Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2012

Open Access 01-12-2012 | Research

Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis

Authors: Khaled Aljarrah, Nizar M Mhaidat, M-Ali H Al-Akhras, Ahmad N Aldaher, BA Albiss, Khaled Aledealat, Fawzi M Alsheyab

Published in: World Journal of Surgical Oncology | Issue 1/2012

Login to get access

Abstract

Background

Resistance of breast cancer cells to the available chemotherapeutics is a major obstacle to successful treatment. Recent studies have shown that magnetic nanoparticles might have significant application in different medical fields including cancer treatment. The goal of this study is to verify the ability of magnetic nanoparticles to sensitize cancer cells to the clinically available chemotherapy.

Methods

The role of iron oxide nanoparticles, static magnetic field, or a combination in the enhancement of the apoptotic potential of doxorubicin against the resistant breast cancer cells, MCF-7 was evaluated using the MTT assay and the propidium iodide method.

Results

In the present study, results revealed that pre-incubation of MCF-7 cells with iron oxide nanoparticles before the addition of doxorubicin did not enhance doxorubicin-induced growth inhibition. Pre-incubation of MCF-7 cells with iron oxide nanoparticles followed by a static magnetic field exposure significantly (P < 0.05) increased doxorubicin-induced cytotoxicity. Sensitization with pre-exposure to the magnetic field was dose-dependent where the highest cytotoxicity was seen at 1 tesla. Further experiments revealed that the anti-proliferative effect of this treatment procedure is due to induction of apoptotic cell death.

