Skip to main content
Top
Published in: Malaria Journal 1/2008

Open Access 01-12-2008 | Research

Efficacy of local neem extracts for sustainable malaria vector control in an African village

Authors: Rebecca L Gianotti, Arne Bomblies, Mustafa Dafalla, Ibrahim Issa-Arzika, Jean-Bernard Duchemin, Elfatih AB Eltahir

Published in: Malaria Journal | Issue 1/2008

Login to get access

Abstract

Background

Larval control of malaria vectors has been historically successful in reducing malaria transmission, but largely fell out of favour with the introduction of synthetic insecticides and bed nets. However, an integrated approach to malaria control, including larval control methods, continues to be the best chance for success, in view of insecticide resistance, the behavioural adaptation of the vectors to changing environments and the difficulties of reaching the poorest populations most at risk,. Laboratory studies investigating the effects of neem seed (Azadirachta indica) extracts on Anopheles larvae have shown high rates of larval mortality and reductions in adult longevity, as well as low potential for resistance development.

Methods

This paper describes a method whereby seeds of the neem tree can be used to reduce adult Anopheles gambiae s.l. abundance in a way that is low cost and can be implemented by residents of rural villages in western Niger. The study was conducted in Banizoumbou village, western Niger. Neem seeds were collected from around the village. Dried seeds were ground into a coarse powder, which was then sprinkled onto known Anopheles larvae breeding habitats twice weekly during the rainy season 2007. Adult mosquitoes were captured on a weekly basis in the village and captures compared to those from 2005 and 2006 over the same period. Adult mosquitoes were also captured in a nearby village, Zindarou, as a control data set and compared to those from Banizoumbou.

Results

It was found that twice-weekly applications of the powder to known breeding habitats of Anopheles larvae in 2007 resulted in 49% fewer adult female Anopheles gambiae s.l. mosquitoes in Banizoumbou, compared with previous captures under similar environmental conditions and with similar habitat characteristics in 2005 and 2006. The productivity of the system in 2007 was found to be suppressed compared to the mean behaviour of 2005 and 2006 in Banizoumbou, whereas no change was found in Zindarou.

