Skip to main content
Top
Published in: Malaria Journal 1/2011

Open Access 01-12-2011 | Methodology

A real-time, quantitative PCR method using hydrolysis probes for the monitoring of Plasmodium falciparum load in experimentally infected human volunteers

Authors: Rebecca J Rockett, Sarah J Tozer, Chris Peatey, Seweryn Bialasiewicz, David M Whiley, Michael D Nissen, Katharine Trenholme, James S Mc Carthy, Theo P Sloots

Published in: Malaria Journal | Issue 1/2011

Login to get access

Abstract

Background

The accurate quantification of Plasmodium falciparum parasite numbers by PCR is an important tool for monitoring growth kinetics in subjects infected and subsequently treated with anti-malarial agents.

Methods

A real-time quantitative PCR (rt-qPCR) method using primers and a hydrolysis probe that targets the 18S rRNA gene was adapted and optimized to estimate parasite load in blood samples. Samples included laboratory prepared blood samples of varying parasite concentrations (6.4 × 105 to 6.4 parasites per 500 μl of packed red blood cells (500pRBC)) and blood samples collected from an experimentally infected human subject collected at 19 time points over 10 days. Sample preparation and extraction, detection chemistry, assay reproducibility, and limit of detection were compared to a previously published SYBR Green rt-qPCR used in a malaria vaccine clinical trial.

Results

Both the rt-qPCR hydrolysis probe assay and SYBR Green rt-qPCR provided a limit of detection of 6.4 × 101 parasites per 500pRBC. However non-specific amplification in the SYBR Green rt-qPCR assay led to either inaccurate estimation of parasite load at levels below 6.4 × 102 parasites per 500pRBC and to false-positive detection of parasites in negative samples. The rt-qPCR hydrolysis probe assay was specific and provided reliable quantification of parasitaemia down to 6.4 × 101 parasites per 500pRBC. Notably, 12 of the 19 consecutive samples collected from the experimentally infected subject were at or below 6.4 × 102 copies per 500pRBC.