Conclusions

These results might point to the importance of combining magnetic nanoparticles with a static magnetic field in treatment of doxorubicin-refractory breast cancer cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pecorelli S, Favalli G, Zigliani L, Odicino F: Cancer in women. Int J Gynaecol Obstet. 2003, 82: 369-379. 10.1016/S0020-7292(03)00225-X.CrossRefPubMed Pecorelli S, Favalli G, Zigliani L, Odicino F: Cancer in women. Int J Gynaecol Obstet. 2003, 82: 369-379. 10.1016/S0020-7292(03)00225-X.CrossRefPubMed
2.
go back to reference Ferlay J, Parkin DM, Steliarova-Foucher E: Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010, 46: 765-781. 10.1016/j.ejca.2009.12.014.CrossRefPubMed Ferlay J, Parkin DM, Steliarova-Foucher E: Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010, 46: 765-781. 10.1016/j.ejca.2009.12.014.CrossRefPubMed
3.
go back to reference Desantis C, Siegel R, Bandi P, Jemal A: Breast cancer statistics, 2011. CA Cancer J Clin. 2011, 2011: 20134- Desantis C, Siegel R, Bandi P, Jemal A: Breast cancer statistics, 2011. CA Cancer J Clin. 2011, 2011: 20134-
5.
go back to reference Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed. 2008, 3: 311-321. Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed. 2008, 3: 311-321.
6.
go back to reference Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L: Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004, 56: 185-229. 10.1124/pr.56.2.6.CrossRefPubMed Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L: Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004, 56: 185-229. 10.1124/pr.56.2.6.CrossRefPubMed
7.
go back to reference Singal PK, Iliskovic N: Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998, 339: 900-905. 10.1056/NEJM199809243391307.CrossRefPubMed Singal PK, Iliskovic N: Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998, 339: 900-905. 10.1056/NEJM199809243391307.CrossRefPubMed
8.
go back to reference Amstad E, Textor M, Reimhult E: Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale. 2011, 3: 2819-2843. 10.1039/c1nr10173k.CrossRefPubMed Amstad E, Textor M, Reimhult E: Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale. 2011, 3: 2819-2843. 10.1039/c1nr10173k.CrossRefPubMed
9.
go back to reference Loo C, Lowery A, Halas N, West J, Drezek R: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5: 709-711. 10.1021/nl050127s.CrossRefPubMed Loo C, Lowery A, Halas N, West J, Drezek R: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5: 709-711. 10.1021/nl050127s.CrossRefPubMed
10.
go back to reference Park SI, Kwon BJ, Park JH, Jung H, Yu KH: Synthesis and characterization of 3-[131I]iodo-L-tyrosine grafted Fe3O4@SiO2 nanocomposite for single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). SO–J Nanosci Nanotechnol. 2011, 11: 1818-1821. 10.1166/jnn.2011.3416.CrossRef Park SI, Kwon BJ, Park JH, Jung H, Yu KH: Synthesis and characterization of 3-[131I]iodo-L-tyrosine grafted Fe3O4@SiO2 nanocomposite for single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). SO–J Nanosci Nanotechnol. 2011, 11: 1818-1821. 10.1166/jnn.2011.3416.CrossRef
11.
go back to reference Qu X, Wang J, Zhang Z, Koop N, Rahmanzadeh R, Huttmann G: Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes. J Biomed Opt. 2008, 13: 031217-10.1117/1.2942373.CrossRefPubMed Qu X, Wang J, Zhang Z, Koop N, Rahmanzadeh R, Huttmann G: Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes. J Biomed Opt. 2008, 13: 031217-10.1117/1.2942373.CrossRefPubMed
12.
go back to reference Sosnovik DE, Nahrendorf M, Weissleder R: Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol. 2008, 103: 122-130. 10.1007/s00395-008-0710-7.PubMedCentralCrossRefPubMed Sosnovik DE, Nahrendorf M, Weissleder R: Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol. 2008, 103: 122-130. 10.1007/s00395-008-0710-7.PubMedCentralCrossRefPubMed
13.
go back to reference Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S: Carbon nanohorns as anticancer drug carriers. Mol Pharm. 2005, 2: 475-480. 10.1021/mp0500566.CrossRefPubMed Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S: Carbon nanohorns as anticancer drug carriers. Mol Pharm. 2005, 2: 475-480. 10.1021/mp0500566.CrossRefPubMed
