Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2012

Open Access 01-12-2012 | Original investigation

GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle

Authors: Lauren Aerni-Flessner, Melissa Abi-Jaoude, Amanda Koenig, Maria Payne, Paul W Hruz

Published in: Cardiovascular Diabetology | Issue 1/2012

Login to get access

Abstract

Background

The heart derives energy from a wide variety of substrates including fatty acids, carbohydrates, ketones, and amino acids. The healthy heart generates up to 30% of its ATP from glucose. Under conditions of cardiac injury or stress, the heart relies even more heavily on glucose as a source of fuel. Glucose is transported into the heart by members of the family of facilitative glucose transporters (GLUTs). While research examining the transport of glucose into the heart has primarily focused on the roles of the classical glucose transporters GLUT1 and GLUT4, little is known about the functions of more newly identified GLUT isoforms in the myocardium.

Methods

In this study the presence and relative RNA message abundance of each of the known GLUT isoforms was determined in left ventricular tissue from two commonly used inbred laboratory mouse strains (C57BL/6J and FVB/NJ) by quantitative real time PCR. Relative message abundance was also determined in GLUT4 null mice and in murine models of dilated and hypertrophic cardiomyopathy.

Results

GLUT4, GLUT1, and GLUT8 were found to be the most abundant GLUT transcripts in the normal heart, while GLUT3, GLUT10, and GLUT12 are present at relatively lower levels. Assessment of relative GLUT expression in left ventricular myocardium from mice with dilated cardiomyopathy revealed increased expression of GLUT1 with reduced levels of GLUT4, GLUT8, and GLUT12. Compensatory increase in the expression of GLUT12 was observed in genetically altered mice lacking GLUT4.

