Skip to main content
Top
Published in: Malaria Journal 1/2013

Open Access 01-12-2013 | Research

Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool

Authors: SM Niaz Arifin, Gregory R Madey, Frank H Collins

Published in: Malaria Journal | Issue 1/2013

Login to get access

Abstract

Background

Agent-based models (ABMs) have been used to estimate the effects of malaria-control interventions. Early studies have shown the efficacy of larval source management (LSM) and insecticide-treated nets (ITNs) as vector-control interventions, applied both in isolation and in combination. However, the robustness of results can be affected by several important modelling assumptions, including the type of boundary used for landscapes, and the number of replicated simulation runs reported in results. Selection of the ITN coverage definition may also affect the predictive findings. Hence, by replication, independent verification of prior findings of published models bears special importance.

Methods

A spatially-explicit entomological ABM of Anopheles gambiae is used to simulate the resource-seeking process of mosquitoes in grid-based landscapes. To explore LSM and replicate results of an earlier LSM study, the original landscapes and scenarios are replicated by using a landscape generator tool, and 1,800 replicated simulations are run using absorbing and non-absorbing boundaries. To explore ITNs and evaluate the relative impacts of the different ITN coverage schemes, the settings of an earlier ITN study are replicated, the coverage schemes are defined and simulated, and 9,000 replicated simulations for three ITN parameters (coverage, repellence and mortality) are run. To evaluate LSM and ITNs in combination, landscapes with varying densities of houses and human populations are generated, and 12,000 simulations are run.

Results

General agreement with an earlier LSM study is observed when an absorbing boundary is used. However, using a non-absorbing boundary produces significantly different results, which may be attributed to the unrealistic killing effect of an absorbing boundary. Abundance cannot be completely suppressed by removing aquatic habitats within 300 m of houses. Also, with density-dependent oviposition, removal of insufficient number of aquatic habitats may prove counter-productive. The importance of performing large number of simulation runs is also demonstrated. For ITNs, the choice of coverage scheme has important implications, and too high repellence yields detrimental effects. When LSM and ITNs are applied in combination, ITNs’ mortality can play more important roles with higher densities of houses. With partial mortality, increasing ITN coverage is more effective than increasing LSM coverage, and integrating both interventions yields more synergy as the densities of houses increase.