14.
go back to reference Cho K, Wang X, Nie S, Chen ZG, Shin DM: Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008, 14: 1310-1316. 10.1158/1078-0432.CCR-07-1441.CrossRefPubMed Cho K, Wang X, Nie S, Chen ZG, Shin DM: Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008, 14: 1310-1316. 10.1158/1078-0432.CCR-07-1441.CrossRefPubMed
15.
go back to reference Gong X, Peng S, Wen W, Sheng P, Li W: Design and fabrication of magnetically functionalized core/shell microspheres for smart drug delivery. Adv Funct Mater. 2009, 19: 292-297. 10.1002/adfm.200801315.CrossRef Gong X, Peng S, Wen W, Sheng P, Li W: Design and fabrication of magnetically functionalized core/shell microspheres for smart drug delivery. Adv Funct Mater. 2009, 19: 292-297. 10.1002/adfm.200801315.CrossRef
16.
go back to reference Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R: Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA. 2006, 103: 1215-1220. 10.1073/pnas.0509739103.PubMedCentralCrossRefPubMed Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R: Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA. 2006, 103: 1215-1220. 10.1073/pnas.0509739103.PubMedCentralCrossRefPubMed
17.
go back to reference Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S: Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl. 2008, 47: 5362-5365. 10.1002/anie.200800857.CrossRefPubMed Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S: Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl. 2008, 47: 5362-5365. 10.1002/anie.200800857.CrossRefPubMed
18.
go back to reference Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li ZY, Zhang H, Xia Y, Li X: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007, 7: 1318-1322. 10.1021/nl070345g.PubMedCentralCrossRefPubMed Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li ZY, Zhang H, Xia Y, Li X: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007, 7: 1318-1322. 10.1021/nl070345g.PubMedCentralCrossRefPubMed
19.
go back to reference DeNardo SJ, DeNardo GL, Miers LA, Natarajan A, Foreman AR, Gruettner C, Adamson GN, Ivkov R: Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res. 2005, 11: 7087s-7092s. 10.1158/1078-0432.CCR-1004-0022.CrossRefPubMed DeNardo SJ, DeNardo GL, Miers LA, Natarajan A, Foreman AR, Gruettner C, Adamson GN, Ivkov R: Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res. 2005, 11: 7087s-7092s. 10.1158/1078-0432.CCR-1004-0022.CrossRefPubMed
20.
go back to reference Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, van Lierop J, Gruttner C, Ivkov R: Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009, 20: 395103-10.1088/0957-4484/20/39/395103.PubMedCentralCrossRefPubMed Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, van Lierop J, Gruttner C, Ivkov R: Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009, 20: 395103-10.1088/0957-4484/20/39/395103.PubMedCentralCrossRefPubMed
21.
go back to reference Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA. 2003, 100: 13549-13554. 10.1073/pnas.2232479100.PubMedCentralCrossRefPubMed Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA. 2003, 100: 13549-13554. 10.1073/pnas.2232479100.PubMedCentralCrossRefPubMed
22.
go back to reference Liu T-Y, Liu K-H, Liu D-M, Chen S-Y, Chen I-W: Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption. Adv Funct Mater. 2008, 18: 1-8. Liu T-Y, Liu K-H, Liu D-M, Chen S-Y, Chen I-W: Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption. Adv Funct Mater. 2008, 18: 1-8.
23.
go back to reference Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007, 81: 53-60.CrossRefPubMed Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007, 81: 53-60.CrossRefPubMed
24.
go back to reference Bae JE, Huh MI, Ryu BK, Do JY, Jin SU, Moon MJ, Jung JC, Chang Y, Kim E, Chi SG, Lee GH, Chae KS: The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials. 2011, 32: 9401-9414. 10.1016/j.biomaterials.2011.08.075.CrossRefPubMed Bae JE, Huh MI, Ryu BK, Do JY, Jin SU, Moon MJ, Jung JC, Chang Y, Kim E, Chi SG, Lee GH, Chae KS: The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials. 2011, 32: 9401-9414. 10.1016/j.biomaterials.2011.08.075.CrossRefPubMed
25.
