Skip to main content
Top
Published in: BMC Cancer 1/2006

Open Access 01-12-2006 | Research article

Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data

Authors: Hui-Juan Yang, Vincent WS Liu, Yue Wang, Percy CK Tsang, Hextan YS Ngan

Published in: BMC Cancer | Issue 1/2006

Login to get access

Abstract

Background

Epigenetic gene silencing is one of the major causes of carcinogenesis. Its widespread occurrence in cancer genome could inactivate many cellular pathways including DNA repair, cell cycle control, apoptosis, cell adherence, and detoxification. The abnormal promoter methylation might be a potential molecular marker for cancer management.

Methods

For rapid identification of potential targets for aberrant methylation in gynecological cancers, methylation status of the CpG islands of 34 genes was determined using pooled DNA approach and methylation-specific PCR. Pooled DNA mixture from each cancer type (50 cervical cancers, 50 endometrial cancers and 50 ovarian cancers) was made to form three test samples. The corresponding normal DNA from the patients of each cancer type was also pooled to form the other three control samples. Methylated alleles detected in tumors, but not in normal controls, were indicative of aberrant methylation in tumors. Having identified potential markers, frequencies of methylation were further analyzed in individual samples. Markers identified are used to correlate with clinico-pathological data of tumors using χ2 or Fisher's exact test.

Results

APC and p16 were hypermethylated across the three cancers. MINT31 and PTEN were hypermethylated in cervical and ovarian cancers. Specific methylation was found in cervical cancer (including CDH1, DAPK, MGMT and MINT2), endometrial cancer (CASP8, CDH13, hMLH1 and p73), and ovarian cancer (BRCA1, p14, p15, RIZ1 and TMS1). The frequencies of occurrence of hypermethylation in 4 candidate genes in individual samples of each cancer type (DAPK, MGMT, p16 and PTEN in 127 cervical cancers; APC, CDH13, hMLH1 and p16 in 60 endometrial cancers; and BRCA1, p14, p16 and PTEN in 49 ovarian cancers) were examined for further confirmation. Incidence varied among different genes and in different cancer types ranging from the lowest 8.2% (PTEN in ovarian cancer) to the highest 56.7% (DAPK in cervical cancer). Aberrant methylation for some genes (BRCA1, DAPK, hMLH1, MGMT, p14, p16, and PTEN) was also associated with clinico-pathological data.

