Skip to main content
Top
Published in: Malaria Journal 1/2003

Open Access 01-12-2003 | Research

Egg hatching, larval movement and larval survival of the malaria vector Anopheles gambiae in desiccating habitats

Authors: Constantianus JM Koenraadt, Krijn P Paaijmans, Andrew K Githeko, Bart GJ Knols, Willem Takken

Published in: Malaria Journal | Issue 1/2003

Login to get access

Abstract

Background

Although the effects of rainfall on the population dynamics of the malaria vector Anopheles gambiae have been studied in great detail, the effects of dry periods on its survival remain less clear.

Methods

The effects of drying conditions were simulated by creating desiccated habitats, which consisted of trays filled with damp soil. Experiments were performed in these trays to (i) test the ability of An. gambiae sensu stricto eggs to hatch on damp soil and for larvae to reach an artificial breeding site at different distances of the site of hatching and (ii) to record survival of the four larval stages of An. gambiae s.s. when placed on damp soil.

Results

Eggs of An. gambiae s.s. hatched on damp soil and emerging larvae were capable of covering a distance of up to 10 cm to reach surface water enabling further development. However, proportions of larvae reaching the site decreased rapidly with increasing distance. First, second and third-instar larvae survived on damp soil for an estimated period of 64, 65 and 69 hrs, respectively. Fourth-instar larvae survived significantly longer and we estimated that the maximum survival time was 113 hrs.