Conclusions

Using a non-absorbing boundary and reporting average results from sufficiently large number of simulation runs are strongly recommended for malaria ABMs. Several guidelines (code and data sharing, relevant documentation, and standardized models) for future modellers are also recommended.
Appendix
Available only for authorised users
Literature
1.
go back to reference Slutsker L, Newman RD: Malaria scale-up progress: is the glass half-empty or half-full?. Lancet. 2009, 373: 11-13. 10.1016/S0140-6736(08)61597-4.CrossRefPubMed Slutsker L, Newman RD: Malaria scale-up progress: is the glass half-empty or half-full?. Lancet. 2009, 373: 11-13. 10.1016/S0140-6736(08)61597-4.CrossRefPubMed
2.
go back to reference Yakob L, Yan G: Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control. PLoS One. 2009, 4: e6921-10.1371/journal.pone.0006921.PubMedCentralCrossRefPubMed Yakob L, Yan G: Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control. PLoS One. 2009, 4: e6921-10.1371/journal.pone.0006921.PubMedCentralCrossRefPubMed
3.
go back to reference Ross R: The prevention of malaria. 1910, New York: E.P. Dutton & company Ross R: The prevention of malaria. 1910, New York: E.P. Dutton & company
4.
go back to reference Macdonald G: The epidemiology and control of malaria. 1957, London, New York: Oxford University Press Macdonald G: The epidemiology and control of malaria. 1957, London, New York: Oxford University Press
7.
go back to reference Depinay JM, Mbogo C, Killeen G, Knols B, Beier J, Carlson J, Dushoff J, Billingsley P, Mwambi H, Githure J, Toure A, Ellis McKenzie F: A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004, 3: 29-10.1186/1475-2875-3-29.PubMedCentralCrossRefPubMed Depinay JM, Mbogo C, Killeen G, Knols B, Beier J, Carlson J, Dushoff J, Billingsley P, Mwambi H, Githure J, Toure A, Ellis McKenzie F: A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J. 2004, 3: 29-10.1186/1475-2875-3-29.PubMedCentralCrossRefPubMed
8.
go back to reference Chitnis N, Schapira A, Smith T, Steketee R: Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg. 2010, 83: 230-240. 10.4269/ajtmh.2010.09-0179.PubMedCentralCrossRefPubMed Chitnis N, Schapira A, Smith T, Steketee R: Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg. 2010, 83: 230-240. 10.4269/ajtmh.2010.09-0179.PubMedCentralCrossRefPubMed
9.
go back to reference Chitnis N, Hardy D, Smith T: A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes. Bull Math Biol. 2012, 74: 1098-1124. 10.1007/s11538-011-9710-0.PubMedCentralCrossRefPubMed Chitnis N, Hardy D, Smith T: A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes. Bull Math Biol. 2012, 74: 1098-1124. 10.1007/s11538-011-9710-0.PubMedCentralCrossRefPubMed
10.
go back to reference Gu W, Novak RJ: Agent-based modelling of mosquito foraging behaviour for malaria control. Trans R Soc Trop Med Hyg. 2009, 103: 1105-1112. 10.1016/j.trstmh.2009.01.006.PubMedCentralCrossRefPubMed Gu W, Novak RJ: Agent-based modelling of mosquito foraging behaviour for malaria control. Trans R Soc Trop Med Hyg. 2009, 103: 1105-1112. 10.1016/j.trstmh.2009.01.006.PubMedCentralCrossRefPubMed
11.
go back to reference Gu W, Novak RJ: Predicting the impact of insecticide-treated bed nets on malaria transmission: the devil is in the detail. Malar J. 2009, 8: 256-10.1186/1475-2875-8-256.PubMedCentralCrossRefPubMed Gu W, Novak RJ: Predicting the impact of insecticide-treated bed nets on malaria transmission: the devil is in the detail. Malar J. 2009, 8: 256-10.1186/1475-2875-8-256.PubMedCentralCrossRefPubMed
13.
go back to reference Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, Bousema T, Drakeley CJ, Ferguson NM, Basáñez MG, Ghani AC: Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010, 7: e1000324-10.1371/journal.pmed.1000324.PubMedCentralCrossRefPubMed Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, Bousema T, Drakeley CJ, Ferguson NM, Basáñez MG, Ghani AC: Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010, 7: e1000324-10.1371/journal.pmed.1000324.PubMedCentralCrossRefPubMed