Conclusion

With a high abundance of neem plants in many villages in this area, the results of this study suggest that larval control using neem seed powder offers a sustainable additional tool for malaria vector control in the Sahel region of Niger.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hargreaves K, Hunt RH, Brooke BD, Mthembu J, Weeto MM, Awolola TS, Coetzee M: Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Med Vet Entomol. 2003, 17: 417-422. 10.1111/j.1365-2915.2003.00460.x.CrossRefPubMed Hargreaves K, Hunt RH, Brooke BD, Mthembu J, Weeto MM, Awolola TS, Coetzee M: Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Med Vet Entomol. 2003, 17: 417-422. 10.1111/j.1365-2915.2003.00460.x.CrossRefPubMed
2.
go back to reference Casimiro S, Coleman M, Hemingway J, Sharp B: Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique. J Med Entomol. 2006, 43: 276-282. 10.1603/0022-2585(2006)043[0276:IRIAAA]2.0.CO;2.CrossRefPubMed Casimiro S, Coleman M, Hemingway J, Sharp B: Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique. J Med Entomol. 2006, 43: 276-282. 10.1603/0022-2585(2006)043[0276:IRIAAA]2.0.CO;2.CrossRefPubMed
3.
go back to reference Reimer LJ, Tripet F, Slotman M, Spielman A, Fonjo E, Lanzaro GC: An unusual distribution of the kdr gene among populations of Anopheles gambiae on the island of Bioko, Equatorial Guinea. Insect Mol Biol. 2005, 14: 683-688. 10.1111/j.1365-2583.2005.00599.x.CrossRefPubMed Reimer LJ, Tripet F, Slotman M, Spielman A, Fonjo E, Lanzaro GC: An unusual distribution of the kdr gene among populations of Anopheles gambiae on the island of Bioko, Equatorial Guinea. Insect Mol Biol. 2005, 14: 683-688. 10.1111/j.1365-2583.2005.00599.x.CrossRefPubMed
4.
go back to reference Stump AD, Atieli FK, Vulule JM, Besansky NJ: Dynamics of the pyrethroid knockdown resistance allele in western Kenyan populations of Anopheles gambiae in response to insecticide-treated bed net trials. Am J Trop Med Hyg. 2004, 70: 591-596.PubMed Stump AD, Atieli FK, Vulule JM, Besansky NJ: Dynamics of the pyrethroid knockdown resistance allele in western Kenyan populations of Anopheles gambiae in response to insecticide-treated bed net trials. Am J Trop Med Hyg. 2004, 70: 591-596.PubMed
5.
go back to reference Killeen GF, Fillinger U, Knols BGJ: Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malar J. 2002, 1: 8-10.1186/1475-2875-1-8.PubMedCentralCrossRefPubMed Killeen GF, Fillinger U, Knols BGJ: Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malar J. 2002, 1: 8-10.1186/1475-2875-1-8.PubMedCentralCrossRefPubMed
6.
go back to reference Barat LM, Palmer N, Basu S, Worrall E, Hanson K, Mills A: Do malaria control interventions reach the poor? A view through the equity lens. Am J Trop Med Hyg. 2004, 71: 174-178.PubMed Barat LM, Palmer N, Basu S, Worrall E, Hanson K, Mills A: Do malaria control interventions reach the poor? A view through the equity lens. Am J Trop Med Hyg. 2004, 71: 174-178.PubMed
7.
go back to reference Soper FL, Wilson DB: Anopheles gambie in Brazil. 1943, New York, Rockefeller Foundation Soper FL, Wilson DB: Anopheles gambie in Brazil. 1943, New York, Rockefeller Foundation
8.
go back to reference Shousha AT: Species-eradication: the eradication of Anopheles gambiae from Upper Egypt 1942–1945. Bull World Health Organ. 1948, 1: 309-353.PubMedCentralPubMed Shousha AT: Species-eradication: the eradication of Anopheles gambiae from Upper Egypt 1942–1945. Bull World Health Organ. 1948, 1: 309-353.PubMedCentralPubMed
9.
go back to reference Keiser J, Singer BH, Utzinger J: Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis. 2005, 5: 695-708. 10.1016/S1473-3099(05)70268-1.CrossRefPubMed Keiser J, Singer BH, Utzinger J: Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis. 2005, 5: 695-708. 10.1016/S1473-3099(05)70268-1.CrossRefPubMed
10.
go back to reference Carter R, Mendis KN, Roberts D: Spatial targeting of interventions against malaria. Bull World Health Organ. 2000, 78: 1401-1411.PubMedCentralPubMed Carter R, Mendis KN, Roberts D: Spatial targeting of interventions against malaria. Bull World Health Organ. 2000, 78: 1401-1411.PubMedCentralPubMed
11.
