Skip to main content
Top
Published in: Malaria Journal 1/2007

Open Access 01-12-2007 | Research

An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets

Authors: Arnaud Le Menach, Shannon Takala, F Ellis McKenzie, Andre Perisse, Anthony Harris, Antoine Flahault, David L Smith

Published in: Malaria Journal | Issue 1/2007

Login to get access

Abstract

Background

Insecticide Treated Nets (ITNs) are an important tool for malaria control. ITNs are effective because they work on several parts of the mosquito feeding cycle, including both adult killing and repelling effects.

Methods

Using an elaborated description of the classic feeding cycle model, simple formulas have been derived to describe how ITNs change mosquito behaviour and the intensity of malaria transmission, as summarized by vectorial capacity and EIR. The predicted changes are illustrated as a function of the frequency of ITN use for four different vector populations using parameter estimates from the literature.

Results

The model demonstrates that ITNs simultaneously reduce mosquitoes' lifespans, lengthen the feeding cycle, and by discouraging human biting divert more bites onto non-human hosts. ITNs can substantially reduce vectorial capacity through small changes to all of these quantities. The total reductions in vectorial capacity differ, moreover, depending on baseline behavior in the absence of ITNs. Reductions in lifespan and vectorial capacity are strongest for vector species with high baseline survival. Anthropophilic and zoophilic species are affected differently by ITNs; the feeding cycle is lengthened more for anthrophilic species, and the proportion of bites that are diverted onto non-human hosts is higher for zoophilic species.