14.
go back to reference Killeen GF, McKenzie FE, Foy BD, Bøgh C, Beier JC: The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by African mosquito populations. Trans R Soc Trop Med Hyg. 2001, 95: 469-476. 10.1016/S0035-9203(01)90005-7.PubMedCentralCrossRefPubMed Killeen GF, McKenzie FE, Foy BD, Bøgh C, Beier JC: The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by African mosquito populations. Trans R Soc Trop Med Hyg. 2001, 95: 469-476. 10.1016/S0035-9203(01)90005-7.PubMedCentralCrossRefPubMed
15.
go back to reference Le Menach A, McKenzie FE, Flahault A, Smith DL: The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission. Malar J. 2005, 4: 23-10.1186/1475-2875-4-23.CrossRefPubMed Le Menach A, McKenzie FE, Flahault A, Smith DL: The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission. Malar J. 2005, 4: 23-10.1186/1475-2875-4-23.CrossRefPubMed
16.
go back to reference Carter R, Mendis KN, Roberts D: Spatial targeting of interventions against malaria. Bull World Health Organ. 2000, 78: 1401-1411.PubMedCentralPubMed Carter R, Mendis KN, Roberts D: Spatial targeting of interventions against malaria. Bull World Health Organ. 2000, 78: 1401-1411.PubMedCentralPubMed
17.
go back to reference Gu W, Utzinger J, Novak RJ: Habitat-based larval interventions: a new perspective for malaria control. Am J Trop Med Hyg. 2008, 78: 2-6.PubMed Gu W, Utzinger J, Novak RJ: Habitat-based larval interventions: a new perspective for malaria control. Am J Trop Med Hyg. 2008, 78: 2-6.PubMed
18.
go back to reference Zhou Y, Arifin SMN, Gentile J, Kurtz SJ, Davis GJ, Wendelberger BA: An agent-based model of the Anopheles gambiae mosquito life cycle. Summer Simulation Multiconference. 2010, Ottawa, Ontario, Canada: Society for Computer Simulation International, 201-208. Zhou Y, Arifin SMN, Gentile J, Kurtz SJ, Davis GJ, Wendelberger BA: An agent-based model of the Anopheles gambiae mosquito life cycle. Summer Simulation Multiconference. 2010, Ottawa, Ontario, Canada: Society for Computer Simulation International, 201-208.
19.
go back to reference Arifin SMN, Davis GJ, Zhou Y: A spatial agent-based model of malaria: model verification and effects of spatial heterogeneity. International Journal of Agent Technologies and Systems. 2011, 3: 17-34.CrossRef Arifin SMN, Davis GJ, Zhou Y: A spatial agent-based model of malaria: model verification and effects of spatial heterogeneity. International Journal of Agent Technologies and Systems. 2011, 3: 17-34.CrossRef
20.
go back to reference Arifin SMN, Davis GJ, Zhou Y: Modeling space in an agent-based model of malaria: comparison between non-spatial and spatial models. Proceedings of the 2011 Workshop on Agent-Directed Simulation. 2011, San Diego, CA, USA: Society for Computer Simulation International, 92-99. Arifin SMN, Davis GJ, Zhou Y: Modeling space in an agent-based model of malaria: comparison between non-spatial and spatial models. Proceedings of the 2011 Workshop on Agent-Directed Simulation. 2011, San Diego, CA, USA: Society for Computer Simulation International, 92-99.
21.
go back to reference Kelly DW, Thompson CE: Epidemiology and optimal foraging: modelling the ideal free distribution of insect vectors. Parasitology. 2000, 120: 319-327. 10.1017/S0031182099005442.CrossRefPubMed Kelly DW, Thompson CE: Epidemiology and optimal foraging: modelling the ideal free distribution of insect vectors. Parasitology. 2000, 120: 319-327. 10.1017/S0031182099005442.CrossRefPubMed
22.
go back to reference Saul A: Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J. 2003, 2: 32-10.1186/1475-2875-2-32.PubMedCentralCrossRefPubMed Saul A: Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J. 2003, 2: 32-10.1186/1475-2875-2-32.PubMedCentralCrossRefPubMed
23.
