George D: Loss of receptors for transforming growth factor beta in human T-cell malignancies. Proc Natl Acad Sci USA. 1994, 91: 6002-6006. 10.1073/pnas.91.13.6002.PubMedPubMedCentral Kadin ME, Cavaille-Coll MW, Gertz R, Massagué J, Cheifetz S, George D: Loss of receptors for transforming growth factor beta in human T-cell malignancies. Proc Natl Acad Sci USA. 1994, 91: 6002-6006. 10.1073/pnas.91.13.6002.PubMedPubMedCentral
258.
go back to reference Knaus PI, Lindemann D, DeCoteau JF, Perlman R, Yankelev H, Hille M, Kadin ME, Lodish HF: A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol. 1996, 16: 3480-3489.PubMedPubMedCentral Knaus PI, Lindemann D, DeCoteau JF, Perlman R, Yankelev H, Hille M, Kadin ME, Lodish HF: A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol. 1996, 16: 3480-3489.PubMedPubMedCentral
259.
go back to reference Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF: A deletion in the gene for transforming growth factor beta type I receptor abolishes growth regulation bytransforming growth factor beta in a cutaneous T-cell lymphoma. Blood. 1999, 94: 2854-2861.PubMed Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF: A deletion in the gene for transforming growth factor beta type I receptor abolishes growth regulation bytransforming growth factor beta in a cutaneous T-cell lymphoma. Blood. 1999, 94: 2854-2861.PubMed
260.
go back to reference Nakahata S, Yamazaki S, Nakauchi H, Morishita K: Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-beta1-mediated growthsuppression in adult T-cell leukemia/lymphoma. Oncogene. 2010, 29: 4157-4169. 10.1038/onc.2010.172.PubMed Nakahata S, Yamazaki S, Nakauchi H, Morishita K: Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-beta1-mediated growthsuppression in adult T-cell leukemia/lymphoma. Oncogene. 2010, 29: 4157-4169. 10.1038/onc.2010.172.PubMed
261.
go back to reference Munoz O, Fend F, de Beaumont R, Husson H, Astier A, Freedman AS: TGFbetamediated activation of Smad1 in B-cell non-Hodgkin's lymphoma and effect on cellproliferation. Leukemia. 2004, 18: 2015-2025. 10.1038/sj.leu.2403485.PubMed Munoz O, Fend F, de Beaumont R, Husson H, Astier A, Freedman AS: TGFbetamediated activation of Smad1 in B-cell non-Hodgkin's lymphoma and effect on cellproliferation. Leukemia. 2004, 18: 2015-2025. 10.1038/sj.leu.2403485.PubMed
262.
go back to reference Bakkebø M, Huse K, Hilden VI, Smeland EB, Oksvold MP: TGF-β-induced growth inhibition in B-cell lymphoma correlates with Smad1/5 signalling and constitutivelyactive p38 MAPK. BMC Immunol. 2010, 11: 57-10.1186/1471-2172-11-57.PubMedPubMedCentral Bakkebø M, Huse K, Hilden VI, Smeland EB, Oksvold MP: TGF-β-induced growth inhibition in B-cell lymphoma correlates with Smad1/5 signalling and constitutivelyactive p38 MAPK. BMC Immunol. 2010, 11: 57-10.1186/1471-2172-11-57.PubMedPubMedCentral
263.
go back to reference Chen G, Ghosh P, Osawa H, Sasaki CY, Rezanka L, Yang J, O'Farrell TJ, Longo DL: Resistance to TGF-beta 1 correlates with aberrant expression of TGF-beta receptor II in human B-cell lymphoma cell lines. Blood. 2007, 109: 5301-5307. 10.1182/blood-2006-06-032128.PubMedPubMedCentral Chen G, Ghosh P, Osawa H, Sasaki CY, Rezanka L, Yang J, O'Farrell TJ, Longo DL: Resistance to TGF-beta 1 correlates with aberrant expression of TGF-beta receptor II in human B-cell lymphoma cell lines. Blood. 2007, 109: 5301-5307. 10.1182/blood-2006-06-032128.PubMedPubMedCentral
264.
go back to reference Rai D, Kim SW, McKeller MR, Dahia PL, Aguiar RC: Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci USA. 2010, 107: 3111-3116. 10.1073/pnas.0910667107.PubMedPubMedCentral Rai D, Kim SW, McKeller MR, Dahia PL, Aguiar RC: Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci USA. 2010, 107: 3111-3116. 10.1073/pnas.0910667107.PubMedPubMedCentral
265.
go back to reference Douglas RS, Capocasale RJ, Lamb RJ, Nowell PC, Moore JS: Chronic lymphocytic leukemia B cells are resistant to the apoptotic effects of transforming growth factorbeta. Blood. 1997, 89: 941-947.PubMed Douglas RS, Capocasale RJ, Lamb RJ, Nowell PC, Moore JS: Chronic lymphocytic leukemia B cells are resistant to the apoptotic effects of transforming growth factorbeta. Blood. 1997, 89: 941-947.PubMed
266.
