Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2007

Open Access 01-12-2007 | Research

Cardiac reflections and natural vibrations: Force-frequency relation recording system in the stress echo lab

Authors: Tonino Bombardini, Vincenzo Gemignani, Elisabetta Bianchini, Lucia Venneri, Christina Petersen, Emilio Pasanisi, Lorenza Pratali, Mascia Pianelli, Francesco Faita, Massimo Giannoni, Eugenio Picano

Published in: Cardiovascular Ultrasound | Issue 1/2007

Login to get access

Abstract

Background

The inherent ability of ventricular myocardium to increase its force of contraction in response to an increase in contraction frequency is known as the cardiac force-frequency relation (FFR). This relation can be easily obtained in the stress echo lab, where the force is computed as the systolic pressure/end-systolic volume index ratio, and measured for increasing heart rates during stress. Ideally, the noninvasive, imaging independent, objective assessment of FFR would greatly enhance its practical appeal.

Objectives

1 – To evaluate the feasibility of the cardiac force measurement by a precordial cutaneous sensor. 2 – To build the curve of force variation as a function of the heart rate. 3 – To compare the standard stress echo results vs. this sensor operator-independent built FFR.

Methods

The transcutaneous force sensor was positioned in the precordial region in 88 consecutive patients referred for exercise, dipyridamole, or pacing stress. The force was measured as the myocardial vibrations amplitude in the isovolumic contraction period. FFR was computed as the curve of force variation as a function of heart rate. Standard echocardiographic FFR measurements were performed.