Conclusion

Short-term survival of aquatic stages of An. gambiae on wet soil may be important and adaptive when considering the transient nature of breeding sites of this species in sub-Saharan Africa. In addition, the results suggest that, for larval vector control methods to be effective, habitats should remain drained for at least 5 days to kill all larvae (e.g. in rice fields) and habitats that recently dried up should be treated as well, if larvicidal agents are applied.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gillies MT, DeMeillon B: The Anophelinae of Africa South of the Sahara. 1968, South African Institute for Medical Research, Johannesburg Gillies MT, DeMeillon B: The Anophelinae of Africa South of the Sahara. 1968, South African Institute for Medical Research, Johannesburg
2.
go back to reference Gill CA: The relationship between malaria and rainfall. Ind J Med Res. 1920, 37: 618-632. Gill CA: The relationship between malaria and rainfall. Ind J Med Res. 1920, 37: 618-632.
3.
go back to reference Patz JA, Strzepek K, Lele S, Hedden M, Greene S, Noden B, Hay SI, Kalkstein L, Beier JC: Predicting key malaria transmission factors, biting and entomological inoculation rates, using modelled soil moisture in Kenya. Trop Med Intl Hlth. 1998, 3: 818-827. 10.1046/j.1365-3156.1998.00309.x.CrossRef Patz JA, Strzepek K, Lele S, Hedden M, Greene S, Noden B, Hay SI, Kalkstein L, Beier JC: Predicting key malaria transmission factors, biting and entomological inoculation rates, using modelled soil moisture in Kenya. Trop Med Intl Hlth. 1998, 3: 818-827. 10.1046/j.1365-3156.1998.00309.x.CrossRef
4.
go back to reference Craig MH, Snow RW, le Sueur D: A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999, 15: 105-111. 10.1016/S0169-4758(99)01396-4.CrossRefPubMed Craig MH, Snow RW, le Sueur D: A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999, 15: 105-111. 10.1016/S0169-4758(99)01396-4.CrossRefPubMed
5.
go back to reference Omer SM, Cloudsley-Thompson JL: Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull World Health Organ. 1970, 42: 319-330.PubMedCentralPubMed Omer SM, Cloudsley-Thompson JL: Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull World Health Organ. 1970, 42: 319-330.PubMedCentralPubMed
6.
go back to reference Taylor CE, Touré YT, Coluzzi M, Petrarca V: Effective population size and persistence of Anopheles arabiensis during the dry season in west Africa. Med Vet Entomol. 1993, 7: 351-357.CrossRefPubMed Taylor CE, Touré YT, Coluzzi M, Petrarca V: Effective population size and persistence of Anopheles arabiensis during the dry season in west Africa. Med Vet Entomol. 1993, 7: 351-357.CrossRefPubMed
7.
go back to reference Charlwood JD, Vij R, Billingsley PF: Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of east Africa. Am J Trop Med Hyg. 2000, 62: 726-732.PubMed Charlwood JD, Vij R, Billingsley PF: Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of east Africa. Am J Trop Med Hyg. 2000, 62: 726-732.PubMed
8.
go back to reference Minakawa N, Githure JI, Beier JC, Yan G: Anopheline mosquito survival strategies during the dry period in western Kenya. J Med Entomol. 2001, 38: 388-392.CrossRefPubMed Minakawa N, Githure JI, Beier JC, Yan G: Anopheline mosquito survival strategies during the dry period in western Kenya. J Med Entomol. 2001, 38: 388-392.CrossRefPubMed
9.
go back to reference Charlwood JD, Kihonda J, Sama S, Billingsley PF, Hadji H, Verhave JP, Lyimo E, Luttikhuizen PC, Smith T: The rise and fall of Anopheles arabiensis (Diptera: Culicidae) in a Tanzanian village. Bull Entomol Res. 1995, 85: 37-44.CrossRef Charlwood JD, Kihonda J, Sama S, Billingsley PF, Hadji H, Verhave JP, Lyimo E, Luttikhuizen PC, Smith T: The rise and fall of Anopheles arabiensis (Diptera: Culicidae) in a Tanzanian village. Bull Entomol Res. 1995, 85: 37-44.CrossRef
10.
go back to reference Giglioli MEC: Oviposition by Anopheles melas and its effect on egg survival during the dry season in the Gambia, West Africa. Ann Entomol Soc Am. 1965, 58: 885-891.CrossRefPubMed Giglioli MEC: Oviposition by Anopheles melas and its effect on egg survival during the dry season in the Gambia, West Africa. Ann Entomol Soc Am. 1965, 58: 885-891.CrossRefPubMed
11.
go back to reference Beier JC, Copeland R, Oyaro C, Masinya A, Odago WO, Oduor S, Koech DK, Roberts CR: Anopheles gambiae complex egg-stage survival in dry soil from larval development sites in western Kenya. J Am Mosq Assoc. 1990, 6: 105-109. Beier JC, Copeland R, Oyaro C, Masinya A, Odago WO, Oduor S, Koech DK, Roberts CR: Anopheles gambiae complex egg-stage survival in dry soil from larval development sites in western Kenya. J Am Mosq Assoc. 1990, 6: 105-109.