go back to reference Lagneaux L, Delforge A, Bron D, Massy M, Bernier M, Stryckmans P: Heterogenous response of B lymphocytes to transforming growth factor-beta in B-cell chroniclymphocytic leukaemia: correlation with the expression of TGF-beta receptors. Br J Haematol. 1997, 97: 612-620. 10.1046/j.1365-2141.1997.792715.x.PubMed Lagneaux L, Delforge A, Bron D, Massy M, Bernier M, Stryckmans P: Heterogenous response of B lymphocytes to transforming growth factor-beta in B-cell chroniclymphocytic leukaemia: correlation with the expression of TGF-beta receptors. Br J Haematol. 1997, 97: 612-620. 10.1046/j.1365-2141.1997.792715.x.PubMed
267.
go back to reference DeCoteau JF, Knaus PI, Yankelev H, Reis MD, Lowsky R, Lodish HF, Kadin ME: Loss of functional cell surface transforming growth factor beta (TGF-beta) type 1 receptorcorrelates with insensitivity to TGF-beta in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1997, 94: 5877-5881. 10.1073/pnas.94.11.5877.PubMedPubMedCentral DeCoteau JF, Knaus PI, Yankelev H, Reis MD, Lowsky R, Lodish HF, Kadin ME: Loss of functional cell surface transforming growth factor beta (TGF-beta) type 1 receptorcorrelates with insensitivity to TGF-beta in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1997, 94: 5877-5881. 10.1073/pnas.94.11.5877.PubMedPubMedCentral
268.
go back to reference Schiemann WP, Rotzer D, Pfeifer WM, Levi E, Rai KR, Knaus P, Kadin ME: Transforming growth factor-beta (TGF-beta)-resistant B cells from chronic lymphocytic leukemia patients contain recurrent mutations in the signal sequence of thetype I TGF-beta receptor. Cancer Detect Prev. 2004, 28: 57-64. 10.1016/j.cdp.2003.11.001.PubMed Schiemann WP, Rotzer D, Pfeifer WM, Levi E, Rai KR, Knaus P, Kadin ME: Transforming growth factor-beta (TGF-beta)-resistant B cells from chronic lymphocytic leukemia patients contain recurrent mutations in the signal sequence of thetype I TGF-beta receptor. Cancer Detect Prev. 2004, 28: 57-64. 10.1016/j.cdp.2003.11.001.PubMed
269.
go back to reference Jelinek DF, Tschumper RC, Stolovitzky GA, Iturria SJ, Tu Y, Lepre J, Shah N, Kay NE: Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Mol Cancer Res. 2003, 1: 346-361.PubMed Jelinek DF, Tschumper RC, Stolovitzky GA, Iturria SJ, Tu Y, Lepre J, Shah N, Kay NE: Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Mol Cancer Res. 2003, 1: 346-361.PubMed
270.
go back to reference Lotz M, Ranheim E, Kipps TJ: Transforming growth factor beta as endogenous growth inhibitor of chronic lymphocytic leukemia B cells. J Exp Med. 1994, 179: 999-1004. 10.1084/jem.179.3.999.PubMed Lotz M, Ranheim E, Kipps TJ: Transforming growth factor beta as endogenous growth inhibitor of chronic lymphocytic leukemia B cells. J Exp Med. 1994, 179: 999-1004. 10.1084/jem.179.3.999.PubMed
271.
go back to reference Spender LC, Inman GJ: TGF-beta induces growth arrest in Burkitt lymphoma cells via transcriptional repression of E2F-1. J Biol Chem. 2009, 284: 1435-1442.PubMed Spender LC, Inman GJ: TGF-beta induces growth arrest in Burkitt lymphoma cells via transcriptional repression of E2F-1. J Biol Chem. 2009, 284: 1435-1442.PubMed
272.
go back to reference Inman GJ, Allday MJ: Resistance to TGF-beta1 correlates with a reduction of TGFbeta type II receptor expression in Burkitt's lymphoma and Epstein-Barr virustransformedB lymphoblastoid cell lines. J Gen Virol. 2000, 81: 1567-1578.PubMed Inman GJ, Allday MJ: Resistance to TGF-beta1 correlates with a reduction of TGFbeta type II receptor expression in Burkitt's lymphoma and Epstein-Barr virustransformedB lymphoblastoid cell lines. J Gen Virol. 2000, 81: 1567-1578.PubMed
273.
go back to reference Urashima M, Ogata A, Chauhan D, Hatziyanni M, Vidriales MB, Dedera DA, Schlossman RL, Anderson KC: Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood. 1996, 87: 1928-1938.PubMed Urashima M, Ogata A, Chauhan D, Hatziyanni M, Vidriales MB, Dedera DA, Schlossman RL, Anderson KC: Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood. 1996, 87: 1928-1938.PubMed
274.
