Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2005

Open Access 01-12-2005 | Research

Quantification of resting myocardial blood flow velocity in normal humans using real-time contrast echocardiography. A feasibility study

Authors: Siri Malm, Sigmund Frigstad, Frode Helland, Kjetil Oye, Stig Slordahl, Terje Skjarpe

Published in: Cardiovascular Ultrasound | Issue 1/2005

Login to get access

Abstract

Background

Real-time myocardial contrast echocardiography (MCE) is a novel method for assessing myocardial perfusion. The aim of this study was to evaluate the feasibility of a very low-power real-time MCE for quantification of regional resting myocardial blood flow (MBF) velocity in normal human myocardium.

Methods

Twenty study subjects with normal left ventricular (LV) wall motion and normal coronary arteries, underwent low-power real-time MCE based on color-coded pulse inversion Doppler. Standard apical LV views were acquired during constant IV. infusion of SonoVue®. Following transient microbubble destruction, the contrast replenishment rate (β), reflecting MBF velocity, was derived by plotting signal intensity vs. time and fitting data to the exponential function; y (t) =A (1-e-β(t-t0)) + C.

Results

Quantification was feasible in 82%, 49% and 63% of four-chamber, two-chamber and apical long-axis view segments, respectively. The LAD (left anterior descending artery) and RCA (right coronary artery) territories could potentially be evaluated in most, but contrast detection in the LCx (left circumflex artery) bed was poor. Depending on localisation and which frames to be analysed, mean values of
https://static-content.springer.com/image/art%3A10.1186%2F1476-7120-3-16/MediaObjects/12947_2005_Article_63_Equa_HTML.gif
were 0.21–0.69 s-1, with higher values in medial than lateral, and in basal compared to apical regions of scan plane (p = 0.03 and p < 0.01). Higher β-values were obtained from end-diastole than end-systole (p < 0.001), values from all-frames analysis lying between.