Results

A consistent FFR was obtained in all patients. Both the sensor built and the echo built FFR identifiy pts with normal or abnormal contractile reserve. The best cut-off value of the sensor built FFR was 15.5 g * 10-3 (Sensitivity = 0.85, Specificity = 0.77). Sensor built FFR slope and shape mirror pressure/volume relation during stress. This approach is extendable to daily physiological exercise and could be potentially attractive in home monitoring systems.
Appendix
Available only for authorised users
Literature
1.
go back to reference Piot C, Lemaire S, Albat B, Seguin J, Nargeot J, Richard S: High frequency-induced upregulation of human cardiac calcium currents. Circulation 1996, 93: 120-128.CrossRefPubMed Piot C, Lemaire S, Albat B, Seguin J, Nargeot J, Richard S: High frequency-induced upregulation of human cardiac calcium currents. Circulation 1996, 93: 120-128.CrossRefPubMed
2.
go back to reference Bowditch HP: Über die Eigenthüm-lichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Ber Sächs Akad Wiss 1871, 23: 652-689. Bowditch HP: Über die Eigenthüm-lichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Ber Sächs Akad Wiss 1871, 23: 652-689.
3.
go back to reference Liu CP, Ting CT, Lawrence W, Maughan WL, Chang MS, Kass DA: Diminished contractile response to increased heart rate in intact human left ventricular hypertrophy: systolic versus diastolic determinants. Circulation 1993, 88: 1893-1906.CrossRefPubMed Liu CP, Ting CT, Lawrence W, Maughan WL, Chang MS, Kass DA: Diminished contractile response to increased heart rate in intact human left ventricular hypertrophy: systolic versus diastolic determinants. Circulation 1993, 88: 1893-1906.CrossRefPubMed
4.
go back to reference Hasenfuss G, Holubarsch C, Hermann HP, Astheimer K, Pieske B, Just H: Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J 1994, 15: 164-170.CrossRefPubMed Hasenfuss G, Holubarsch C, Hermann HP, Astheimer K, Pieske B, Just H: Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J 1994, 15: 164-170.CrossRefPubMed
5.
go back to reference Bhargava V, Shabetai R, Mathiasen RA, Dalton N, Hunter JJ, Ross J Jr: Loss of adrenergic control of the force-frequency relation in heart failure secondary to idiopathic or ischemic cardiomyopathy. Am J Cardiol 1998, 81: 1130-1137. 10.1016/S0002-9149(98)00133-7CrossRefPubMed Bhargava V, Shabetai R, Mathiasen RA, Dalton N, Hunter JJ, Ross J Jr: Loss of adrenergic control of the force-frequency relation in heart failure secondary to idiopathic or ischemic cardiomyopathy. Am J Cardiol 1998, 81: 1130-1137. 10.1016/S0002-9149(98)00133-7CrossRefPubMed
6.
go back to reference Inagaki M, Yokota M, Izawa H, Ishiki R, Nagata K, Iwase M, Yamada Y, Koide M, Sobue T: Impaired force-frequency relations in patients with hypertensive left ventricular hypertrophy. Circulation 1999, 14: 1822-1830.CrossRef Inagaki M, Yokota M, Izawa H, Ishiki R, Nagata K, Iwase M, Yamada Y, Koide M, Sobue T: Impaired force-frequency relations in patients with hypertensive left ventricular hypertrophy. Circulation 1999, 14: 1822-1830.CrossRef
7.
go back to reference Gemignani V, Bianchini E, Faita F, Giannoni M, Pasanini E, Picano E, Bombardini T: Operator-independent force-frequency relation monitoring during stress with a new transcutaneous cardiac force sensor. Proc 34th Annual Conference of Computers in Cardiology 2007. Gemignani V, Bianchini E, Faita F, Giannoni M, Pasanini E, Picano E, Bombardini T: Operator-independent force-frequency relation monitoring during stress with a new transcutaneous cardiac force sensor. Proc 34th Annual Conference of Computers in Cardiology 2007.
8.
go back to reference Sakamoto T, Kusukawa R, Maccanon DM, Luisada AA: Hemodynamic determinants of the amplitude of the first heart sound. Circ Res 1965, 16: 45-47.CrossRefPubMed Sakamoto T, Kusukawa R, Maccanon DM, Luisada AA: Hemodynamic determinants of the amplitude of the first heart sound. Circ Res 1965, 16: 45-47.CrossRefPubMed
9.
go back to reference Bombardini T, Correia MJ, Cicerone C, Agricola E, Ripoli A, Picano E: Force-frequency Relationship in the Echocardiography Laboratory: A Noninvasive Assessment of Bowditch Treppe? J Am Soc Echocardiogr 2003, 16: 646-655. 10.1016/S0894-7317(03)00221-9CrossRefPubMed Bombardini T, Correia MJ, Cicerone C, Agricola E, Ripoli A, Picano E: Force-frequency Relationship in the Echocardiography Laboratory: A Noninvasive Assessment of Bowditch Treppe? J Am Soc Echocardiogr 2003, 16: 646-655. 10.1016/S0894-7317(03)00221-9CrossRefPubMed