go back to reference Hayashi T, Hideshima T, Nguyen AN, Munoz O, Podar K, Hamasaki M, Ishitsuka K, Yasui H, Richardson P, Chakravarty S: Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth inthe bone marrow microenvironment. Clin Cancer Res. 2004, 10: 7540-7546. 10.1158/1078-0432.CCR-04-0632.PubMed Hayashi T, Hideshima T, Nguyen AN, Munoz O, Podar K, Hamasaki M, Ishitsuka K, Yasui H, Richardson P, Chakravarty S: Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth inthe bone marrow microenvironment. Clin Cancer Res. 2004, 10: 7540-7546. 10.1158/1078-0432.CCR-04-0632.PubMed
275.
go back to reference Amoroso SR, Huang N, Roberts AB, Potter M, Letterio JJ: Consistent loss of functional transforming growth factor beta receptor expression in murineplasmacytomas. Proc Natl Acad Sci USA. 1998, 95: 189-194. 10.1073/pnas.95.1.189.PubMedPubMedCentral Amoroso SR, Huang N, Roberts AB, Potter M, Letterio JJ: Consistent loss of functional transforming growth factor beta receptor expression in murineplasmacytomas. Proc Natl Acad Sci USA. 1998, 95: 189-194. 10.1073/pnas.95.1.189.PubMedPubMedCentral
276.
go back to reference Fernandez T, Amoroso S, Sharpe S, Jones GM, Bliskovski V, Kovalchuk A, Wakefield LM, Kim SJ, Potter M, Letterio JJ: Disruption of transforming growth factor beta signaling by a novel ligand-dependent mechanism. J Exp Med. 2002, 195: 1247-1255. 10.1084/jem.20011521.PubMedPubMedCentral Fernandez T, Amoroso S, Sharpe S, Jones GM, Bliskovski V, Kovalchuk A, Wakefield LM, Kim SJ, Potter M, Letterio JJ: Disruption of transforming growth factor beta signaling by a novel ligand-dependent mechanism. J Exp Med. 2002, 195: 1247-1255. 10.1084/jem.20011521.PubMedPubMedCentral
277.
go back to reference de Carvalho F, Colleoni GW, Almeida MS, Carvalho AL, Vettore AL: TGFbetaR2 aberrant methylation is a potential prognostic marker and therapeutic target inmultiple myeloma. Int J Cancer. 2009, 125: 1985-1991. 10.1002/ijc.24431.PubMed de Carvalho F, Colleoni GW, Almeida MS, Carvalho AL, Vettore AL: TGFbetaR2 aberrant methylation is a potential prognostic marker and therapeutic target inmultiple myeloma. Int J Cancer. 2009, 125: 1985-1991. 10.1002/ijc.24431.PubMed
278.
go back to reference Lambert KE, Huang H, Mythreye K, Blobe GC: The type III transforming growth factor-β receptor inhibits proliferation, migration, and adhesion in human myelomacells. Mol Biol Cell. 2011, 22: 1463-1472. 10.1091/mbc.E10-11-0877.PubMedPubMedCentral Lambert KE, Huang H, Mythreye K, Blobe GC: The type III transforming growth factor-β receptor inhibits proliferation, migration, and adhesion in human myelomacells. Mol Biol Cell. 2011, 22: 1463-1472. 10.1091/mbc.E10-11-0877.PubMedPubMedCentral
279.
go back to reference Kyrtsonis MC, Repa C, Dedoussis GV, Mouzaki A, Simeonidis A, Stamatelou M, Maniatis A: Serum transforming growth factor-beta 1 is related to the degree of immunoparesis in patients with multiple myeloma. Med Oncol. 1998, 15: 124-128. 10.1007/BF02989591.PubMed Kyrtsonis MC, Repa C, Dedoussis GV, Mouzaki A, Simeonidis A, Stamatelou M, Maniatis A: Serum transforming growth factor-beta 1 is related to the degree of immunoparesis in patients with multiple myeloma. Med Oncol. 1998, 15: 124-128. 10.1007/BF02989591.PubMed
280.
go back to reference Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM: Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in Tlymphocytes. J Leukoc Biol. 1999, 66: 981-988.PubMed Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM: Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in Tlymphocytes. J Leukoc Biol. 1999, 66: 981-988.PubMed
281.
go back to reference Matsumoto T, Abe M: TGF-β-related mechanisms of bone destruction in multiple myeloma. Bone. 2011, 48: 129-134. 10.1016/j.bone.2010.05.036.PubMed Matsumoto T, Abe M: TGF-β-related mechanisms of bone destruction in multiple myeloma. Bone. 2011, 48: 129-134. 10.1016/j.bone.2010.05.036.PubMed
Metadata
Title
TGF-β – an excellent servant but a bad master
Authors
Lenka Kubiczkova
Lenka Sedlarikova
Roman Hajek
Sabina Sevcikova
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2012
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-10-183

Other articles of this Issue 1/2012

Journal of Translational Medicine 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.