Conclusions

Glucose transporter expression varies significantly among murine models of cardiac dysfunction and involves several of the class III GLUT isoforms. Understanding how these more newly identified GLUT isoforms contribute to regulating myocardial glucose transport will enhance our comprehension of the normal physiology and pathophysiology of the heart.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kolwicz SC, Tian R: Metabolic therapy at the crossroad: how to optimize myocardial substrate utilization?. Trends Cardiovasc Med. 2009, 19 (6): 201-207. 10.1016/j.tcm.2009.12.005.PubMedCentralCrossRefPubMed Kolwicz SC, Tian R: Metabolic therapy at the crossroad: how to optimize myocardial substrate utilization?. Trends Cardiovasc Med. 2009, 19 (6): 201-207. 10.1016/j.tcm.2009.12.005.PubMedCentralCrossRefPubMed
2.
go back to reference Stanley WC, Recchia FA, Lopaschuk GD: Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005, 85 (3): 1093-1129. 10.1152/physrev.00006.2004.CrossRefPubMed Stanley WC, Recchia FA, Lopaschuk GD: Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005, 85 (3): 1093-1129. 10.1152/physrev.00006.2004.CrossRefPubMed
3.
go back to reference Ingwall JS, Weiss RG: Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004, 95 (2): 135-145. 10.1161/01.RES.0000137170.41939.d9.CrossRefPubMed Ingwall JS, Weiss RG: Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004, 95 (2): 135-145. 10.1161/01.RES.0000137170.41939.d9.CrossRefPubMed
4.
go back to reference Wood IS, Trayhurn P: Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. 2003, 89 (1): 3-9. 10.1079/BJN2002763.CrossRefPubMed Wood IS, Trayhurn P: Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. 2003, 89 (1): 3-9. 10.1079/BJN2002763.CrossRefPubMed
5.
6.
go back to reference Studelska DR, Campbell C, Pang S, Rodnick KJ, James DE: Developmental expression of insulin-regulatable glucose transporter GLUT-4. Am J Physiol. 1992, 263 (1 Pt 1): E102-E106.PubMed Studelska DR, Campbell C, Pang S, Rodnick KJ, James DE: Developmental expression of insulin-regulatable glucose transporter GLUT-4. Am J Physiol. 1992, 263 (1 Pt 1): E102-E106.PubMed
7.
go back to reference Smoak IW, Branch S: Glut-1 expression and its response to hypoglycemia in the embryonic mouse heart. Anat Embryol (Berl). 2000, 201 (5): 327-333. 10.1007/s004290050321.CrossRef Smoak IW, Branch S: Glut-1 expression and its response to hypoglycemia in the embryonic mouse heart. Anat Embryol (Berl). 2000, 201 (5): 327-333. 10.1007/s004290050321.CrossRef
8.
go back to reference Brosius FC, Schwaiger M, Bartlett J, Sun D, Nguyen N, Liu Y: Persistent myocardial ischemia increases GLUT1 glucose transporter expression in both ischemic and non-ischemic heart regions. J Mol Cell Cardiol. 1997, 29 (6): 1675-1685. 10.1006/jmcc.1997.0405.CrossRefPubMed Brosius FC, Schwaiger M, Bartlett J, Sun D, Nguyen N, Liu Y: Persistent myocardial ischemia increases GLUT1 glucose transporter expression in both ischemic and non-ischemic heart regions. J Mol Cell Cardiol. 1997, 29 (6): 1675-1685. 10.1006/jmcc.1997.0405.CrossRefPubMed
9.
go back to reference Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H: Metabolic gene expression in fetal and failing human heart. Circulation. 2001, 104 (24): 2923-2931. 10.1161/hc4901.100526.CrossRefPubMed Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H: Metabolic gene expression in fetal and failing human heart. Circulation. 2001, 104 (24): 2923-2931. 10.1161/hc4901.100526.CrossRefPubMed
11.
go back to reference Grover-McKay M, Walsh SA, Thompson SA: Glucose transporter 3 (GLUT3) protein is present in human myocardium. Biochim Biophys Acta. 1999, 1416 (1–2): 145-154.CrossRefPubMed Grover-McKay M, Walsh SA, Thompson SA: Glucose transporter 3 (GLUT3) protein is present in human myocardium. Biochim Biophys Acta. 1999, 1416 (1–2): 145-154.CrossRefPubMed
12.
go back to reference Doege H, Schurmann A, Bahrenberg G, Brauers A, Joost HG: GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem. 2000, 275 (21): 16275-16280. 10.1074/jbc.275.21.16275.CrossRefPubMed Doege H, Schurmann A, Bahrenberg G, Brauers A, Joost HG: GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem. 2000, 275 (21): 16275-16280. 10.1074/jbc.275.21.16275.CrossRefPubMed
13.
go back to reference Dawson PA, Mychaleckyj JC, Fossey SC, Mihic SJ, Craddock AL, Bowden DW: Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12–13.1. Mol Genet Metab. 2001, 74 (1–2): 186-199.CrossRefPubMed Dawson PA, Mychaleckyj JC, Fossey SC, Mihic SJ, Craddock AL, Bowden DW: Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12–13.1. Mol Genet Metab. 2001, 74 (1–2): 186-199.CrossRefPubMed
