Skip to main content
Top
Published in: Malaria Journal 1/2009

Open Access 01-12-2009 | Research

Habitat stability and occurrences of malaria vector larvae in western Kenya highlands

Authors: Yousif E Himeidan, Guofa Zhou, Laith Yakob, Yaw Afrane, Stephen Munga, Harrysone Atieli, El-Amin El-Rayah, Andrew K Githeko, Guiyun Yan

Published in: Malaria Journal | Issue 1/2009

Login to get access

Abstract

Background

Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control.

Methods

A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using χ2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis.

Results

Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the occurrence of An. gambiae larvae. While An. gambiae and An. funestus larvae occurred throughout the study period along the streams, a total of only 15 An. gambiae larvae were counted in the hilltops, and no An. funestus were found. Moreover, no larvae managed to develop into adults in the hilltops, and the density of adult An. gambiae was consistently low, averaging at 0.06 females per house per survey.

Conclusion

The occurrence of malaria vector larvae in the hilltop area was uncommon as a result of the low availability and high instability of habitats. To optimize the cost-effectiveness of malaria interventions in the western Kenya highlands, larval control should be focused primarily along the streams, as these are likely the only productive habitats at high altitude.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shililu J, Ghebremeskel T, Seulu F, Mengistu S, Fekadu H, Zerom M, Ghebregziabiher A, Sintasath D, Bretas G, Mbogo C, Githure J, Brantly E, Novak R, Beier JC: Larval habitat diversity and ecology of anopheline larvae in Eritrea. J Med Entomol. 2003, 40: 921-929. 10.1603/0022-2585-40.6.921.CrossRefPubMed Shililu J, Ghebremeskel T, Seulu F, Mengistu S, Fekadu H, Zerom M, Ghebregziabiher A, Sintasath D, Bretas G, Mbogo C, Githure J, Brantly E, Novak R, Beier JC: Larval habitat diversity and ecology of anopheline larvae in Eritrea. J Med Entomol. 2003, 40: 921-929. 10.1603/0022-2585-40.6.921.CrossRefPubMed
2.
go back to reference Fillinger U, Sonye G, Killeen GF, Knols BG, Becker N: The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health. 2004, 9: 1274-1289. 10.1111/j.1365-3156.2004.01335.x.CrossRefPubMed Fillinger U, Sonye G, Killeen GF, Knols BG, Becker N: The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health. 2004, 9: 1274-1289. 10.1111/j.1365-3156.2004.01335.x.CrossRefPubMed
3.
go back to reference Sattler MA, Mtasiwa D, Kiama M, Premji Z, Tanner M, Killeen GF, Lengeler C: Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malar J. 2005, 4: 4-10.1186/1475-2875-4-4.PubMedCentralCrossRefPubMed Sattler MA, Mtasiwa D, Kiama M, Premji Z, Tanner M, Killeen GF, Lengeler C: Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malar J. 2005, 4: 4-10.1186/1475-2875-4-4.PubMedCentralCrossRefPubMed
4.
go back to reference Munga S, Minakawa N, Zhou G, Mushinzimana E, Barrrack OO, Githeko AK, Yan G: Association between land cover and habitat productivity of malaria vectors in Western Kenya highlands. Am J Trop Med Hyg. 2006, 74: 69-75.PubMed Munga S, Minakawa N, Zhou G, Mushinzimana E, Barrrack OO, Githeko AK, Yan G: Association between land cover and habitat productivity of malaria vectors in Western Kenya highlands. Am J Trop Med Hyg. 2006, 74: 69-75.PubMed
5.
go back to reference Mutuku FM, Bayoh MN, Gimnig JE, Vulule JM, Kamau L, Walker ED, Kabiru E, Hawley WA: Pupal habitat productivity of Anopheles gambiae complex mosquitoes in a rural village in western Kenya. Am J Trop Med Hyg. 2006, 74: 54-61.PubMed Mutuku FM, Bayoh MN, Gimnig JE, Vulule JM, Kamau L, Walker ED, Kabiru E, Hawley WA: Pupal habitat productivity of Anopheles gambiae complex mosquitoes in a rural village in western Kenya. Am J Trop Med Hyg. 2006, 74: 54-61.PubMed
6.