go back to reference Mhaidat NM, Zhang XD, Allen J, Avery-Kiejda KA, Scott RJ, Hersey P: Temozolomide induces senescence but not apoptosis in human melanoma cells. Br J Cancer. 2007, 97: 1225-1233. 10.1038/sj.bjc.6604017.PubMedCentralCrossRefPubMed Mhaidat NM, Zhang XD, Allen J, Avery-Kiejda KA, Scott RJ, Hersey P: Temozolomide induces senescence but not apoptosis in human melanoma cells. Br J Cancer. 2007, 97: 1225-1233. 10.1038/sj.bjc.6604017.PubMedCentralCrossRefPubMed
26.
go back to reference Gillespie SK, Zhang XD, Hersey P: Ingenol 3-angelate induces dual modes of cell death and differentially regulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in melanoma cells. Mol Cancer Ther. 2004, 3: 1651-1658.PubMed Gillespie SK, Zhang XD, Hersey P: Ingenol 3-angelate induces dual modes of cell death and differentially regulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in melanoma cells. Mol Cancer Ther. 2004, 3: 1651-1658.PubMed
27.
go back to reference Box HC, Maccubbin AE: Lipid peroxidation and DNA damage. Nutrition. 1997, 13: 920-921. 10.1016/S0899-9007(97)00260-8.CrossRefPubMed Box HC, Maccubbin AE: Lipid peroxidation and DNA damage. Nutrition. 1997, 13: 920-921. 10.1016/S0899-9007(97)00260-8.CrossRefPubMed
28.
go back to reference Meneghini R: Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med. 1997, 23: 783-792. 10.1016/S0891-5849(97)00016-6.CrossRefPubMed Meneghini R: Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med. 1997, 23: 783-792. 10.1016/S0891-5849(97)00016-6.CrossRefPubMed
29.
go back to reference Grzegorczyk J: Apoptosis-programmed cell death (PCD)—current conceptions. Int J Biomed Res. 1999, 1: 2-7. Grzegorczyk J: Apoptosis-programmed cell death (PCD)—current conceptions. Int J Biomed Res. 1999, 1: 2-7.
30.
go back to reference Jajte JM: Chemical-induced changes in intracellular redox state and in apoptosis. Int J Occup Med Environ Health. 1997, 10: 203-212.PubMed Jajte JM: Chemical-induced changes in intracellular redox state and in apoptosis. Int J Occup Med Environ Health. 1997, 10: 203-212.PubMed
31.
go back to reference Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972, 26: 239-257. 10.1038/bjc.1972.33.PubMedCentralCrossRefPubMed Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972, 26: 239-257. 10.1038/bjc.1972.33.PubMedCentralCrossRefPubMed
32.
go back to reference Sarafian TA, Bredesen DE: Is apoptosis mediated by reactive oxygen species?. Free Radical Res. 1994, 21: 1-8. 10.3109/10715769409056549.CrossRef Sarafian TA, Bredesen DE: Is apoptosis mediated by reactive oxygen species?. Free Radical Res. 1994, 21: 1-8. 10.3109/10715769409056549.CrossRef
33.
go back to reference Lai H, Singh NP: Acute exposure to a 60Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics. 1997, 18: 156-165. 10.1002/(SICI)1521-186X(1997)18:2<156::AID-BEM8>3.0.CO;2-1.CrossRefPubMed Lai H, Singh NP: Acute exposure to a 60Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics. 1997, 18: 156-165. 10.1002/(SICI)1521-186X(1997)18:2<156::AID-BEM8>3.0.CO;2-1.CrossRefPubMed
34.
go back to reference Singh N, Lai H: 60Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat Res. 1998, 400: 313-320. 10.1016/S0027-5107(98)00017-7.CrossRefPubMed Singh N, Lai H: 60Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat Res. 1998, 400: 313-320. 10.1016/S0027-5107(98)00017-7.CrossRefPubMed
35.
go back to reference Zmyslony M, Palus J, Jajte J, Dziubaltowska E, Rajkowska E: DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50Hz). Mutat Res. 2000, 453: 89-96. 10.1016/S0027-5107(00)00094-4.CrossRefPubMed Zmyslony M, Palus J, Jajte J, Dziubaltowska E, Rajkowska E: DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50Hz). Mutat Res. 2000, 453: 89-96. 10.1016/S0027-5107(00)00094-4.CrossRefPubMed
36.
go back to reference Hisamitsu T, Narita K, Kasahara T, Seto A, Yu Y, Asano K: Induction of apoptosis in human leukemic cells by magnetic fields. Jpn J Physiol. 1997, 47: 307-310. 10.2170/jjphysiol.47.307.CrossRefPubMed Hisamitsu T, Narita K, Kasahara T, Seto A, Yu Y, Asano K: Induction of apoptosis in human leukemic cells by magnetic fields. Jpn J Physiol. 1997, 47: 307-310. 10.2170/jjphysiol.47.307.CrossRefPubMed