14.
go back to reference Macheda ML, Kelly DJ, Best JD, Rogers S: Expression during rat fetal development of GLUT12–a member of the class III hexose transporter family. Anat Embryol Berl. 2002, 205 (5–6): 441-452.CrossRefPubMed Macheda ML, Kelly DJ, Best JD, Rogers S: Expression during rat fetal development of GLUT12–a member of the class III hexose transporter family. Anat Embryol Berl. 2002, 205 (5–6): 441-452.CrossRefPubMed
15.
go back to reference Carayannopoulos MO, Chi MM, Cui Y, Pingsterhaus JM, McKnight RA, Mueckler M, Devaskar SU, Moley KH: GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A. 2000, 97 (13): 7313-7318. 10.1073/pnas.97.13.7313.PubMedCentralCrossRefPubMed Carayannopoulos MO, Chi MM, Cui Y, Pingsterhaus JM, McKnight RA, Mueckler M, Devaskar SU, Moley KH: GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A. 2000, 97 (13): 7313-7318. 10.1073/pnas.97.13.7313.PubMedCentralCrossRefPubMed
16.
go back to reference Purcell SH, Aerni-Flessner LB, Willcockson AR, Diggs-Andrews KA, Fisher SJ, Moley KH: Improved insulin sensitivity by GLUT12 overexpression in mice. Diabetes. 2011, 60 (5): 1478-1482. 10.2337/db11-0033.PubMedCentralCrossRefPubMed Purcell SH, Aerni-Flessner LB, Willcockson AR, Diggs-Andrews KA, Fisher SJ, Moley KH: Improved insulin sensitivity by GLUT12 overexpression in mice. Diabetes. 2011, 60 (5): 1478-1482. 10.2337/db11-0033.PubMedCentralCrossRefPubMed
17.
go back to reference Rogers JH, Tamirisa P, Kovacs A, Weinheimer C, Courtois M, Blumer KJ, Kelly DP, Muslin AJ: RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J Clin Invest. 1999, 104 (5): 567-576. 10.1172/JCI6713.PubMedCentralCrossRefPubMed Rogers JH, Tamirisa P, Kovacs A, Weinheimer C, Courtois M, Blumer KJ, Kelly DP, Muslin AJ: RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J Clin Invest. 1999, 104 (5): 567-576. 10.1172/JCI6713.PubMedCentralCrossRefPubMed
18.
go back to reference Frolova AI, Moley KH: Quantitative analysis of glucose transporter mRNAs in endometrial stromal cells reveals critical role of GLUT1 in uterine receptivity. Endocrinology. 2011, 152 (5): 2123-2128. 10.1210/en.2010-1266.PubMedCentralCrossRefPubMed Frolova AI, Moley KH: Quantitative analysis of glucose transporter mRNAs in endometrial stromal cells reveals critical role of GLUT1 in uterine receptivity. Endocrinology. 2011, 152 (5): 2123-2128. 10.1210/en.2010-1266.PubMedCentralCrossRefPubMed
19.
go back to reference Feldman A, Ray P, Silan C, Mercer J, Minobe W, Bristow M: Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation. 1991, 83 (6): 1866-1872. 10.1161/01.CIR.83.6.1866.CrossRefPubMed Feldman A, Ray P, Silan C, Mercer J, Minobe W, Bristow M: Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation. 1991, 83 (6): 1866-1872. 10.1161/01.CIR.83.6.1866.CrossRefPubMed
20.
go back to reference Ware B, Bevier M, Nishijima Y, Rogers S, Carnes CA, Lacombe VA: Chronic heart failure selectively induces regional heterogeneity of insulin-responsive glucose transporters. Am J Physiol Regul Integr Comp Physiol. 2011, 301 (5): R1300-R1306. 10.1152/ajpregu.00822.2010.PubMedCentralCrossRefPubMed Ware B, Bevier M, Nishijima Y, Rogers S, Carnes CA, Lacombe VA: Chronic heart failure selectively induces regional heterogeneity of insulin-responsive glucose transporters. Am J Physiol Regul Integr Comp Physiol. 2011, 301 (5): R1300-R1306. 10.1152/ajpregu.00822.2010.PubMedCentralCrossRefPubMed
21.
go back to reference Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ: Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature. 1995, 377 (6545): 151-155. 10.1038/377151a0.CrossRefPubMed Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ: Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature. 1995, 377 (6545): 151-155. 10.1038/377151a0.CrossRefPubMed
22.
go back to reference Stenbit AE, Katz EB, Chatham JC, Geenen DL, Factor SM, Weiss RG, Tsao TS, Malhotra A, Chacko VP, Ocampo C: Preservation of glucose metabolism in hypertrophic GLUT4-null hearts. Am J Physiol Heart Circ Physiol. 2000, 279 (1): H313-H318.PubMed Stenbit AE, Katz EB, Chatham JC, Geenen DL, Factor SM, Weiss RG, Tsao TS, Malhotra A, Chacko VP, Ocampo C: Preservation of glucose metabolism in hypertrophic GLUT4-null hearts. Am J Physiol Heart Circ Physiol. 2000, 279 (1): H313-H318.PubMed
23.