Conclusion

Low-power real-time MCE did have the potential to give contrast enhancement for quantification of resting regional MBF velocity. However, the technique is difficult and subjected to several limitations. Significant variability in β suggests that this parameter is best suited for with-in patient changes, comparing values of stress studies to baseline.
Appendix
Available only for authorised users
Literature
1.
go back to reference Skyba DM, Jayaweera AR, Goodman NC, Ismail S, Camarano G, Kaul S: Quantification of myocardial perfusion with myocardial contrast echocardiography during left atrial injection of contrast. Implications for venous injection. Circulation 1994, 90: 1513-1521.CrossRefPubMed Skyba DM, Jayaweera AR, Goodman NC, Ismail S, Camarano G, Kaul S: Quantification of myocardial perfusion with myocardial contrast echocardiography during left atrial injection of contrast. Implications for venous injection. Circulation 1994, 90: 1513-1521.CrossRefPubMed
2.
go back to reference Porter TR, Li S, Kiltzer K, Deligonul U: Correlation between quantitative angiographic lesion severity and myocardial contrast intensity during a continuous infusion of perfluorocarbon-containing microbubbles. J Am Soc Echocardiogr 1998, 11: 702-710.CrossRefPubMed Porter TR, Li S, Kiltzer K, Deligonul U: Correlation between quantitative angiographic lesion severity and myocardial contrast intensity during a continuous infusion of perfluorocarbon-containing microbubbles. J Am Soc Echocardiogr 1998, 11: 702-710.CrossRefPubMed
3.
go back to reference Kaul S, Senior R, Dittrich H, Raval U, Khattar F, Lahiri A: Detection of coronary artery disease with myocardial contrast echocardiography: Comparison with 99mTc-Sestamibi single-photon emission computed tomography. Circulation 1997, 96: 785-792.CrossRefPubMed Kaul S, Senior R, Dittrich H, Raval U, Khattar F, Lahiri A: Detection of coronary artery disease with myocardial contrast echocardiography: Comparison with 99mTc-Sestamibi single-photon emission computed tomography. Circulation 1997, 96: 785-792.CrossRefPubMed
4.
go back to reference Marwick TH, Brunken R, Meland N, Brochet E, Baer FM, Binder T, Flachskampf F, Kamp O, Nienaber C, Nihoyannopoulos P, Pierard L, Vanoverschelde JL, van der Wouw P, Lindwall K, the Nycomed NC100100 Investigators: Accuracy and feasibility of contrast echocardiography for detection of perfusion defects in routine practice: comparison with wall motion and technetium-99m sestamibi single-photon emission computed tomography. J Am Coll Cardiol 1998, 32: 1260-1269. 10.1016/S0735-1097(98)00373-8CrossRefPubMed Marwick TH, Brunken R, Meland N, Brochet E, Baer FM, Binder T, Flachskampf F, Kamp O, Nienaber C, Nihoyannopoulos P, Pierard L, Vanoverschelde JL, van der Wouw P, Lindwall K, the Nycomed NC100100 Investigators: Accuracy and feasibility of contrast echocardiography for detection of perfusion defects in routine practice: comparison with wall motion and technetium-99m sestamibi single-photon emission computed tomography. J Am Coll Cardiol 1998, 32: 1260-1269. 10.1016/S0735-1097(98)00373-8CrossRefPubMed
5.
go back to reference Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S: Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998, 97: 473-483.CrossRefPubMed Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S: Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998, 97: 473-483.CrossRefPubMed
6.
go back to reference Senior R, Kaul S, Soman P, Lahiri A: Power Doppler contrast echocardiography: a new technique for assessing myocardial perfusion. Am Heart J 2000, 139: 245-251.CrossRefPubMed Senior R, Kaul S, Soman P, Lahiri A: Power Doppler contrast echocardiography: a new technique for assessing myocardial perfusion. Am Heart J 2000, 139: 245-251.CrossRefPubMed
7.
go back to reference Villanueva FS, Gertz EW, Csikari M, Pulido G, Fisher D, Sklenar J: Detection of coronary artery stenosis with power Doppler imaging. Circulation 2001, 103: 2624-2630.CrossRefPubMed Villanueva FS, Gertz EW, Csikari M, Pulido G, Fisher D, Sklenar J: Detection of coronary artery stenosis with power Doppler imaging. Circulation 2001, 103: 2624-2630.CrossRefPubMed