go back to reference World Health Organization: Malaria Vector Control and Personal Protection: report of a WHO study group. 2006, WHO Technical Report Series No. 936, Geneva World Health Organization: Malaria Vector Control and Personal Protection: report of a WHO study group. 2006, WHO Technical Report Series No. 936, Geneva
12.
go back to reference Walker K, Lynch M: Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol. 2007, 21: 2-21. 10.1111/j.1365-2915.2007.00674.x.CrossRefPubMed Walker K, Lynch M: Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol. 2007, 21: 2-21. 10.1111/j.1365-2915.2007.00674.x.CrossRefPubMed
13.
go back to reference Gu W, Novak RJ: Habitat-based modelling of impacts of mosquito larval interventions on entomological inoculation rates, incidence and prevalence of malaria. Am J Trop Med Hyg. 2005, 73: 546-552.PubMed Gu W, Novak RJ: Habitat-based modelling of impacts of mosquito larval interventions on entomological inoculation rates, incidence and prevalence of malaria. Am J Trop Med Hyg. 2005, 73: 546-552.PubMed
14.
go back to reference Konradsen F, Hoek van der W, Amerasinghe FP, Mutero C, Boelee E: Engineering and malaria control: learning from the past 100 years. Acta Trop. 2004, 89: 99-108. 10.1016/j.actatropica.2003.09.013.CrossRefPubMed Konradsen F, Hoek van der W, Amerasinghe FP, Mutero C, Boelee E: Engineering and malaria control: learning from the past 100 years. Acta Trop. 2004, 89: 99-108. 10.1016/j.actatropica.2003.09.013.CrossRefPubMed
15.
go back to reference Utzinger J, Tozan Y, Singer BH: Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001, 6: 677-687. 10.1046/j.1365-3156.2001.00769.x.CrossRefPubMed Utzinger J, Tozan Y, Singer BH: Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health. 2001, 6: 677-687. 10.1046/j.1365-3156.2001.00769.x.CrossRefPubMed
16.
go back to reference World Health Organization: Vector Control for Malaria and Other Mosquito-Borne Diseases: report of a WHO study group. 1995, WHO Technical Report Series No. 857, Geneva World Health Organization: Vector Control for Malaria and Other Mosquito-Borne Diseases: report of a WHO study group. 1995, WHO Technical Report Series No. 857, Geneva
17.
go back to reference Schmutterer H, (Ed): The neem tree: Azadirachta indica A. Juss. and other meliaceous plants: sources of unique natural products for integrated pest management, medicine, industry and other purposes. 1995, VCH Verlagsgesellschaft, Germany Schmutterer H, (Ed): The neem tree: Azadirachta indica A. Juss. and other meliaceous plants: sources of unique natural products for integrated pest management, medicine, industry and other purposes. 1995, VCH Verlagsgesellschaft, Germany
18.
go back to reference Schmutterer H: Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol. 1990, 35: 271-297. 10.1146/annurev.en.35.010190.001415.CrossRefPubMed Schmutterer H: Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol. 1990, 35: 271-297. 10.1146/annurev.en.35.010190.001415.CrossRefPubMed
20.
go back to reference Okumu FO, Knols BGJ, Fillinger U: Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar J. 2007, 6: 63-10.1186/1475-2875-6-63.PubMedCentralCrossRefPubMed Okumu FO, Knols BGJ, Fillinger U: Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar J. 2007, 6: 63-10.1186/1475-2875-6-63.PubMedCentralCrossRefPubMed
21.
go back to reference Aliero BL: Larvaecidal effects of aqueous extracts of Azadirachta indica (neem) on the larvae of Anopheles mosquito. Afr J Biotech. 2003, 2: 325-327.CrossRef Aliero BL: Larvaecidal effects of aqueous extracts of Azadirachta indica (neem) on the larvae of Anopheles mosquito. Afr J Biotech. 2003, 2: 325-327.CrossRef
22.
go back to reference Awad OM, Shimaila A: Operational use of neem oil as an alternative anopheline larvicide, Part A: laboratory and field efficacy. East Mediterr Health J. 2003, 9: 637-645.PubMed Awad OM, Shimaila A: Operational use of neem oil as an alternative anopheline larvicide, Part A: laboratory and field efficacy. East Mediterr Health J. 2003, 9: 637-645.PubMed
23.
go back to reference Alshawsh MA, Mothana RA, Al-shamahy HA, Alsllami SF, Lindequist U: Assessment of antimalarial activity against Plasmodium falciparum and phytochemical screening of some Yemeni medicinal plants. eCAM. 2007 Alshawsh MA, Mothana RA, Al-shamahy HA, Alsllami SF, Lindequist U: Assessment of antimalarial activity against Plasmodium falciparum and phytochemical screening of some Yemeni medicinal plants. eCAM. 2007