Conclusions

These results show that the hydrolysis probe rt-qPCR assay is superior to the SYBR Green rt-qPCR for the quantification of P. falciparum in human blood samples. The hydrolysis probe rt-qPCR is now in use in the Queensland paediatric infectious diseases laboratory (QPID) to monitor parasitaemia in experimentally-infected clinical trial subjects.
Literature
3.
go back to reference Imoukhuede EB, Ventura R, Imbault N, van Schooten H, Leroy O: European Malaria Vaccine Initiative: portfolio and perspectives for the future. Human Vaccines. 2010, 6: 146-150. 10.4161/hv.6.1.9603.CrossRefPubMed Imoukhuede EB, Ventura R, Imbault N, van Schooten H, Leroy O: European Malaria Vaccine Initiative: portfolio and perspectives for the future. Human Vaccines. 2010, 6: 146-150. 10.4161/hv.6.1.9603.CrossRefPubMed
4.
go back to reference Nwakanma DC, Gomez-Escobar N, Walther M, Crozier S, Dubovsky F, Malkin E, Locke E, Conway DJ: Quantitative detection of Plasmodium falciparum DNA in saliva, blood, and urine. J Infect Dis. 2009, 199: 1567-1574. 10.1086/598856.CrossRefPubMed Nwakanma DC, Gomez-Escobar N, Walther M, Crozier S, Dubovsky F, Malkin E, Locke E, Conway DJ: Quantitative detection of Plasmodium falciparum DNA in saliva, blood, and urine. J Infect Dis. 2009, 199: 1567-1574. 10.1086/598856.CrossRefPubMed
5.
go back to reference Hermsen CC, Telgt DS, Linders EH, van de Locht LA, Eling WM, Mensink EJ, Sauerwein RW: Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol Biochem Parasitol. 2001, 118: 247-251. 10.1016/S0166-6851(01)00379-6.CrossRefPubMed Hermsen CC, Telgt DS, Linders EH, van de Locht LA, Eling WM, Mensink EJ, Sauerwein RW: Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol Biochem Parasitol. 2001, 118: 247-251. 10.1016/S0166-6851(01)00379-6.CrossRefPubMed
6.
go back to reference Andrews L, Andersen RF, Webster D, Dunachie S, Walther RM, Bejon P, Hunt-Cooke A, Bergson G, Sanderson F, Hill AV, Gilbert SC: Quantitative real-time polymerase chain reaction for malaria diagnosis and its use in malaria vaccine clinical trials. Am J Trop Med Hyg. 2005, 73: 191-198.PubMed Andrews L, Andersen RF, Webster D, Dunachie S, Walther RM, Bejon P, Hunt-Cooke A, Bergson G, Sanderson F, Hill AV, Gilbert SC: Quantitative real-time polymerase chain reaction for malaria diagnosis and its use in malaria vaccine clinical trials. Am J Trop Med Hyg. 2005, 73: 191-198.PubMed
7.
go back to reference Whiley DM, LeCornec GM, Baddeley A, Savill J, Syrmis MW, Mackay IM, Siebert DJ, Burns D, Nissen M, Sloots TP: Detection and differentiation of Plasmodium species by polymerase chain reaction and colorimetric detection in blood samples of patients with suspected malaria. Diagn Microbiol Infect Dis. 2004, 49: 25-29. 10.1016/j.diagmicrobio.2003.10.014.CrossRefPubMed Whiley DM, LeCornec GM, Baddeley A, Savill J, Syrmis MW, Mackay IM, Siebert DJ, Burns D, Nissen M, Sloots TP: Detection and differentiation of Plasmodium species by polymerase chain reaction and colorimetric detection in blood samples of patients with suspected malaria. Diagn Microbiol Infect Dis. 2004, 49: 25-29. 10.1016/j.diagmicrobio.2003.10.014.CrossRefPubMed
8.
go back to reference Trager W, Jensen JB: Human malaria parasites in continuous culture. Science. 1976, 193: 673-675. 10.1126/science.781840.CrossRefPubMed Trager W, Jensen JB: Human malaria parasites in continuous culture. Science. 1976, 193: 673-675. 10.1126/science.781840.CrossRefPubMed
9.
go back to reference Dixon MW, Peatey CL, Gardiner DL, Trenholme KR: A green fluorescent protein-based assay for determining gametocyte production in Plasmodium falciparum. Mol Biocheml Parasitol. 2009, 163: 123-126. 10.1016/j.molbiopara.2008.10.004.CrossRef Dixon MW, Peatey CL, Gardiner DL, Trenholme KR: A green fluorescent protein-based assay for determining gametocyte production in Plasmodium falciparum. Mol Biocheml Parasitol. 2009, 163: 123-126. 10.1016/j.molbiopara.2008.10.004.CrossRef
10.
go back to reference Bialasiewicz S, Whiley DM, Buhrer-Skinner M, Bautista C, Barker K, Aitken S, Gordon R, Muller R, Lambert SB, Debattista J, Nissen MD, Sloots TP: A novel gel-based method for self-collection and ambient temperature postal transport of urine for PCR detection of Chlamydia trachomatis. Sex Transm Infect. 2009, 85: 102-105. 10.1136/sti.2008.032607.CrossRefPubMed Bialasiewicz S, Whiley DM, Buhrer-Skinner M, Bautista C, Barker K, Aitken S, Gordon R, Muller R, Lambert SB, Debattista J, Nissen MD, Sloots TP: A novel gel-based method for self-collection and ambient temperature postal transport of urine for PCR detection of Chlamydia trachomatis. Sex Transm Infect. 2009, 85: 102-105. 10.1136/sti.2008.032607.CrossRefPubMed
Metadata
Title
A real-time, quantitative PCR method using hydrolysis probes for the monitoring of Plasmodium falciparum load in experimentally infected human volunteers
Authors
Rebecca J Rockett
Sarah J Tozer
Chris Peatey
Seweryn Bialasiewicz
David M Whiley
Michael D Nissen
Katharine Trenholme
James S Mc Carthy
Theo P Sloots
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2011
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-10-48

Other articles of this Issue 1/2011

Malaria Journal 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.