8.
go back to reference Leistad E, Ohmori K, Peterson A, Christensen G, DeMaria AN: Quantitative assessment of myocardial perfusion during graded coronary artery stenoses by intravenous myocardial contrast echocardiography. J Am Coll Cardiol 2001, 37: 624-31. 10.1016/S0735-1097(00)01127-XCrossRefPubMed Leistad E, Ohmori K, Peterson A, Christensen G, DeMaria AN: Quantitative assessment of myocardial perfusion during graded coronary artery stenoses by intravenous myocardial contrast echocardiography. J Am Coll Cardiol 2001, 37: 624-31. 10.1016/S0735-1097(00)01127-XCrossRefPubMed
9.
go back to reference Wei K: Detection and quantification of coronary stenosis severity with myocardial contrast echocardiography. Prog Cardiovasc Dis 2001, 44: 81-100. 10.1053/pcad.2001.26444CrossRefPubMed Wei K: Detection and quantification of coronary stenosis severity with myocardial contrast echocardiography. Prog Cardiovasc Dis 2001, 44: 81-100. 10.1053/pcad.2001.26444CrossRefPubMed
10.
go back to reference Heinle S, Noblin J, Goree-Best P, Mello A, Ravad G, Mull S, Mammen P, Graybrun PA: Assessment of myocardial perfusion by Harmonic Power Doppler Imaging at rest and during adenosine stress. Comparison with 99m Tc-Sestamibi SPECT Imaging. Circulation 2000, 102: 55-60.CrossRefPubMed Heinle S, Noblin J, Goree-Best P, Mello A, Ravad G, Mull S, Mammen P, Graybrun PA: Assessment of myocardial perfusion by Harmonic Power Doppler Imaging at rest and during adenosine stress. Comparison with 99m Tc-Sestamibi SPECT Imaging. Circulation 2000, 102: 55-60.CrossRefPubMed
11.
go back to reference Wei K, Crouse L, Weiss J, Villanueva F, Schiller NB, Naqvi T, Siegel R, Monaghan M, Goldman J, Aggarwal P, Feigenbaum H, DeMaria A: Comparison of usefulness of dipyridamol stress myocardial contrast echocardiography to Technetium-99m sestamibi single-photon emission computed tomography for detection of coronary artery disease (PB127 Multicenter Phase 2 Trial Results). Am J Cardiol 2003, 91: 1293-1298. 10.1016/S0002-9149(03)00316-3CrossRefPubMed Wei K, Crouse L, Weiss J, Villanueva F, Schiller NB, Naqvi T, Siegel R, Monaghan M, Goldman J, Aggarwal P, Feigenbaum H, DeMaria A: Comparison of usefulness of dipyridamol stress myocardial contrast echocardiography to Technetium-99m sestamibi single-photon emission computed tomography for detection of coronary artery disease (PB127 Multicenter Phase 2 Trial Results). Am J Cardiol 2003, 91: 1293-1298. 10.1016/S0002-9149(03)00316-3CrossRefPubMed
12.
go back to reference Porter TR, Xie F, Silver M, Kricsfeld D, Oleary E: Real-time perfusion imaging with low mechanical index pulse inversion Doppler imaging. J Am Coll Cardiol 2001, 37: 748-753. 10.1016/S0735-1097(00)01204-3CrossRefPubMed Porter TR, Xie F, Silver M, Kricsfeld D, Oleary E: Real-time perfusion imaging with low mechanical index pulse inversion Doppler imaging. J Am Coll Cardiol 2001, 37: 748-753. 10.1016/S0735-1097(00)01204-3CrossRefPubMed
13.
go back to reference Tiemann K, Lohmeier S, Kuntz S, Köster J, Pohl C, Burns P: Real-time contrast echo assessment of myocardial perfusion at low emission power: First experimental and clinical results using power pulse inversion imaging. Echocardiography 1999, 16: 799-809.CrossRefPubMed Tiemann K, Lohmeier S, Kuntz S, Köster J, Pohl C, Burns P: Real-time contrast echo assessment of myocardial perfusion at low emission power: First experimental and clinical results using power pulse inversion imaging. Echocardiography 1999, 16: 799-809.CrossRefPubMed
14.
go back to reference Lafitte S, Masugata H, Peters B, Togni M, Strachan M, Yao B, Kwan OL, DeMaria AN: Accuracy and reproducibility of coronary flow rate assessment by real-rime contrast echocardiography: In vitro and in vivo studies. J Am Soc Echocardiogr 2001, 14: 1010-1019. 10.1067/mje.2001.112908CrossRefPubMed Lafitte S, Masugata H, Peters B, Togni M, Strachan M, Yao B, Kwan OL, DeMaria AN: Accuracy and reproducibility of coronary flow rate assessment by real-rime contrast echocardiography: In vitro and in vivo studies. J Am Soc Echocardiogr 2001, 14: 1010-1019. 10.1067/mje.2001.112908CrossRefPubMed