go back to reference Buerger A, Rozhitskaya O, Sherwood MC, Dorfman AL, Bisping E, Abel ED, Pu WT, Izumo S, Jay PY: Dilated cardiomyopathy resulting from high-level myocardial expression of Cre-recombinase. J Card Fail. 2006, 12 (5): 392-398. 10.1016/j.cardfail.2006.03.002.CrossRefPubMed Buerger A, Rozhitskaya O, Sherwood MC, Dorfman AL, Bisping E, Abel ED, Pu WT, Izumo S, Jay PY: Dilated cardiomyopathy resulting from high-level myocardial expression of Cre-recombinase. J Card Fail. 2006, 12 (5): 392-398. 10.1016/j.cardfail.2006.03.002.CrossRefPubMed
24.
go back to reference Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Oberste-Berghaus C: Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest. 1999, 104 (12): 1703-1714. 10.1172/JCI7605.PubMedCentralCrossRefPubMed Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Oberste-Berghaus C: Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest. 1999, 104 (12): 1703-1714. 10.1172/JCI7605.PubMedCentralCrossRefPubMed
25.
go back to reference Liao R, Jain M, Cui L, D'Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM, Tian R: Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation. 2002, 106 (16): 2125-2131. 10.1161/01.CIR.0000034049.61181.F3.CrossRefPubMed Liao R, Jain M, Cui L, D'Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM, Tian R: Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation. 2002, 106 (16): 2125-2131. 10.1161/01.CIR.0000034049.61181.F3.CrossRefPubMed
26.
go back to reference Luptak I, Yan J, Cui L, Jain M, Liao R, Tian R: Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress. Circulation. 2007, 116 (8): 901-909. 10.1161/CIRCULATIONAHA.107.691253.CrossRefPubMed Luptak I, Yan J, Cui L, Jain M, Liao R, Tian R: Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress. Circulation. 2007, 116 (8): 901-909. 10.1161/CIRCULATIONAHA.107.691253.CrossRefPubMed
27.
go back to reference Machado UF, Shimizu I, Saito M: Reduced content and preserved translocation of glucose transporter (GLUT 4) in white adipose tissue of obese mice. Physiol Behav. 1994, 55 (4): 621-625. 10.1016/0031-9384(94)90035-3.CrossRefPubMed Machado UF, Shimizu I, Saito M: Reduced content and preserved translocation of glucose transporter (GLUT 4) in white adipose tissue of obese mice. Physiol Behav. 1994, 55 (4): 621-625. 10.1016/0031-9384(94)90035-3.CrossRefPubMed
28.
go back to reference Membrez M, Hummler E, Beermann F, Haefliger JA, Savioz R, Pedrazzini T, Thorens B: GLUT8 is dispensable for embryonic development but influences hippocampal neurogenesis and heart function. Mol Cell Biol. 2006, 26 (11): 4268-4276. 10.1128/MCB.00081-06.PubMedCentralCrossRefPubMed Membrez M, Hummler E, Beermann F, Haefliger JA, Savioz R, Pedrazzini T, Thorens B: GLUT8 is dispensable for embryonic development but influences hippocampal neurogenesis and heart function. Mol Cell Biol. 2006, 26 (11): 4268-4276. 10.1128/MCB.00081-06.PubMedCentralCrossRefPubMed
29.
go back to reference Li Y, Wende AR, Nunthakungwan O, Huang Y, Hu E, Jin H, Boudina S, Abel ED, Jalili T: Cytosolic, but not mitochondrial, oxidative stress is a likely contributor to cardiac hypertrophy resulting from cardiac specific GLUT4 deletion in mice. FEBS J. 2012, 279 (4): 599-611. 10.1111/j.1742-4658.2011.08450.x.PubMedCentralCrossRefPubMed Li Y, Wende AR, Nunthakungwan O, Huang Y, Hu E, Jin H, Boudina S, Abel ED, Jalili T: Cytosolic, but not mitochondrial, oxidative stress is a likely contributor to cardiac hypertrophy resulting from cardiac specific GLUT4 deletion in mice. FEBS J. 2012, 279 (4): 599-611. 10.1111/j.1742-4658.2011.08450.x.PubMedCentralCrossRefPubMed
30.
go back to reference Santalucía T, Camps M, Castelló A, Muñoz P, Nuel A, Testar X, Palacin M, Zorzano A: Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology. 1992, 130 (2): 837-846. 10.1210/en.130.2.837.PubMed Santalucía T, Camps M, Castelló A, Muñoz P, Nuel A, Testar X, Palacin M, Zorzano A: Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology. 1992, 130 (2): 837-846. 10.1210/en.130.2.837.PubMed
31.
go back to reference Bourey RE, Koranyi L, James DE, Mueckler M, Permutt MA: Effects of altered glucose homeostasis on glucose transporter expression in skeletal muscle of the rat. J Clin Invest. 1990, 86 (2): 542-547. 10.1172/JCI114742.PubMedCentralCrossRefPubMed Bourey RE, Koranyi L, James DE, Mueckler M, Permutt MA: Effects of altered glucose homeostasis on glucose transporter expression in skeletal muscle of the rat. J Clin Invest. 1990, 86 (2): 542-547. 10.1172/JCI114742.PubMedCentralCrossRefPubMed
32.