12.
go back to reference Holstein MH: Biology of Anopheles gambiae – Research in French West Africa. 1954, Geneva: World Health Organization Holstein MH: Biology of Anopheles gambiae – Research in French West Africa. 1954, Geneva: World Health Organization
13.
go back to reference Muirhead-Thomson RC: Studies on the breeding places and control of Anopheles gambiae and A. gambiae var. melas in coastal districts of Sierra Leone. Bull Entomol Res. 1945, 36: 185-252.CrossRef Muirhead-Thomson RC: Studies on the breeding places and control of Anopheles gambiae and A. gambiae var. melas in coastal districts of Sierra Leone. Bull Entomol Res. 1945, 36: 185-252.CrossRef
14.
15.
go back to reference Rajapaksa N: Field and laboratory observations in Sabah, East Malaysia on the proportion of Anopheles balabecensis balabacensis eggs hatching after holding in a humid atmosphere. Bull World Health Organ. 1971, 45: 263-265.PubMedCentralPubMed Rajapaksa N: Field and laboratory observations in Sabah, East Malaysia on the proportion of Anopheles balabecensis balabacensis eggs hatching after holding in a humid atmosphere. Bull World Health Organ. 1971, 45: 263-265.PubMedCentralPubMed
16.
go back to reference Roberts D: Mosquitoes (Diptera:Culicidae) breeding in brackish water: female ovipositional preferences or larval survival?. J Med Entomol. 1996, 33: 525-530.CrossRefPubMed Roberts D: Mosquitoes (Diptera:Culicidae) breeding in brackish water: female ovipositional preferences or larval survival?. J Med Entomol. 1996, 33: 525-530.CrossRefPubMed
17.
go back to reference Sokal RR, Rohlf FJ: Biometry – The principles and practice of statistics in biological research. 1995, New York: W.H. Freeman and Company, 3 Sokal RR, Rohlf FJ: Biometry – The principles and practice of statistics in biological research. 1995, New York: W.H. Freeman and Company, 3
18.
go back to reference Takken W, Knols BGJ: Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999, 44: 131-157. 10.1146/annurev.ento.44.1.131.CrossRefPubMed Takken W, Knols BGJ: Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999, 44: 131-157. 10.1146/annurev.ento.44.1.131.CrossRefPubMed
19.
go back to reference Blackwell A, Johnson SN: Electrophysiological investigation of larval water and potential oviposition chemo-attractants for Anopheles gambiae s.s. Ann Trop Med Parasitol. 2000, 94: 389-398.PubMed Blackwell A, Johnson SN: Electrophysiological investigation of larval water and potential oviposition chemo-attractants for Anopheles gambiae s.s. Ann Trop Med Parasitol. 2000, 94: 389-398.PubMed
20.
go back to reference Wilkinson RN, Gould DJ, Boonyakanist P, Segal HE: Observations on Anopheles balabacensis (Diptera: Culicidae) in Thailand. J Med Entomol. 1978, 14: 666-671.CrossRef Wilkinson RN, Gould DJ, Boonyakanist P, Segal HE: Observations on Anopheles balabacensis (Diptera: Culicidae) in Thailand. J Med Entomol. 1978, 14: 666-671.CrossRef
21.
go back to reference Breeland SG, Pletsch DJ, Quarterman KD: Laboratory studies on the suitability of mud as an oviposition substrate for Anopheles albimanus Wiedemann. Mosq News. 1970, 30: 81-88. Breeland SG, Pletsch DJ, Quarterman KD: Laboratory studies on the suitability of mud as an oviposition substrate for Anopheles albimanus Wiedemann. Mosq News. 1970, 30: 81-88.
22.
go back to reference Service MW: Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying. J Med Ent. 1977, 13: 535-545.CrossRef Service MW: Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying. J Med Ent. 1977, 13: 535-545.CrossRef
23.
go back to reference Service MW: Mortalities of the larvae of the Anopheles gambiae Giles complex and detection of predators by the precipitin test. Bull Entomol Res. 1973, 62: 359-369.CrossRef Service MW: Mortalities of the larvae of the Anopheles gambiae Giles complex and detection of predators by the precipitin test. Bull Entomol Res. 1973, 62: 359-369.CrossRef
24.
go back to reference Sota T, Mogi M: Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia. 1992, 90: 353-358.CrossRef Sota T, Mogi M: Interspecific variation in desiccation survival time of Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecologia. 1992, 90: 353-358.CrossRef
25.
go back to reference Hinton HE: Cryptobiosis in the larva of Polypedilum vanderplanki Hint. (Chironomidae). J Ins Physiol. 1960, 5: 286-300. 10.1016/0022-1910(60)90011-1.CrossRef Hinton HE: Cryptobiosis in the larva of Polypedilum vanderplanki Hint. (Chironomidae). J Ins Physiol. 1960, 5: 286-300. 10.1016/0022-1910(60)90011-1.CrossRef
26.