go back to reference Gu W, Novak RJ: Habitat-based modeling of impacts of mosquito larval interventions on entomological inoculation rates, incidence, and prevalence of malaria. Am J Trop Med Hyg. 2005, 73: 546-52.PubMed Gu W, Novak RJ: Habitat-based modeling of impacts of mosquito larval interventions on entomological inoculation rates, incidence, and prevalence of malaria. Am J Trop Med Hyg. 2005, 73: 546-52.PubMed
7.
go back to reference Depinay J-MO, Mbogo CMN, Killeen GF, Knols BGJ, Beier JC, Carlson J, Dushoff J, Billingsely P, Mwambi H, Githure JI, Toure AM, McKenzie FE: A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004, 3: 29-50. 10.1186/1475-2875-3-29.PubMedCentralCrossRefPubMed Depinay J-MO, Mbogo CMN, Killeen GF, Knols BGJ, Beier JC, Carlson J, Dushoff J, Billingsely P, Mwambi H, Githure JI, Toure AM, McKenzie FE: A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004, 3: 29-50. 10.1186/1475-2875-3-29.PubMedCentralCrossRefPubMed
8.
go back to reference Gu W, Novak RJ: Habitat-based modeling of impacts of mosquito larval interventions on entomological inoculation rates, incidence, and prevalence of malaria. Am J Trop Med Hyg. 2005, 73: 546-552.PubMed Gu W, Novak RJ: Habitat-based modeling of impacts of mosquito larval interventions on entomological inoculation rates, incidence, and prevalence of malaria. Am J Trop Med Hyg. 2005, 73: 546-552.PubMed
9.
go back to reference Killeen GF, Tanner M, Mukabana RW, Kalongolela MS, Kannady K, Lindsay SW, Fillinger U, de Castro MC: Habitat targeting for controlling aquatic stages of malaria vectors in Africa. Am J Trop Med Hyg. 2006, 74: 517-518.PubMed Killeen GF, Tanner M, Mukabana RW, Kalongolela MS, Kannady K, Lindsay SW, Fillinger U, de Castro MC: Habitat targeting for controlling aquatic stages of malaria vectors in Africa. Am J Trop Med Hyg. 2006, 74: 517-518.PubMed
10.
go back to reference Snow RW, Ikoku A, Omumbo J, Ouma J: The Epidemiology, Politicsand Control of Malaria Epidemics in Kenya: 1900-1998. 1999, Roll Back Malaria report. World Health Organization, Geneva Snow RW, Ikoku A, Omumbo J, Ouma J: The Epidemiology, Politicsand Control of Malaria Epidemics in Kenya: 1900-1998. 1999, Roll Back Malaria report. World Health Organization, Geneva
11.
go back to reference Malakooti MA, Biomndo K, Shanks GD: Reemergence of epidemic malaria in the highlands of western Kenya. Emerg Infect Dis. 1998, 4: 671-676. 10.3201/eid0404.980422.PubMedCentralCrossRefPubMed Malakooti MA, Biomndo K, Shanks GD: Reemergence of epidemic malaria in the highlands of western Kenya. Emerg Infect Dis. 1998, 4: 671-676. 10.3201/eid0404.980422.PubMedCentralCrossRefPubMed
12.
go back to reference Zhou G, Minakawa N, Githeko AK, Yan G: Association between climate variability and malaria epidemics in the East African highlands. PNAS. 2004, 101: 2375-2380. 10.1073/pnas.0308714100.PubMedCentralCrossRefPubMed Zhou G, Minakawa N, Githeko AK, Yan G: Association between climate variability and malaria epidemics in the East African highlands. PNAS. 2004, 101: 2375-2380. 10.1073/pnas.0308714100.PubMedCentralCrossRefPubMed
13.
go back to reference Minakawa N, Sonye G, Mogi M, Yan G: Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet. 2004, 18: 301-305. Minakawa N, Sonye G, Mogi M, Yan G: Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet. 2004, 18: 301-305.
14.
go back to reference Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko AK, Yan G: Spatial distribution of anopheline larval habitats in western Kenyan highlands: effects of land cover types and topography. Am J Trop Med Hyg. 2005, 73: 157-165.PubMed Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko AK, Yan G: Spatial distribution of anopheline larval habitats in western Kenyan highlands: effects of land cover types and topography. Am J Trop Med Hyg. 2005, 73: 157-165.PubMed
15.