go back to reference Buller CL, Heilig CW, Brosius FC: GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Renal Physiol. 2011, 301 (3): F588-F596. 10.1152/ajprenal.00472.2010.PubMedCentralCrossRefPubMed Buller CL, Heilig CW, Brosius FC: GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Renal Physiol. 2011, 301 (3): F588-F596. 10.1152/ajprenal.00472.2010.PubMedCentralCrossRefPubMed
33.
go back to reference Lehnen AM, Leguisamo NM, Pinto GH, Markoski MM, De Angelis K, Machado UF, Schaan B: The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon unrelated to GLUT4 expression. Cardiovasc Diabetol. 2010, 9: 67-10.1186/1475-2840-9-67.PubMedCentralCrossRefPubMed Lehnen AM, Leguisamo NM, Pinto GH, Markoski MM, De Angelis K, Machado UF, Schaan B: The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon unrelated to GLUT4 expression. Cardiovasc Diabetol. 2010, 9: 67-10.1186/1475-2840-9-67.PubMedCentralCrossRefPubMed
34.
go back to reference Murata H, Hruz PW, Mueckler M: The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000, 275 (27): 20251-20254. 10.1074/jbc.C000228200.CrossRefPubMed Murata H, Hruz PW, Mueckler M: The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000, 275 (27): 20251-20254. 10.1074/jbc.C000228200.CrossRefPubMed
35.
go back to reference Murata H, Hruz PW, Mueckler M: Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS. 2002, 16 (6): 859-863. 10.1097/00002030-200204120-00005.CrossRefPubMed Murata H, Hruz PW, Mueckler M: Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS. 2002, 16 (6): 859-863. 10.1097/00002030-200204120-00005.CrossRefPubMed
36.
go back to reference Hresko RC, Hruz PW: HIV Protease Inhibitors Act as Competitive Inhibitors of the Cytoplasmic Glucose Binding Site of GLUTs with Differing Affinities for GLUT1 and GLUT4. PLoS One. 2011, 6 (9): e25237-10.1371/journal.pone.0025237.PubMedCentralCrossRefPubMed Hresko RC, Hruz PW: HIV Protease Inhibitors Act as Competitive Inhibitors of the Cytoplasmic Glucose Binding Site of GLUTs with Differing Affinities for GLUT1 and GLUT4. PLoS One. 2011, 6 (9): e25237-10.1371/journal.pone.0025237.PubMedCentralCrossRefPubMed
37.
go back to reference Stenbit AE, Burcelin R, Katz EB, Tsao TS, Gautier N, Charron MJ, Le Marchand-Brustel Y: Diverse effects of Glut 4 ablation on glucose uptake and glycogen synthesis in red and white skeletal muscle. J Clin Invest. 1996, 98 (3): 629-634. 10.1172/JCI118833.PubMedCentralCrossRefPubMed Stenbit AE, Burcelin R, Katz EB, Tsao TS, Gautier N, Charron MJ, Le Marchand-Brustel Y: Diverse effects of Glut 4 ablation on glucose uptake and glycogen synthesis in red and white skeletal muscle. J Clin Invest. 1996, 98 (3): 629-634. 10.1172/JCI118833.PubMedCentralCrossRefPubMed
38.
go back to reference Stuart CA, Howell ME, Zhang Y, Yin D: Insulin-stimulated translocation of glucose transporter (GLUT) 12 parallels that of GLUT4 in normal muscle. J Clin Endocrinol Metab. 2009, 94 (9): 3535-3542. 10.1210/jc.2009-0162.PubMedCentralCrossRefPubMed Stuart CA, Howell ME, Zhang Y, Yin D: Insulin-stimulated translocation of glucose transporter (GLUT) 12 parallels that of GLUT4 in normal muscle. J Clin Endocrinol Metab. 2009, 94 (9): 3535-3542. 10.1210/jc.2009-0162.PubMedCentralCrossRefPubMed
39.
go back to reference Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R: Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res. 2001, 52 (3): 407-416. 10.1016/S0008-6363(01)00393-5.CrossRefPubMed Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R: Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res. 2001, 52 (3): 407-416. 10.1016/S0008-6363(01)00393-5.CrossRefPubMed
40.
go back to reference Matsumoto K, Akazawa S, Ishibashi M, Trocino RA, Matsuo H, Yamasaki H, Yamaguchi Y, Nagamatsu S, Nagataki S: Abundant expression of GLUT1 and GLUT3 in rat embryo during the early organogenesis period. Biochem Biophys Res Commun. 1995, 209 (1): 95-102. 10.1006/bbrc.1995.1475.CrossRefPubMed Matsumoto K, Akazawa S, Ishibashi M, Trocino RA, Matsuo H, Yamasaki H, Yamaguchi Y, Nagamatsu S, Nagataki S: Abundant expression of GLUT1 and GLUT3 in rat embryo during the early organogenesis period. Biochem Biophys Res Commun. 1995, 209 (1): 95-102. 10.1006/bbrc.1995.1475.CrossRefPubMed
Metadata
Title
GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle
Authors
Lauren Aerni-Flessner
Melissa Abi-Jaoude
Amanda Koenig
Maria Payne
Paul W Hruz
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2012
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-11-63

Other articles of this Issue 1/2012

Cardiovascular Diabetology 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.