37.
go back to reference Reipert BM, Allan D, Reipert S, Dexter TM: Apoptosis in haemopoietic progenitor cells exposed to extremely low-frequency magnetic fields. Life Sci. 1997, 61: 1571-1582. 10.1016/S0024-3205(97)00736-4.CrossRefPubMed Reipert BM, Allan D, Reipert S, Dexter TM: Apoptosis in haemopoietic progenitor cells exposed to extremely low-frequency magnetic fields. Life Sci. 1997, 61: 1571-1582. 10.1016/S0024-3205(97)00736-4.CrossRefPubMed
38.
go back to reference Simko M, Kriehuber R, Weiss DG, Luben RA: Effects of 50Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics. 1998, 19: 85-91. 10.1002/(SICI)1521-186X(1998)19:2<85::AID-BEM5>3.0.CO;2-#.CrossRefPubMed Simko M, Kriehuber R, Weiss DG, Luben RA: Effects of 50Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics. 1998, 19: 85-91. 10.1002/(SICI)1521-186X(1998)19:2<85::AID-BEM5>3.0.CO;2-#.CrossRefPubMed
39.
go back to reference Blumenthal NC, Ricci J, Breger L, Zychlinsky A, Solomon H, Chen GG, Kuznetsov D, Dorfman R: Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Bioelectromagnetics. 1997, 18: 264-272. 10.1002/(SICI)1521-186X(1997)18:3<264::AID-BEM10>3.0.CO;2-P.CrossRefPubMed Blumenthal NC, Ricci J, Breger L, Zychlinsky A, Solomon H, Chen GG, Kuznetsov D, Dorfman R: Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Bioelectromagnetics. 1997, 18: 264-272. 10.1002/(SICI)1521-186X(1997)18:3<264::AID-BEM10>3.0.CO;2-P.CrossRefPubMed
40.
go back to reference Sarvestani AS, Abdolmaleki P, Mowla SJ, Ghanati F, Heshmati E, Tavasoli Z, Jahromi AM: Static magnetic fields aggravate the effects of ionizing radiation on cell cycle progression in bone marrow stem cells. Micron. 2010, 2: 101-104.CrossRef Sarvestani AS, Abdolmaleki P, Mowla SJ, Ghanati F, Heshmati E, Tavasoli Z, Jahromi AM: Static magnetic fields aggravate the effects of ionizing radiation on cell cycle progression in bone marrow stem cells. Micron. 2010, 2: 101-104.CrossRef
41.
go back to reference Chionna A, Dwikat M, Panzarini E, Tenuzzo B, Carla EC, Verri T, Pagliara P, Abbro L, Dini L: Cell shape and plasma membrane alterations after static magnetic fields exposure. Eur J Histochem. 2003, 47: 299-308.PubMed Chionna A, Dwikat M, Panzarini E, Tenuzzo B, Carla EC, Verri T, Pagliara P, Abbro L, Dini L: Cell shape and plasma membrane alterations after static magnetic fields exposure. Eur J Histochem. 2003, 47: 299-308.PubMed
42.
go back to reference Mhaidat NM, Alali FQ, Matalqah SM, Matalka II, Jaradat SA, Al-Sawalha NA, Thorne RF: Inhibition of MEK sensitizes paclitaxel-induced apoptosis of human colorectal cancer cells by downregulation of GRP78. Anticancer Drugs. 2009, 20: 601-606. 10.1097/CAD.0b013e32832e3120.CrossRefPubMed Mhaidat NM, Alali FQ, Matalqah SM, Matalka II, Jaradat SA, Al-Sawalha NA, Thorne RF: Inhibition of MEK sensitizes paclitaxel-induced apoptosis of human colorectal cancer cells by downregulation of GRP78. Anticancer Drugs. 2009, 20: 601-606. 10.1097/CAD.0b013e32832e3120.CrossRefPubMed
43.
go back to reference Chow K, Tung WL: Magnetic field exposure enhances DNA repair through the induction of DnaK/J synthesis. FEBS Lett. 2000, 478: 133-136. 10.1016/S0014-5793(00)01822-6.CrossRefPubMed Chow K, Tung WL: Magnetic field exposure enhances DNA repair through the induction of DnaK/J synthesis. FEBS Lett. 2000, 478: 133-136. 10.1016/S0014-5793(00)01822-6.CrossRefPubMed
44.
go back to reference Robison JG, Pendleton AR, Monson KO, Murray BK, O’Neill KL: Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics. 2002, 23: 106-112. 10.1002/bem.103.CrossRefPubMed Robison JG, Pendleton AR, Monson KO, Murray BK, O’Neill KL: Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics. 2002, 23: 106-112. 10.1002/bem.103.CrossRefPubMed
Metadata
Title
Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis
Authors
Khaled Aljarrah
Nizar M Mhaidat
M-Ali H Al-Akhras
Ahmad N Aldaher
BA Albiss
Khaled Aledealat
Fawzi M Alsheyab
Publication date
01-12-2012
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2012
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/1477-7819-10-62

Other articles of this Issue 1/2012

World Journal of Surgical Oncology 1/2012 Go to the issue