go back to reference Minakawa N, Sonye G, Yan G: Relationships between occurrences of Anopheles gambiae s.l. (Diptera: Culicidae) and size and stability of larval habitats. J Med Entomol. 2005, 42: 295-300. 10.1603/0022-2585(2005)042[0295:RBOOAG]2.0.CO;2.CrossRefPubMed Minakawa N, Sonye G, Yan G: Relationships between occurrences of Anopheles gambiae s.l. (Diptera: Culicidae) and size and stability of larval habitats. J Med Entomol. 2005, 42: 295-300. 10.1603/0022-2585(2005)042[0295:RBOOAG]2.0.CO;2.CrossRefPubMed
16.
go back to reference Githeko AK, Ayisi JM, Odada PK, Atieli FK, Ndenga BA, Githure JI, Yan G: Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malar J. 2006, 5: 107-10.1186/1475-2875-5-107.PubMedCentralCrossRefPubMed Githeko AK, Ayisi JM, Odada PK, Atieli FK, Ndenga BA, Githure JI, Yan G: Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malar J. 2006, 5: 107-10.1186/1475-2875-5-107.PubMedCentralCrossRefPubMed
17.
go back to reference Gillies MT, De Meillon B: The Anophelinae of Africa south of the Sahara. 1968, Johannesburg: South African Institute for Medical Research Press Gillies MT, De Meillon B: The Anophelinae of Africa south of the Sahara. 1968, Johannesburg: South African Institute for Medical Research Press
18.
go back to reference Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G: Spatial distribution and habitat characterization of anopheline mosquito larvae in Western Kenya. Am J Trop Med Hyg. 1999, 61: 1010-1016.PubMed Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G: Spatial distribution and habitat characterization of anopheline mosquito larvae in Western Kenya. Am J Trop Med Hyg. 1999, 61: 1010-1016.PubMed
19.
go back to reference Gimnig JE, Ombok M, Kamau L, Hawley WA: Characteristics of larval anopheline (Diptera:Culicide) habitats in Western Kenya. J Med Entomol. 2001, 38: 282-288. 10.1603/0022-2585-38.2.282.CrossRefPubMed Gimnig JE, Ombok M, Kamau L, Hawley WA: Characteristics of larval anopheline (Diptera:Culicide) habitats in Western Kenya. J Med Entomol. 2001, 38: 282-288. 10.1603/0022-2585-38.2.282.CrossRefPubMed
20.
go back to reference Minakawa N, Githure JI, Beier JC, Yan G: Anopheline mosquito survival strategies during the dry period in western Kenya. J Med Entomol. 2001, 38: 388-392. 10.1603/0022-2585-38.3.388.CrossRefPubMed Minakawa N, Githure JI, Beier JC, Yan G: Anopheline mosquito survival strategies during the dry period in western Kenya. J Med Entomol. 2001, 38: 388-392. 10.1603/0022-2585-38.3.388.CrossRefPubMed
21.
go back to reference WHO: Manual on Practical Entomology in Malaria. Part II. Methods and Techniques. No. 13. Geneva. 1975 WHO: Manual on Practical Entomology in Malaria. Part II. Methods and Techniques. No. 13. Geneva. 1975
22.
go back to reference Gillies MT, Coetzee M: A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region) (publication no. 55). 1987, Johannesburg: South Africa Institute for Medical Research Gillies MT, Coetzee M: A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region) (publication no. 55). 1987, Johannesburg: South Africa Institute for Medical Research
23.
go back to reference Scott JA, Brogdon WG, Collins FH: Identification of single species of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993, 49: 520-529.PubMed Scott JA, Brogdon WG, Collins FH: Identification of single species of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993, 49: 520-529.PubMed
24.
go back to reference Minakawa N, Seda P, Yan G: Influence of host and larval habitat distribution on the abundance of African malaria vectors in western Kenya. Am J Trop Med Hyg. 2002, 67: 32-38.PubMed Minakawa N, Seda P, Yan G: Influence of host and larval habitat distribution on the abundance of African malaria vectors in western Kenya. Am J Trop Med Hyg. 2002, 67: 32-38.PubMed
25.