Conclusion

This model suggests that the efficacy of ITNs should be measured as a total reduction in transmission intensity, and that the quantitative effects will differ by species and by transmission intensity. At very high rates of ITN use, ITNs can generate large reductions in transmission intensity that could provide very large reductions in transmission intensity, and effective malaria control in some areas, especially when used in combination with other control measures. At high EIR, ITNs will probably not substantially reduce the parasite rate, but when transmission intensity is low, reductions in vectorial capacity combine with reductions in the parasite rate to generate very large reductions in EIR.
Appendix
Available only for authorised users
Literature
2.
go back to reference Lindblade KA, Eisele TP, Gimnig JE, Alaii JA, Odhiambo F, ter Kuile FO, Hawley WA, Wannemuehler KA, Phillips-Howard PA, Rosen DH, Nahlen BL, Terlouw DJ, Adazu K, Vulule JM, Slutsker L: Sustainability of reductions in malaria transmission and infant mortality in western Kenya with use of insecticide-treated bednets: 4 to 6 years of follow-up. JAMA. 2004, 291: 2571-2580.CrossRefPubMed Lindblade KA, Eisele TP, Gimnig JE, Alaii JA, Odhiambo F, ter Kuile FO, Hawley WA, Wannemuehler KA, Phillips-Howard PA, Rosen DH, Nahlen BL, Terlouw DJ, Adazu K, Vulule JM, Slutsker L: Sustainability of reductions in malaria transmission and infant mortality in western Kenya with use of insecticide-treated bednets: 4 to 6 years of follow-up. JAMA. 2004, 291: 2571-2580.CrossRefPubMed
3.
go back to reference Alonso PL, Lindsay SW, Armstrong JR, Conteh M, Hill AG, David PH, Fegan G, de Francisco A, Hall AJ, Shenton FC: The effect of insecticide-treated bed nets on mortality of Gambian children. Lancet. 1991, 337: 1499-1502.CrossRefPubMed Alonso PL, Lindsay SW, Armstrong JR, Conteh M, Hill AG, David PH, Fegan G, de Francisco A, Hall AJ, Shenton FC: The effect of insecticide-treated bed nets on mortality of Gambian children. Lancet. 1991, 337: 1499-1502.CrossRefPubMed
4.
go back to reference Nevill CG, Some ES, Mung'ala VO, Mutemi W, New L, Marsh K, Lengeler C, Snow RW: Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. Trop Med Int Health. 1996, 1: 139-146.CrossRefPubMed Nevill CG, Some ES, Mung'ala VO, Mutemi W, New L, Marsh K, Lengeler C, Snow RW: Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. Trop Med Int Health. 1996, 1: 139-146.CrossRefPubMed
5.
go back to reference Snow RW, Marsh K: The consequences of reducing transmission of Plasmodium falciparum in Africa. Adv Parasitol. 2002, 52: 235-264.CrossRefPubMed Snow RW, Marsh K: The consequences of reducing transmission of Plasmodium falciparum in Africa. Adv Parasitol. 2002, 52: 235-264.CrossRefPubMed
6.
go back to reference Muller O, Traore C, Kouyate B, Ye Y, Frey C, Coulibaly B, Becher H: Effects of insecticide-treated bednets during early infancy in an African area of intense malaria transmission: a randomized controlled trial. Bull World Health Organ. 2006, 84: 120-126.PubMedCentralCrossRefPubMed Muller O, Traore C, Kouyate B, Ye Y, Frey C, Coulibaly B, Becher H: Effects of insecticide-treated bednets during early infancy in an African area of intense malaria transmission: a randomized controlled trial. Bull World Health Organ. 2006, 84: 120-126.PubMedCentralCrossRefPubMed
7.
go back to reference Jawara M, Pinder M, Cham B, Walraven G, Rowley J: Comparison of deltamethrin tablet formulation with liquid deltamethrin and permethrin for bednet treatment in The Gambia. Trop Med Int Health. 2001, 6: 309-316.CrossRefPubMed Jawara M, Pinder M, Cham B, Walraven G, Rowley J: Comparison of deltamethrin tablet formulation with liquid deltamethrin and permethrin for bednet treatment in The Gambia. Trop Med Int Health. 2001, 6: 309-316.CrossRefPubMed
8.
go back to reference Takken W: Do insecticide-treated bednets have an effect on malaria vectors?. Trop Med Int Health. 2002, 7: 1022-1030.CrossRefPubMed Takken W: Do insecticide-treated bednets have an effect on malaria vectors?. Trop Med Int Health. 2002, 7: 1022-1030.CrossRefPubMed
9.
go back to reference Mac Donald G: The epidemiology and control of malaria. 1957, London: Oxford University Press Mac Donald G: The epidemiology and control of malaria. 1957, London: Oxford University Press
10.
go back to reference Garret-Jones C: Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity. Nature. 1964, 204: 1173-1175.CrossRef Garret-Jones C: Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity. Nature. 1964, 204: 1173-1175.CrossRef
11.
13.
go back to reference Killeen GF, McKenzie FE, Foy BD, Bogh C, Beier JC: The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by African mosquito populations. Trans R Soc Trop Med Hyg. 2001, 95: 469-476.PubMedCentralCrossRefPubMed Killeen GF, McKenzie FE, Foy BD, Bogh C, Beier JC: The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by African mosquito populations. Trans R Soc Trop Med Hyg. 2001, 95: 469-476.PubMedCentralCrossRefPubMed
15.
go back to reference Arredondo-Jimenez JI, Rodriguez MH, Loyola EG, Bown DN: Behaviour of Anopheles albimanus in relation to pyrethroid-treated bednets. Med Vet Entomol. 1997, 11: 87-94.CrossRefPubMed Arredondo-Jimenez JI, Rodriguez MH, Loyola EG, Bown DN: Behaviour of Anopheles albimanus in relation to pyrethroid-treated bednets. Med Vet Entomol. 1997, 11: 87-94.CrossRefPubMed
16.