10.
go back to reference Bombardini T, Agrusta M, Natsvlishvili N, Solimene F, Pap R, Coltorti F, Varga A, Mottola G, Picano E: Noninvasive assessment of left ventricular contractility by pacemaker stress echocardiography. Eur J Heart Failure 2005, 2: 173-181. 10.1016/j.ejheart.2004.04.019CrossRef Bombardini T, Agrusta M, Natsvlishvili N, Solimene F, Pap R, Coltorti F, Varga A, Mottola G, Picano E: Noninvasive assessment of left ventricular contractility by pacemaker stress echocardiography. Eur J Heart Failure 2005, 2: 173-181. 10.1016/j.ejheart.2004.04.019CrossRef
11.
go back to reference Grosu A, Bombardini T, Senni M, Duino V, Gori M, Picano E: End-systolic Pressure/Volume relations during dobutamine stress echo: a prognostically useful noninvasive index of left ventricular contractility. Eur Heart J 2005, 26: 2404-2412. 10.1093/eurheartj/ehi444CrossRefPubMed Grosu A, Bombardini T, Senni M, Duino V, Gori M, Picano E: End-systolic Pressure/Volume relations during dobutamine stress echo: a prognostically useful noninvasive index of left ventricular contractility. Eur Heart J 2005, 26: 2404-2412. 10.1093/eurheartj/ehi444CrossRefPubMed
12.
go back to reference Bombardini T: Myocardial contractility in the echo lab: molecular, cellular and pathophysiological basis. Cardiovascular Ultrasound 3: 27. 2005, sep 8 10.1186/1476-7120-3-27 Bombardini T: Myocardial contractility in the echo lab: molecular, cellular and pathophysiological basis. Cardiovascular Ultrasound 3: 27. 2005, sep 8 10.1186/1476-7120-3-27
13.
go back to reference Bombardini T, Galderisi M, Agricola E, Coppola V, Mottola G, Picano E: Negative stress echo. Further prognostic stratification with assessment of pressare-volume relation. Int J Cardiol, in press. 2007 May 15 Bombardini T, Galderisi M, Agricola E, Coppola V, Mottola G, Picano E: Negative stress echo. Further prognostic stratification with assessment of pressare-volume relation. Int J Cardiol, in press. 2007 May 15
14.
go back to reference Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR: Altered myocardial force-frequency relation in human heart failure. Circulation 1992, 85: 1743-1750.CrossRefPubMed Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR: Altered myocardial force-frequency relation in human heart failure. Circulation 1992, 85: 1743-1750.CrossRefPubMed
15.
go back to reference Mulieri LA, Leavitt BJ, Martin BJ, Haeberle JR, Alpert NR: Myocardial force-frequency defect in mitral regurgitation heart failure is reversed by forskolin. Circulation 1993, 88: 2700-2704.CrossRefPubMed Mulieri LA, Leavitt BJ, Martin BJ, Haeberle JR, Alpert NR: Myocardial force-frequency defect in mitral regurgitation heart failure is reversed by forskolin. Circulation 1993, 88: 2700-2704.CrossRefPubMed
16.
go back to reference Armstrong WF, Pellikka PA, Ryan T, Crouse L, Zoghbi WA: Stress echocardiography: recommendations for performance and interpretations of stress echocardiography. Stress Echocardiography Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 1998, 11: 97-104. 10.1016/S0894-7317(98)70132-4CrossRefPubMed Armstrong WF, Pellikka PA, Ryan T, Crouse L, Zoghbi WA: Stress echocardiography: recommendations for performance and interpretations of stress echocardiography. Stress Echocardiography Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 1998, 11: 97-104. 10.1016/S0894-7317(98)70132-4CrossRefPubMed
17.
go back to reference Picano E: Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation 1992, 85: 1604-12.CrossRefPubMed Picano E: Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation 1992, 85: 1604-12.CrossRefPubMed
18.
go back to reference Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahan D, Schnittger I: Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantification of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989, 2: 362-67.CrossRef Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahan D, Schnittger I: Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantification of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989, 2: 362-67.CrossRef