go back to reference Carter R, Mendis KN, Roberts D: Spatial targeting of interventions against malaria. Bull World Health Organ. 2000, 78: 1401-1411.PubMedCentralPubMed Carter R, Mendis KN, Roberts D: Spatial targeting of interventions against malaria. Bull World Health Organ. 2000, 78: 1401-1411.PubMedCentralPubMed
26.
go back to reference Zhou G, Munga S, Minakawa N, Githeko AK, Yan G: Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg. 2007, 77: 29-35. 10.1186/1476-072X-7-50.PubMed Zhou G, Munga S, Minakawa N, Githeko AK, Yan G: Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg. 2007, 77: 29-35. 10.1186/1476-072X-7-50.PubMed
27.
go back to reference Li L, Bian L, Yan G: A study of the distribution and abundance of the adult malaria vector in western Kenya highlands. Int J Health Geogr. 2008, 7: 50-10.1186/1475-2875-7-40.PubMedCentralCrossRefPubMed Li L, Bian L, Yan G: A study of the distribution and abundance of the adult malaria vector in western Kenya highlands. Int J Health Geogr. 2008, 7: 50-10.1186/1475-2875-7-40.PubMedCentralCrossRefPubMed
28.
go back to reference Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML: Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malaria J. 2008, 7: 40-10.1016/0035-9203(79)90036-1.CrossRef Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML: Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malaria J. 2008, 7: 40-10.1016/0035-9203(79)90036-1.CrossRef
29.
go back to reference Coluzzi M, Sabatini A, Petrarca V, Di Deco MA: Chromosomal differentiation and adaptation to human environment in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979, 37: 483-497. 10.1016/0035-9203(79)90036-1.CrossRef Coluzzi M, Sabatini A, Petrarca V, Di Deco MA: Chromosomal differentiation and adaptation to human environment in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979, 37: 483-497. 10.1016/0035-9203(79)90036-1.CrossRef
30.
go back to reference Toure YT, Petrarca V, Traore SF, Coulibaly A, Maiga HM, Sankare O, Sow M, Di Deco MA, Coluzzi M: The distribution and inversion polymorphism of chromosomally recognized taxa of Anopheles gambiae complex in Mali, West Africa. Parasitologia. 1998, 40: 477-511. 10.1603/0022-2585(2005)042[0993:OSPAEH]2.0.CO;2. Toure YT, Petrarca V, Traore SF, Coulibaly A, Maiga HM, Sankare O, Sow M, Di Deco MA, Coluzzi M: The distribution and inversion polymorphism of chromosomally recognized taxa of Anopheles gambiae complex in Mali, West Africa. Parasitologia. 1998, 40: 477-511. 10.1603/0022-2585(2005)042[0993:OSPAEH]2.0.CO;2.
31.
go back to reference Munga S, Minakawa N, Zhou G, Okey-Owuor J, Barrrack OO, Githeko AK, Yan G: Oviposition site preference and egg hatchability of Anopheles gambiae: effects of land cover types. J Med Entomol. 2005, 42: 993-997. 10.1603/0022-2585(2005)042[0270:SOAGSS]2.0.CO;2.PubMed Munga S, Minakawa N, Zhou G, Okey-Owuor J, Barrrack OO, Githeko AK, Yan G: Oviposition site preference and egg hatchability of Anopheles gambiae: effects of land cover types. J Med Entomol. 2005, 42: 993-997. 10.1603/0022-2585(2005)042[0270:SOAGSS]2.0.CO;2.PubMed
32.
go back to reference Tuno N, Okeka W, Minakawa N, Takagi M, Yan G: Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western Kenya highland forest. J Med Entomol. 2005, 42: 270-277. 10.1603/0022-2585(2005)042[0270:SOAGSS]2.0.CO;2.CrossRefPubMed Tuno N, Okeka W, Minakawa N, Takagi M, Yan G: Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western Kenya highland forest. J Med Entomol. 2005, 42: 270-277. 10.1603/0022-2585(2005)042[0270:SOAGSS]2.0.CO;2.CrossRefPubMed
Metadata
Title
Habitat stability and occurrences of malaria vector larvae in western Kenya highlands
Authors
Yousif E Himeidan
Guofa Zhou
Laith Yakob
Yaw Afrane
Stephen Munga
Harrysone Atieli
El-Amin El-Rayah
Andrew K Githeko
Guiyun Yan
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2009
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-8-234

Other articles of this Issue 1/2009

Malaria Journal 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.