go back to reference Killeen GF, Seyoum A, Knols BG: Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg. 2004, 71 (Suppl 2): 87-93.PubMed Killeen GF, Seyoum A, Knols BG: Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management. Am J Trop Med Hyg. 2004, 71 (Suppl 2): 87-93.PubMed
24.
go back to reference Fillinger U, Ndenga B, Githeko A, Lindsay S: Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009, 87: 655-665. 10.2471/BLT.08.055632.PubMedCentralCrossRefPubMed Fillinger U, Ndenga B, Githeko A, Lindsay S: Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ. 2009, 87: 655-665. 10.2471/BLT.08.055632.PubMedCentralCrossRefPubMed
25.
26.
go back to reference Worrall E, Fillinger U: Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis. Malar J. 2011, 10: 338-10.1186/1475-2875-10-338.PubMedCentralCrossRefPubMed Worrall E, Fillinger U: Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis. Malar J. 2011, 10: 338-10.1186/1475-2875-10-338.PubMedCentralCrossRefPubMed
27.
go back to reference malERA Consultative Group on Vector Control: A research agenda for malaria eradication: vector control. PLoS Med. 2011, 8: e1000401-CrossRef malERA Consultative Group on Vector Control: A research agenda for malaria eradication: vector control. PLoS Med. 2011, 8: e1000401-CrossRef
28.
go back to reference Hawley WA, Ter Kuile FO, Steketee RS, Nahlen BL, Terlouw DJ, Gimnig JE, Shi YP, Vulule JM, Alaii JA, Hightower AW, Kolczak MS, Kariuki SK, Phillips-howard PA: Implications of the western Kenya permethrin-treated bed net study for policy, program implementation, and future research. Am J Trop Med Hyg. 2003, 68 (Suppl 4): 168-173.PubMed Hawley WA, Ter Kuile FO, Steketee RS, Nahlen BL, Terlouw DJ, Gimnig JE, Shi YP, Vulule JM, Alaii JA, Hightower AW, Kolczak MS, Kariuki SK, Phillips-howard PA: Implications of the western Kenya permethrin-treated bed net study for policy, program implementation, and future research. Am J Trop Med Hyg. 2003, 68 (Suppl 4): 168-173.PubMed
30.
go back to reference Killeen GF, Smith TA, Ferguson HM, Mshinda H, Abdulla S, Lengeler C, Kachur SP: Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLoS Med. 2007, 4: e229-10.1371/journal.pmed.0040229.PubMedCentralCrossRefPubMed Killeen GF, Smith TA, Ferguson HM, Mshinda H, Abdulla S, Lengeler C, Kachur SP: Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLoS Med. 2007, 4: e229-10.1371/journal.pmed.0040229.PubMedCentralCrossRefPubMed
31.
go back to reference Le Menach A, Takala S, McKenzie F, Perisse A, Harris A, Flahault A, Smith D: An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J. 2007, 6: 10-10.1186/1475-2875-6-10.PubMedCentralCrossRefPubMed Le Menach A, Takala S, McKenzie F, Perisse A, Harris A, Flahault A, Smith D: An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J. 2007, 6: 10-10.1186/1475-2875-6-10.PubMedCentralCrossRefPubMed
32.
go back to reference Gillies MT: Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bull Entomol Res. 1961, 52: 99-127. 10.1017/S0007485300055309.CrossRef Gillies MT: Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bull Entomol Res. 1961, 52: 99-127. 10.1017/S0007485300055309.CrossRef
33.
go back to reference Gillies M, Wilkes T: The range of attraction of single baits for some West African mosquitoes. Bull Entomol Res. 1970, 60: 225-235. 10.1017/S000748530004075X.CrossRefPubMed Gillies M, Wilkes T: The range of attraction of single baits for some West African mosquitoes. Bull Entomol Res. 1970, 60: 225-235. 10.1017/S000748530004075X.CrossRefPubMed
34.
go back to reference Gillies M, Wilkes T: The range of attraction of animal baits and carbon dioxide for mosquitoes. Bull Entomol Res. 1972, 61: 389-404. 10.1017/S0007485300047295.CrossRef Gillies M, Wilkes T: The range of attraction of animal baits and carbon dioxide for mosquitoes. Bull Entomol Res. 1972, 61: 389-404. 10.1017/S0007485300047295.CrossRef
35.