19.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS: American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105: 539-42. 10.1161/hc0402.102975CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS: American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105: 539-42. 10.1161/hc0402.102975CrossRefPubMed
20.
go back to reference Kass DA: Effective arterial elastance as index of arterial vascular load in humans. Circulation 1992, 86: 513-521.CrossRefPubMed Kass DA: Effective arterial elastance as index of arterial vascular load in humans. Circulation 1992, 86: 513-521.CrossRefPubMed
21.
go back to reference Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA: Age- and gender-related ventricular-vascular stiffening. Circulation 2005, 112: 2254-2262. 10.1161/CIRCULATIONAHA.105.541078CrossRefPubMed Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA: Age- and gender-related ventricular-vascular stiffening. Circulation 2005, 112: 2254-2262. 10.1161/CIRCULATIONAHA.105.541078CrossRefPubMed
22.
go back to reference Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, Miyauchi T: Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta Physiol 2006, 188: 15-20. 10.1111/j.1748-1716.2006.01596.xCrossRef Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, Miyauchi T: Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta Physiol 2006, 188: 15-20. 10.1111/j.1748-1716.2006.01596.xCrossRef
23.
go back to reference Opie LH: Mechanisms of cardiac contraction and relaxation. In Heart Disease. Volume Chap 19. 7th edition. Edited by: Braunwald E, Zipes DP, Libby P, Bonow RO. WB Saunders Company; 2005:457-489. page 480 Opie LH: Mechanisms of cardiac contraction and relaxation. In Heart Disease. Volume Chap 19. 7th edition. Edited by: Braunwald E, Zipes DP, Libby P, Bonow RO. WB Saunders Company; 2005:457-489. page 480
24.
go back to reference Wood JC, Buda AJ, Barry DT: Time-frequency transforms: a new approach to first heart sound frequency dynamics. IEEE Trans Biomed Eng 1992, 39: 730-40. 10.1109/10.142648CrossRefPubMed Wood JC, Buda AJ, Barry DT: Time-frequency transforms: a new approach to first heart sound frequency dynamics. IEEE Trans Biomed Eng 1992, 39: 730-40. 10.1109/10.142648CrossRefPubMed
25.
go back to reference Vermarien H: Mapping and vector analysis of heart vibration data obtained by multisite phono-cardiography. In Advances in cardiovascular physics. Edited by: Ghista DN, Ain A. Basel: Karger AG; 1989:135-85. Vermarien H: Mapping and vector analysis of heart vibration data obtained by multisite phono-cardiography. In Advances in cardiovascular physics. Edited by: Ghista DN, Ain A. Basel: Karger AG; 1989:135-85.
26.
go back to reference Zalter R, Hardy HC, Luisada AA: Acoustic transmission characteristics of the thorax. J Appl Physiol 1963, 18: 428-36.PubMed Zalter R, Hardy HC, Luisada AA: Acoustic transmission characteristics of the thorax. J Appl Physiol 1963, 18: 428-36.PubMed
27.
go back to reference Verburg J: Transmission of vibrations of the heart to the chest wall. In Advances in cardiovascular physics. Edited by: Ghista DN, Ain A. Basel: Karger AG; 1989:84-103. Verburg J: Transmission of vibrations of the heart to the chest wall. In Advances in cardiovascular physics. Edited by: Ghista DN, Ain A. Basel: Karger AG; 1989:84-103.
28.
go back to reference Wood JC, Festen MP, Lim MJ, Buda AJ, Barry DT: Regional effects of myocardial ischemia on epicardially recorded canine first heart sound. J Appl Physiol 1994, 76: 291-302.PubMed Wood JC, Festen MP, Lim MJ, Buda AJ, Barry DT: Regional effects of myocardial ischemia on epicardially recorded canine first heart sound. J Appl Physiol 1994, 76: 291-302.PubMed
29.
go back to reference Suga H, Sagawa K, Shoukas AA: Load independence of the instantaneous pressure/volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circulation Research 1973, 32: 314-322.CrossRefPubMed Suga H, Sagawa K, Shoukas AA: Load independence of the instantaneous pressure/volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circulation Research 1973, 32: 314-322.CrossRefPubMed
30.
go back to reference Ross J, Miura T, Kambayashi M, Eising GP, Ryu KH: Adrenergic control of the force-frequency relation. Circulation 1995, 92: 2327-2332.CrossRefPubMed Ross J, Miura T, Kambayashi M, Eising GP, Ryu KH: Adrenergic control of the force-frequency relation. Circulation 1995, 92: 2327-2332.CrossRefPubMed