go back to reference WHO: Global fund to fight AIDS, tuberculosis and malaria – The global malaria situation: current tools for prevention and control. A55/INF.DOC./6. WHO: Global fund to fight AIDS, tuberculosis and malaria – The global malaria situation: current tools for prevention and control. A55/INF.DOC./6.
27.
go back to reference Majori G, Ali A, Sabatinelli G: Laboratory and field efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus against Anopheles gambiae s.l. and Culex quinquefasciatus in Ouagadougou, Burkina Faso. J Am Mosq Control Assoc. 1987, 3: 20-25.PubMed Majori G, Ali A, Sabatinelli G: Laboratory and field efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus against Anopheles gambiae s.l. and Culex quinquefasciatus in Ouagadougou, Burkina Faso. J Am Mosq Control Assoc. 1987, 3: 20-25.PubMed
28.
go back to reference Barbazan P, Baldet T, Darriet F, Escaffre H, Djoda DH, Hougard JM: Impact of treatments with Bacillus sphaericus on Anopheles populations and the transmission of malaria in Maroua, a large city in a savannah region of Cameroon. J Am Mosq Control Assoc. 1998, 14: 33-39.PubMed Barbazan P, Baldet T, Darriet F, Escaffre H, Djoda DH, Hougard JM: Impact of treatments with Bacillus sphaericus on Anopheles populations and the transmission of malaria in Maroua, a large city in a savannah region of Cameroon. J Am Mosq Control Assoc. 1998, 14: 33-39.PubMed
29.
go back to reference Fillinger U, Knols BGJ, Becker N: Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Intl Hlth. 2003, 8: 37-47. 10.1046/j.1365-3156.2003.00979.x.CrossRef Fillinger U, Knols BGJ, Becker N: Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Intl Hlth. 2003, 8: 37-47. 10.1046/j.1365-3156.2003.00979.x.CrossRef
30.
go back to reference Killeen GF, Fillinger U, Knols BGJ: Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malaria J. 2002, 1: 8-10.1186/1475-2875-1-8.CrossRef Killeen GF, Fillinger U, Knols BGJ: Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malaria J. 2002, 1: 8-10.1186/1475-2875-1-8.CrossRef
31.
go back to reference Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BGJ: Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa?. The Lancet Infectious Diseases. 2002, 2: 618-627. 10.1016/S1473-3099(02)00397-3.CrossRefPubMed Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BGJ: Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa?. The Lancet Infectious Diseases. 2002, 2: 618-627. 10.1016/S1473-3099(02)00397-3.CrossRefPubMed
32.
go back to reference Ijumba JN, Lindsay SW: Impact of irrigation on malaria in Africa: paddies paradox. Med Vet Entomol. 2001, 15: 1-11. 10.1046/j.1365-2915.2001.00279.x.CrossRefPubMed Ijumba JN, Lindsay SW: Impact of irrigation on malaria in Africa: paddies paradox. Med Vet Entomol. 2001, 15: 1-11. 10.1046/j.1365-2915.2001.00279.x.CrossRefPubMed
33.
go back to reference Keiser J, Utzinger J, Singer BH: The potential of intermittent irrigation for increasing rice yields, lowering water consumption, reducing methane emissions, and controlling malaria in African rice fields. J Am Mosq Control Assoc. 2002, 18: 329-340.PubMed Keiser J, Utzinger J, Singer BH: The potential of intermittent irrigation for increasing rice yields, lowering water consumption, reducing methane emissions, and controlling malaria in African rice fields. J Am Mosq Control Assoc. 2002, 18: 329-340.PubMed
34.
go back to reference Klinkenberg E, Takken W, Huibers F, Touré YT: The phenology of malaria mosquitoes in irrigated rice fields in Mali. Acta Trop. 2003, 85: 71-82. 10.1016/S0001-706X(02)00254-1.CrossRefPubMed Klinkenberg E, Takken W, Huibers F, Touré YT: The phenology of malaria mosquitoes in irrigated rice fields in Mali. Acta Trop. 2003, 85: 71-82. 10.1016/S0001-706X(02)00254-1.CrossRefPubMed
35.
go back to reference Mutero CM, Blank H, Konradsen F, Hoek Wvd: Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya. Acta Trop. 2000, 76: 253-263. 10.1016/S0001-706X(00)00109-1.CrossRefPubMed Mutero CM, Blank H, Konradsen F, Hoek Wvd: Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya. Acta Trop. 2000, 76: 253-263. 10.1016/S0001-706X(00)00109-1.CrossRefPubMed
Metadata
Title
Egg hatching, larval movement and larval survival of the malaria vector Anopheles gambiae in desiccating habitats
Authors
Constantianus JM Koenraadt
Krijn P Paaijmans
Andrew K Githeko
Bart GJ Knols
Willem Takken
Publication date
01-12-2003
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2003
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-2-20

Other articles of this Issue 1/2003

Malaria Journal 1/2003 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.