15.
go back to reference Masugata H, Peters B, Lafitte S, Strachan GM, Ohmori K, DeMaria AN: Quantitative assessment of myocardial perfusion during graded coronary stenosis by real-time myocardial contrast echo refilling curves. J Am Coll Cardiol 2001, 37: 262-269. 10.1016/S0735-1097(00)01046-9CrossRefPubMed Masugata H, Peters B, Lafitte S, Strachan GM, Ohmori K, DeMaria AN: Quantitative assessment of myocardial perfusion during graded coronary stenosis by real-time myocardial contrast echo refilling curves. J Am Coll Cardiol 2001, 37: 262-269. 10.1016/S0735-1097(00)01046-9CrossRefPubMed
16.
go back to reference Leong-Poi H, Le E, Rim SJ, Sakuma T, Kaul S, Wei K: Quantification of myocardial perfusion and determination of coronary stenosis severity during hyperemia using real-time myocardial contrast echocardiography. J Am Soc Echocardiogr 2001, 14: 1173-1182. 10.1067/mje.2001.115982CrossRefPubMed Leong-Poi H, Le E, Rim SJ, Sakuma T, Kaul S, Wei K: Quantification of myocardial perfusion and determination of coronary stenosis severity during hyperemia using real-time myocardial contrast echocardiography. J Am Soc Echocardiogr 2001, 14: 1173-1182. 10.1067/mje.2001.115982CrossRefPubMed
17.
go back to reference Masugata H, Peters B, Lafitte S, Strachan GM, Kohno M, DeMaria : Comparison of microbubble agents that produce different myocardial signal intensity for quantification of myocardial blood flow by myocardial contrast echo. Am J Cardiol 2001, 88: 714-718. 10.1016/S0002-9149(01)01828-8CrossRefPubMed Masugata H, Peters B, Lafitte S, Strachan GM, Kohno M, DeMaria : Comparison of microbubble agents that produce different myocardial signal intensity for quantification of myocardial blood flow by myocardial contrast echo. Am J Cardiol 2001, 88: 714-718. 10.1016/S0002-9149(01)01828-8CrossRefPubMed
18.
go back to reference Von Bibra H, Bone D, Niklasson U, Eurenius L, Hansen A: Myocardial contrast echocardiography yields best accuracy using quantitative analysis of digital data from pulse inversion technique: Comparison with second harmonic imaging and harmonic power Doppler during simultaneous Dipyridamol stress SPECT studies. Eur J Echocardiography 2002, 3: 271-282. 10.1053/euje.2002.0166 Von Bibra H, Bone D, Niklasson U, Eurenius L, Hansen A: Myocardial contrast echocardiography yields best accuracy using quantitative analysis of digital data from pulse inversion technique: Comparison with second harmonic imaging and harmonic power Doppler during simultaneous Dipyridamol stress SPECT studies. Eur J Echocardiography 2002, 3: 271-282. 10.1053/euje.2002.0166
19.
go back to reference Murthy TH, Li P, Locvicchio E, Baisch C, Dairywala I, Armstrong WF, Vannan M: Real-time myocardial blood flow imaging in normal human beings with the use of myocardial contrast echocardiography. J Am Soc Echocardiogr 2001, 14: 698-705. 10.1067/mje.2001.111156CrossRefPubMed Murthy TH, Li P, Locvicchio E, Baisch C, Dairywala I, Armstrong WF, Vannan M: Real-time myocardial blood flow imaging in normal human beings with the use of myocardial contrast echocardiography. J Am Soc Echocardiogr 2001, 14: 698-705. 10.1067/mje.2001.111156CrossRefPubMed
20.
go back to reference Köster J, Schlosser T, Pohl C, Lentz C, Lohmeier S, Veltman C: Blood flow assessment by ultrasound-induced destruction of echocontrast agents using harmonic power Doppler imaging: which parameters determine contrast replenishment curves? Echocardiography 2001, 18: 1-8. 10.1046/j.1540-8175.2001.00001.xCrossRefPubMed Köster J, Schlosser T, Pohl C, Lentz C, Lohmeier S, Veltman C: Blood flow assessment by ultrasound-induced destruction of echocontrast agents using harmonic power Doppler imaging: which parameters determine contrast replenishment curves? Echocardiography 2001, 18: 1-8. 10.1046/j.1540-8175.2001.00001.xCrossRefPubMed