go back to reference Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC: A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg. 2000, 62: 535-544.PubMedCentralPubMed Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC: A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg. 2000, 62: 535-544.PubMedCentralPubMed
17.
go back to reference Mathenge EM, Gimnig JE, Kolczak M, Ombok M, Irungu LW, Hawley WA: Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera: Culicidae) in western Kenya. J Med Entomol. 2001, 38: 531-536.CrossRefPubMed Mathenge EM, Gimnig JE, Kolczak M, Ombok M, Irungu LW, Hawley WA: Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera: Culicidae) in western Kenya. J Med Entomol. 2001, 38: 531-536.CrossRefPubMed
18.
go back to reference Blower SM, Dowlatabadi H: Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: an HIV Model, as an Example. International Statistical Review. 1994, 62: 229-243.CrossRef Blower SM, Dowlatabadi H: Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: an HIV Model, as an Example. International Statistical Review. 1994, 62: 229-243.CrossRef
19.
go back to reference Smith DL, Dushoff J, Snow RW, Hay SI: The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature. 2005, 438: 492-495.PubMedCentralCrossRefPubMed Smith DL, Dushoff J, Snow RW, Hay SI: The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature. 2005, 438: 492-495.PubMedCentralCrossRefPubMed
20.
go back to reference Charlwood JD, Alcantara J, Pinto J, Sousa CA, Rompao H, Gil V, Rosario VE: Do bednets reduce malaria transmission by exophagic mosquitoes?. Trans R Soc Trop Med Hyg. 2005, 99: 901-904.CrossRefPubMed Charlwood JD, Alcantara J, Pinto J, Sousa CA, Rompao H, Gil V, Rosario VE: Do bednets reduce malaria transmission by exophagic mosquitoes?. Trans R Soc Trop Med Hyg. 2005, 99: 901-904.CrossRefPubMed
21.
go back to reference Singer LM, Mirel LB, ter Kuile FO, Branch OH, Vulule JM, Kolczak MS, Hawley WA, Kariuki SK, Kaslow DC, Lanar DE, Lal AA: The effects of varying exposure to malaria transmission on development of antimalarial antibody responses in preschool children. XVI. Asembo Bay Cohort Project. J Infect Dis. 2003, 187: 1756-1764.CrossRefPubMed Singer LM, Mirel LB, ter Kuile FO, Branch OH, Vulule JM, Kolczak MS, Hawley WA, Kariuki SK, Kaslow DC, Lanar DE, Lal AA: The effects of varying exposure to malaria transmission on development of antimalarial antibody responses in preschool children. XVI. Asembo Bay Cohort Project. J Infect Dis. 2003, 187: 1756-1764.CrossRefPubMed
22.
go back to reference McKenzie FE, Killeen GF, Beier JC, Bossert WH: Seasonality, parasite diversity, and local extinctions in Plasmodium Falciparum malaria. Ecology. 2001, 82: 2673-2681.PubMedCentralCrossRefPubMed McKenzie FE, Killeen GF, Beier JC, Bossert WH: Seasonality, parasite diversity, and local extinctions in Plasmodium Falciparum malaria. Ecology. 2001, 82: 2673-2681.PubMedCentralCrossRefPubMed
23.
go back to reference D'Alessandro U, Olaleye BO, McGuire W, Langerock P, Bennett S, Aikins MK, Thomson MC, Cham MK, Cham BA, Greenwood BM: Mortality and morbidity from malaria in Gambian children after introduction of an impregnated bednet programme. Lancet. 1995, 345: 479-483.CrossRefPubMed D'Alessandro U, Olaleye BO, McGuire W, Langerock P, Bennett S, Aikins MK, Thomson MC, Cham MK, Cham BA, Greenwood BM: Mortality and morbidity from malaria in Gambian children after introduction of an impregnated bednet programme. Lancet. 1995, 345: 479-483.CrossRefPubMed
24.
25.
go back to reference Le Menach A, McKenzie FE, Flahault A, Smith DL: The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission. Malar J. 2005, 4: 23-CrossRefPubMed Le Menach A, McKenzie FE, Flahault A, Smith DL: The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission. Malar J. 2005, 4: 23-CrossRefPubMed
26.
go back to reference Staedke SG, Nottingham EW, Cox J, Kamya MR, Rosenthal PJ, Dorsey G: Short report: proximity to mosquito breeding sites as a risk factor for clinical malaria episodes in an urban cohort of Ugandan children. Am J Trop Med Hyg. 2003, 69: 244-246.PubMed Staedke SG, Nottingham EW, Cox J, Kamya MR, Rosenthal PJ, Dorsey G: Short report: proximity to mosquito breeding sites as a risk factor for clinical malaria episodes in an urban cohort of Ugandan children. Am J Trop Med Hyg. 2003, 69: 244-246.PubMed
27.
go back to reference Magesa SM, Wilkes TJ, Mnzava AE, Njunwa KJ, Myamba J, Kivuyo MD, Hill N, Lines JD, Curtis CF: Trial of pyrethroid impregnated bednets in an area of Tanzania holoendemic for malaria. Part 2. Effects on the malaria vector population. Acta Trop. 1991, 49: 97-108.CrossRefPubMed Magesa SM, Wilkes TJ, Mnzava AE, Njunwa KJ, Myamba J, Kivuyo MD, Hill N, Lines JD, Curtis CF: Trial of pyrethroid impregnated bednets in an area of Tanzania holoendemic for malaria. Part 2. Effects on the malaria vector population. Acta Trop. 1991, 49: 97-108.CrossRefPubMed
28.
go back to reference Clarke SE, Bogh C, Brown RC, Pinder M, Walraven GE, Lindsay SW: Do untreated bednets protect against malaria?. Trans R Soc Trop Med Hyg. 2001, 95: 457-462.CrossRefPubMed Clarke SE, Bogh C, Brown RC, Pinder M, Walraven GE, Lindsay SW: Do untreated bednets protect against malaria?. Trans R Soc Trop Med Hyg. 2001, 95: 457-462.CrossRefPubMed
Metadata
Title
An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets
Authors
Arnaud Le Menach
Shannon Takala
F Ellis McKenzie
Andre Perisse
Anthony Harris
Antoine Flahault
David L Smith
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2007
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-6-10

Other articles of this Issue 1/2007

Malaria Journal 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.