24.
go back to reference Dhar R, Zhang K, Talwar GP, Garg S, Kumar N: Inhibition of the growth and development of asexual and sexual stages of drug-sensitive and resistant strains of the human malaria parasite Plasmodium falciparum by Neem (Azadirachta indica) fractions. J Ethnopharmacology. 1998, 61: 31-39. 10.1016/S0378-8741(98)00012-9.CrossRefPubMed Dhar R, Zhang K, Talwar GP, Garg S, Kumar N: Inhibition of the growth and development of asexual and sexual stages of drug-sensitive and resistant strains of the human malaria parasite Plasmodium falciparum by Neem (Azadirachta indica) fractions. J Ethnopharmacology. 1998, 61: 31-39. 10.1016/S0378-8741(98)00012-9.CrossRefPubMed
25.
go back to reference Soh PN, Benoit-Vical F: Are West African plants a source of future antimalarial drugs?. J Ethnopharmacology. 2007, 114: 130-140. 10.1016/j.jep.2007.08.012.CrossRefPubMed Soh PN, Benoit-Vical F: Are West African plants a source of future antimalarial drugs?. J Ethnopharmacology. 2007, 114: 130-140. 10.1016/j.jep.2007.08.012.CrossRefPubMed
26.
go back to reference Udeinya IJ, Mbah AU, Chijioke CP, Shu EN: An antimalarial extract from neem leaves is antiretroviral. Trans R Soc Trop Med Hyg. 2004, 98: 435-437. 10.1016/j.trstmh.2003.10.016.CrossRefPubMed Udeinya IJ, Mbah AU, Chijioke CP, Shu EN: An antimalarial extract from neem leaves is antiretroviral. Trans R Soc Trop Med Hyg. 2004, 98: 435-437. 10.1016/j.trstmh.2003.10.016.CrossRefPubMed
27.
go back to reference Mulla MS, Su T: Activity and biological effects of neem products against arthropods of medical and veterinary importance. J Am Mosq Control Assoc. 1999, 15: 133-152.PubMed Mulla MS, Su T: Activity and biological effects of neem products against arthropods of medical and veterinary importance. J Am Mosq Control Assoc. 1999, 15: 133-152.PubMed
28.
go back to reference Vatandoost H, Vaziri VM: Larvicidal activity of a neem tree extract (Neemarin) against mosquito larvae in the Islamic Republic of Iran. East Mediterr Health J. 2004, 10: 573-581.PubMed Vatandoost H, Vaziri VM: Larvicidal activity of a neem tree extract (Neemarin) against mosquito larvae in the Islamic Republic of Iran. East Mediterr Health J. 2004, 10: 573-581.PubMed
29.
go back to reference Grunewald J, Vollmer A: Malaria-control with neem products in the Mopti region in Mali, West Africa. Practice Oriented Results on Use and Production of Neem – Ingredients and Pheromones, Proceedings of the 9th Workshop. 2000, 173-174. , Hohensolms, Germany Grunewald J, Vollmer A: Malaria-control with neem products in the Mopti region in Mali, West Africa. Practice Oriented Results on Use and Production of Neem – Ingredients and Pheromones, Proceedings of the 9th Workshop. 2000, 173-174. , Hohensolms, Germany
30.
go back to reference Desconnets JC, Taupin JD, Lebel T, Leduc C: Hydrology of the HAPEX-Sahel Central Super-Site: surface water drainage and aquifer recharge through the pool systems. J Hydrol. 1997, 188–189: 155-178. 10.1016/S0022-1694(96)03158-7.CrossRef Desconnets JC, Taupin JD, Lebel T, Leduc C: Hydrology of the HAPEX-Sahel Central Super-Site: surface water drainage and aquifer recharge through the pool systems. J Hydrol. 1997, 188–189: 155-178. 10.1016/S0022-1694(96)03158-7.CrossRef
31.
go back to reference Vir S, Jindal SK, Yadav SS: Improvement of neem for seed yield, oil content and pesticidal uses. Proceedings of the World Neem Conference. 1999, 156-163. 19-21 May, Vancouver, Canada Vir S, Jindal SK, Yadav SS: Improvement of neem for seed yield, oil content and pesticidal uses. Proceedings of the World Neem Conference. 1999, 156-163. 19-21 May, Vancouver, Canada
Metadata
Title
Efficacy of local neem extracts for sustainable malaria vector control in an African village
Authors
Rebecca L Gianotti
Arne Bomblies
Mustafa Dafalla
Ibrahim Issa-Arzika
Jean-Bernard Duchemin
Elfatih AB Eltahir
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2008
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-7-138

Other articles of this Issue 1/2008

Malaria Journal 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.