go back to reference Gillies M, Wilkes T: The range of attraction of birds as baits for some West African mosquitoes. Bull Entomol Res. 1974, 63: 573-581. 10.1017/S0007485300047817.CrossRef Gillies M, Wilkes T: The range of attraction of birds as baits for some West African mosquitoes. Bull Entomol Res. 1974, 63: 573-581. 10.1017/S0007485300047817.CrossRef
36.
go back to reference Midega J, Mbogo C, Mwnambi H, Wilson M, Ojwang G, Mwangangi J, Nzovu J, Githure J, Yan G, Beier J: Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods. J Med Entomol. 2007, 44: 923-929. 10.1603/0022-2585(2007)44[923:EDASOA]2.0.CO;2.PubMedCentralCrossRefPubMed Midega J, Mbogo C, Mwnambi H, Wilson M, Ojwang G, Mwangangi J, Nzovu J, Githure J, Yan G, Beier J: Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods. J Med Entomol. 2007, 44: 923-929. 10.1603/0022-2585(2007)44[923:EDASOA]2.0.CO;2.PubMedCentralCrossRefPubMed
38.
go back to reference Jasny BR, Chin G, Chong L, Vignieri S: Again, and again, and again. Science. 2011, 334: 1225-10.1126/science.334.6060.1225.CrossRefPubMed Jasny BR, Chin G, Chong L, Vignieri S: Again, and again, and again. Science. 2011, 334: 1225-10.1126/science.334.6060.1225.CrossRefPubMed
39.
go back to reference Santer BD, Wigley TML, Taylor KE: The Reproducibility of observational estimates of surface and atmospheric temperature change. Science. 2011, 334: 1232-1233. 10.1126/science.1216273.CrossRefPubMed Santer BD, Wigley TML, Taylor KE: The Reproducibility of observational estimates of surface and atmospheric temperature change. Science. 2011, 334: 1232-1233. 10.1126/science.1216273.CrossRefPubMed
41.
go back to reference Kennedy RC, Xiang X, Cosimano TF, Arthurs LA, Maurice PA, Madey GR, Cabaniss SE: Verification and validation of agent-based and equation-based simulations: a comparison. Agent-Directed Simulation Conference. 2006, Huntsville, AL, USA: The Society for Modeling and Simulation International Kennedy RC, Xiang X, Cosimano TF, Arthurs LA, Maurice PA, Madey GR, Cabaniss SE: Verification and validation of agent-based and equation-based simulations: a comparison. Agent-Directed Simulation Conference. 2006, Huntsville, AL, USA: The Society for Modeling and Simulation International
42.
go back to reference Xiang X, Kennedy R, Madey GR: Verification and validation of agent-based scientific simulation models. Agent-Directed Simulation Conference. 2005, San Diego, CA, USA: The Society for Modeling and Simulation International, 47-55. Xiang X, Kennedy R, Madey GR: Verification and validation of agent-based scientific simulation models. Agent-Directed Simulation Conference. 2005, San Diego, CA, USA: The Society for Modeling and Simulation International, 47-55.
43.
go back to reference Cassettari L, Mosca R, Revetria R: Monte Carlo simulation models evolving in replicated runs: a methodology to choose the optimal experimental sample size. Math Probl Eng. 2012, 463873: Cassettari L, Mosca R, Revetria R: Monte Carlo simulation models evolving in replicated runs: a methodology to choose the optimal experimental sample size. Math Probl Eng. 2012, 463873:
44.
go back to reference Chiabaut N, Buisson C: Replications in stochastic traffic flow models: incremental method to determine sufficient number of runs. Traffic and Granular Flow ’07. Part I. Edited by: Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque J, Schreckenberg M. 2009, Berlin Heidelberg: Springer, 35-44.CrossRef Chiabaut N, Buisson C: Replications in stochastic traffic flow models: incremental method to determine sufficient number of runs. Traffic and Granular Flow ’07. Part I. Edited by: Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque J, Schreckenberg M. 2009, Berlin Heidelberg: Springer, 35-44.CrossRef
45.
go back to reference Partnership RBM: Roll Back Malaria Working Group (2009) Guidelines for Core Population Indicators. 2009, Geneva: WHO, [Technical Paper - RBM/WG/2009/TP] Partnership RBM: Roll Back Malaria Working Group (2009) Guidelines for Core Population Indicators. 2009, Geneva: WHO, [Technical Paper - RBM/WG/2009/TP]