31.
go back to reference Bombardini T: Method and device for the diagnosis and therapy of chronic heart failure. United States Patent 2005. US 6,859,662 B2 Bombardini T: Method and device for the diagnosis and therapy of chronic heart failure. United States Patent 2005. US 6,859,662 B2
32.
go back to reference O'Rourke M, Kelly R, Avolio A: Mechanisms. In The arterial pulse. Edited by: O'Rourke M, Kelly R, Avolio A. Philadelphia: Lea & Febiger; 1992:121-28. O'Rourke M, Kelly R, Avolio A: Mechanisms. In The arterial pulse. Edited by: O'Rourke M, Kelly R, Avolio A. Philadelphia: Lea & Febiger; 1992:121-28.
33.
go back to reference Mehmel HC, Stockins B, Ruffmann K, von Olshausen K, Schuler G, Kubler W: The linearity of the end systolic pressure volume relation in man and its sensitivity for the assessment of left ventricular function. Circulation 1981, 63: 1216-22.CrossRefPubMed Mehmel HC, Stockins B, Ruffmann K, von Olshausen K, Schuler G, Kubler W: The linearity of the end systolic pressure volume relation in man and its sensitivity for the assessment of left ventricular function. Circulation 1981, 63: 1216-22.CrossRefPubMed
34.
go back to reference Sekido M, Uemura R, Takayama M, Kiuchi K, Nejima J, Takano T: Left ventricular peak systolic pressure/end-systolic volume ratio change after dobutamine infusion for predicting left ventricular contractile reserve: comparison with Emax. J Cardiol 2002,39(2):75-84.PubMed Sekido M, Uemura R, Takayama M, Kiuchi K, Nejima J, Takano T: Left ventricular peak systolic pressure/end-systolic volume ratio change after dobutamine infusion for predicting left ventricular contractile reserve: comparison with Emax. J Cardiol 2002,39(2):75-84.PubMed
35.
go back to reference Ginzton LE, Lasks MM, Brizendine M, Conant R, Mena I: Noninvasive measurement of the rest and exercise peak systolic pressure/end systolic volume ratio: a sensitive two-dimensional echocardiographic indicator of left ventricular function. J Am Coll Cardiol 1984, 4: 509-16.CrossRefPubMed Ginzton LE, Lasks MM, Brizendine M, Conant R, Mena I: Noninvasive measurement of the rest and exercise peak systolic pressure/end systolic volume ratio: a sensitive two-dimensional echocardiographic indicator of left ventricular function. J Am Coll Cardiol 1984, 4: 509-16.CrossRefPubMed
36.
go back to reference Carabello B: Ratio of end-systolic stress to end-systolic volume: is it a useful clinical tool? J Am Coll Cardiol 1989, 14: 496-98. 10.1016/0735-1097(89)90207-6CrossRef Carabello B: Ratio of end-systolic stress to end-systolic volume: is it a useful clinical tool? J Am Coll Cardiol 1989, 14: 496-98. 10.1016/0735-1097(89)90207-6CrossRef
37.
go back to reference Little W, Cheng C, Peterson T, Vinten-Johansen J: Responses of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile state. Circulation 1988, 78: 736-45.CrossRefPubMed Little W, Cheng C, Peterson T, Vinten-Johansen J: Responses of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile state. Circulation 1988, 78: 736-45.CrossRefPubMed
38.
go back to reference Maughan WL, Sunagawa K, Burkhoff D, Sagawa K: Effects of arterial impedance changes on the end-systolic pressurevolume relation. Circ Res 1984, 54: 595-602.CrossRefPubMed Maughan WL, Sunagawa K, Burkhoff D, Sagawa K: Effects of arterial impedance changes on the end-systolic pressurevolume relation. Circ Res 1984, 54: 595-602.CrossRefPubMed
39.
go back to reference Little WC, Cheng CP: Effect of exercise on left ventricular-arterial coupling assessed in the pressure-volume plane. Am J Physiol 1993, 264: H1629-33.PubMed Little WC, Cheng CP: Effect of exercise on left ventricular-arterial coupling assessed in the pressure-volume plane. Am J Physiol 1993, 264: H1629-33.PubMed
Metadata
Title
Cardiac reflections and natural vibrations: Force-frequency relation recording system in the stress echo lab
Authors
Tonino Bombardini
Vincenzo Gemignani
Elisabetta Bianchini
Lucia Venneri
Christina Petersen
Emilio Pasanisi
Lorenza Pratali
Mascia Pianelli
Francesco Faita
Massimo Giannoni
Eugenio Picano
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2007
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/1476-7120-5-42

Other articles of this Issue 1/2007

Cardiovascular Ultrasound 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.