21.
go back to reference Masugata H, Lafitte S, Peters B, Strachan GM, DeMaria AN: Comparison of real-time and intermittent triggered myocardial contrast echocardiography for quantification of coronary stenosis severity and transmural perfusion gradient. Circulation 2001, 104: 1550-1556.CrossRefPubMed Masugata H, Lafitte S, Peters B, Strachan GM, DeMaria AN: Comparison of real-time and intermittent triggered myocardial contrast echocardiography for quantification of coronary stenosis severity and transmural perfusion gradient. Circulation 2001, 104: 1550-1556.CrossRefPubMed
22.
go back to reference Wei K, Ragosta M, Thorpe J, Coggins M, Moos S, Kaul S: Noninvasive quantification of coronary blood flow reserve in humans using myocardial contrast echocardiography. Circulation 2001, 103: 2560-2565.CrossRefPubMed Wei K, Ragosta M, Thorpe J, Coggins M, Moos S, Kaul S: Noninvasive quantification of coronary blood flow reserve in humans using myocardial contrast echocardiography. Circulation 2001, 103: 2560-2565.CrossRefPubMed
23.
go back to reference Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I, Silvermann NH, Tajik AJ: Recommendations for quantification of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography committee on standards, subcommittee on quantitation of two-dimensional echocardiograms. J Am Soc Echocardiogr 1989, 2: 358-367.CrossRefPubMed Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I, Silvermann NH, Tajik AJ: Recommendations for quantification of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography committee on standards, subcommittee on quantitation of two-dimensional echocardiograms. J Am Soc Echocardiogr 1989, 2: 358-367.CrossRefPubMed
24.
go back to reference Weyman AE: Principles and practice of echocardiography. Chap 1. Philadelphia: Lea & Febiger 3-27. Weyman AE: Principles and practice of echocardiography. Chap 1. Philadelphia: Lea & Febiger 3-27.
25.
go back to reference Porter TR, Xie F, Li S, Kricsfeld D, Deligonul U: Effect of transducer stand-off on the detection, spatial extent, and quantification of myocardial contrast defects caused by coronary stenosis. J Am Soc Echocardiogr 1999, 12: 951-956.CrossRefPubMed Porter TR, Xie F, Li S, Kricsfeld D, Deligonul U: Effect of transducer stand-off on the detection, spatial extent, and quantification of myocardial contrast defects caused by coronary stenosis. J Am Soc Echocardiogr 1999, 12: 951-956.CrossRefPubMed
26.
go back to reference Angelsen BAJ: Principles of medical ultrasound imaging and measurements. In Ultrasound Imaging. Volume II. 1st edition. Trondheim: Emantec AS; 2000:1.3-1.99. Angelsen BAJ: Principles of medical ultrasound imaging and measurements. In Ultrasound Imaging. Volume II. 1st edition. Trondheim: Emantec AS; 2000:1.3-1.99.
27.
go back to reference Krams R, Sipkema P, Westerhof N: Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure. Am J Physiol 1990, 258: H1889-1898.PubMed Krams R, Sipkema P, Westerhof N: Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure. Am J Physiol 1990, 258: H1889-1898.PubMed
28.
go back to reference Hiramatsu O, Kimura A, Yada T, Yamamoto T, Ogasawara Y, Goto M, Tsujioka K, Kajiya F: Phasic characteristics of arterial inflow and venous outflow of right ventricular myocardium in dogs. Am J Physiol 1992, 262: H1422-1427.PubMed Hiramatsu O, Kimura A, Yada T, Yamamoto T, Ogasawara Y, Goto M, Tsujioka K, Kajiya F: Phasic characteristics of arterial inflow and venous outflow of right ventricular myocardium in dogs. Am J Physiol 1992, 262: H1422-1427.PubMed
Metadata
Title
Quantification of resting myocardial blood flow velocity in normal humans using real-time contrast echocardiography. A feasibility study
Authors
Siri Malm
Sigmund Frigstad
Frode Helland
Kjetil Oye
Stig Slordahl
Terje Skjarpe
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2005
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/1476-7120-3-16

Other articles of this Issue 1/2005

Cardiovascular Ultrasound 1/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.