46.
go back to reference World Health Organization: World Malaria Report. 2009, Geneva, Switzerland: WHO World Health Organization: World Malaria Report. 2009, Geneva, Switzerland: WHO
47.
go back to reference World Health Organization: Insecticide-treated mosquito nets: a position statement. 2007, Geneva, Switzerland: WHO World Health Organization: Insecticide-treated mosquito nets: a position statement. 2007, Geneva, Switzerland: WHO
48.
go back to reference Killeen GF, Smith TA: Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg. 2007, 101: 867-880. 10.1016/j.trstmh.2007.04.022.PubMedCentralCrossRefPubMed Killeen GF, Smith TA: Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg. 2007, 101: 867-880. 10.1016/j.trstmh.2007.04.022.PubMedCentralCrossRefPubMed
49.
go back to reference Smith DL, Hay SI, Noor AM, Snow RW: Predicting changing malaria risk after expanded insecticide-treated net coverage in Africa. Trends Parasitol. 2009, 25: 511-516. 10.1016/j.pt.2009.08.002.PubMedCentralCrossRefPubMed Smith DL, Hay SI, Noor AM, Snow RW: Predicting changing malaria risk after expanded insecticide-treated net coverage in Africa. Trends Parasitol. 2009, 25: 511-516. 10.1016/j.pt.2009.08.002.PubMedCentralCrossRefPubMed
50.
go back to reference Mutero C, Schlodder D, Kabatereine N, Kramer R: Integrated vector management for malaria control in Uganda: knowledge, perceptions and policy development. Malar J. 2012, 11: 21-10.1186/1475-2875-11-21.PubMedCentralCrossRefPubMed Mutero C, Schlodder D, Kabatereine N, Kramer R: Integrated vector management for malaria control in Uganda: knowledge, perceptions and policy development. Malar J. 2012, 11: 21-10.1186/1475-2875-11-21.PubMedCentralCrossRefPubMed
51.
go back to reference Okumu F, Chipwaza B, Madumla E, Mbeyela E, Lingamba G, Moore J, Ntamatungro A, Kavishe D, Moore S: Implications of bio-efficacy and persistence of insecticides when indoor residual spraying and long-lasting insecticide nets are combined for malaria prevention. Malar J. 2012, 11: 378-10.1186/1475-2875-11-378.PubMedCentralCrossRefPubMed Okumu F, Chipwaza B, Madumla E, Mbeyela E, Lingamba G, Moore J, Ntamatungro A, Kavishe D, Moore S: Implications of bio-efficacy and persistence of insecticides when indoor residual spraying and long-lasting insecticide nets are combined for malaria prevention. Malar J. 2012, 11: 378-10.1186/1475-2875-11-378.PubMedCentralCrossRefPubMed
52.
go back to reference White M, Griffin J, Churcher T, Ferguson N, Basanez MG, Ghani A: Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011, 4: 153-10.1186/1756-3305-4-153.PubMedCentralCrossRefPubMed White M, Griffin J, Churcher T, Ferguson N, Basanez MG, Ghani A: Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011, 4: 153-10.1186/1756-3305-4-153.PubMedCentralCrossRefPubMed
53.
go back to reference Kleinschmidt I, Schwabe C, Shiva M, Segura JL, Sima V, Mabunda SJA, Coleman M: Combining indoor residual spraying and insecticide-treated net interventions. Am J Trop Med Hyg. 2009, 81: 519-524.PubMedCentralPubMed Kleinschmidt I, Schwabe C, Shiva M, Segura JL, Sima V, Mabunda SJA, Coleman M: Combining indoor residual spraying and insecticide-treated net interventions. Am J Trop Med Hyg. 2009, 81: 519-524.PubMedCentralPubMed
55.
go back to reference Peng RD: Reproducible research and Biostatistics. Biostatistics. 2009, 10: 405-408. 10.1093/biostatistics/kxp014.CrossRefPubMed Peng RD: Reproducible research and Biostatistics. Biostatistics. 2009, 10: 405-408. 10.1093/biostatistics/kxp014.CrossRefPubMed
Metadata
Title
Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool
Authors
SM Niaz Arifin
Gregory R Madey
Frank H Collins
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2013
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-12-290

Other articles of this Issue 1/2013

Malaria Journal 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.