Conclusion

Thus, differential methylation profiles occur in the three types of gynecologic cancer. Detection of methylation for critical loci is potentially useful as epigenetic markers in tumor classification. More studies using a much larger sample size are needed to define the potential role of DNA methylation as marker for cancer management.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baylin SB, Herman JG: DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000, 16: 168-174. 10.1016/S0168-9525(99)01971-X.CrossRefPubMed Baylin SB, Herman JG: DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000, 16: 168-174. 10.1016/S0168-9525(99)01971-X.CrossRefPubMed
2.
go back to reference Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002, 3: 415-428. 10.1038/nrg962.CrossRefPubMed Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002, 3: 415-428. 10.1038/nrg962.CrossRefPubMed
3.
4.
go back to reference Esteller M: CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002, 21: 5427-5440. 10.1038/sj.onc.1205600.CrossRefPubMed Esteller M: CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002, 21: 5427-5440. 10.1038/sj.onc.1205600.CrossRefPubMed
5.
go back to reference Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su HH, Petrelli NJ, Zhang X, O'dorisio MS, Held WA, Cavenee WK, Plass C: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000, 24: 132-138. 10.1038/72785.CrossRefPubMed Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su HH, Petrelli NJ, Zhang X, O'dorisio MS, Held WA, Cavenee WK, Plass C: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000, 24: 132-138. 10.1038/72785.CrossRefPubMed
6.
go back to reference Esteller M, Corn PG, Baylin SB, Herman JG: A gene hypermethylation profile of human cancer. Cancer Res. 2001, 61: 3225-3229.PubMed Esteller M, Corn PG, Baylin SB, Herman JG: A gene hypermethylation profile of human cancer. Cancer Res. 2001, 61: 3225-3229.PubMed
7.
go back to reference Patel A, Groopman JD, Umar A: DNA methylation as a cancer-specific biomarker: from molecules to populations. Ann N Y Acad Sci. 2003, 983: 286-297.CrossRefPubMed Patel A, Groopman JD, Umar A: DNA methylation as a cancer-specific biomarker: from molecules to populations. Ann N Y Acad Sci. 2003, 983: 286-297.CrossRefPubMed
8.
go back to reference Esteller M: Relevance of DNA methylation in the management of cancer. Lancet Oncol. 2003, 4: 351-358. 10.1016/S1470-2045(03)01115-X.CrossRefPubMed Esteller M: Relevance of DNA methylation in the management of cancer. Lancet Oncol. 2003, 4: 351-358. 10.1016/S1470-2045(03)01115-X.CrossRefPubMed
9.
go back to reference Laird PW: The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003, 3: 253-266. 10.1038/nrc1045.CrossRefPubMed Laird PW: The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003, 3: 253-266. 10.1038/nrc1045.CrossRefPubMed
10.
go back to reference Cottrell SE, Laird PW: Sensitive detection of DNA methylation. Ann N Y Acad Sci. 2003, 983: 120-130.CrossRefPubMed Cottrell SE, Laird PW: Sensitive detection of DNA methylation. Ann N Y Acad Sci. 2003, 983: 120-130.CrossRefPubMed
11.
go back to reference Catteau A, Harris WH, Xu CF, Solomon E: Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene. 1999, 18: 1957-1965. 10.1038/sj.onc.1202509.CrossRefPubMed Catteau A, Harris WH, Xu CF, Solomon E: Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene. 1999, 18: 1957-1965. 10.1038/sj.onc.1202509.CrossRefPubMed
12.
go back to reference Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Narod S, Karlan BY: BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res. 2000, 60: 5329-5333.PubMed Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Narod S, Karlan BY: BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res. 2000, 60: 5329-5333.PubMed
13.
go back to reference Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG: Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000, 92: 564-569. 10.1093/jnci/92.7.564.CrossRefPubMed Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG: Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000, 92: 564-569. 10.1093/jnci/92.7.564.CrossRefPubMed
14.
go back to reference Salvesen HB, Macdonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, Das S: PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer. 2001, 91: 22-26. 10.1002/1097-0215(20010101)91:1<22::AID-IJC1002>3.0.CO;2-S.CrossRefPubMed Salvesen HB, Macdonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, Das S: PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer. 2001, 91: 22-26. 10.1002/1097-0215(20010101)91:1<22::AID-IJC1002>3.0.CO;2-S.CrossRefPubMed
15.
go back to reference Zysman M, Saka A, Millar A, Knight J, Chapman W, Bapat B: Methylation of adenomatous polyposis coli in endometrial cancer occurs more frequently in tumors with microsatellite instability phenotype. Cancer Res. 2002, 62: 3663-3666.PubMed Zysman M, Saka A, Millar A, Knight J, Chapman W, Bapat B: Methylation of adenomatous polyposis coli in endometrial cancer occurs more frequently in tumors with microsatellite instability phenotype. Cancer Res. 2002, 62: 3663-3666.PubMed
16.
go back to reference Yang HJ, Liu VWS, Wang Y, Chan KYK, Tsang PCK, Khoo US, Cheung ANY, Ngan HYS: Detection of Hypermethylated Genes in Tumour and Plasma of Cervical Cancer Patients. Gynecol Oncol. 2004, 93: 435-440. 10.1016/j.ygyno.2004.01.039.CrossRefPubMed Yang HJ, Liu VWS, Wang Y, Chan KYK, Tsang PCK, Khoo US, Cheung ANY, Ngan HYS: Detection of Hypermethylated Genes in Tumour and Plasma of Cervical Cancer Patients. Gynecol Oncol. 2004, 93: 435-440. 10.1016/j.ygyno.2004.01.039.CrossRefPubMed
17.
go back to reference Ahluwalia A, Yan P, Hurteau JA, Bigsby RM, Jung SH, Huang TH, Nephew KP: DNA Methylation and Ovarian Cancer: Analysis of CpG Island Hypermethylation in Human Ovarian Cancer Using Differential Methylation Hybridization. Gynecologic Oncology. 2001, 82: 261-268. 10.1006/gyno.2001.6291.CrossRefPubMed Ahluwalia A, Yan P, Hurteau JA, Bigsby RM, Jung SH, Huang TH, Nephew KP: DNA Methylation and Ovarian Cancer: Analysis of CpG Island Hypermethylation in Human Ovarian Cancer Using Differential Methylation Hybridization. Gynecologic Oncology. 2001, 82: 261-268. 10.1006/gyno.2001.6291.CrossRefPubMed
18.
go back to reference Shi H, Maier S, Nimmrich I, Yan PS, Caldwell CW, Olek A, Huang TH: Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J Cell Biochem. 2003, 88: 138-143. 10.1002/jcb.10313.CrossRefPubMed Shi H, Maier S, Nimmrich I, Yan PS, Caldwell CW, Olek A, Huang TH: Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J Cell Biochem. 2003, 88: 138-143. 10.1002/jcb.10313.CrossRefPubMed
19.
go back to reference Salvesen HB, Macdonald N, Ryan A, Iversen OE, Jacobs IJ, Akslen LA, Das S: Methylation of hMLH1 in a population-based series of endometrial carcinomas. Clin Cancer Res. 2000, 6: 3607-3613.PubMed Salvesen HB, Macdonald N, Ryan A, Iversen OE, Jacobs IJ, Akslen LA, Das S: Methylation of hMLH1 in a population-based series of endometrial carcinomas. Clin Cancer Res. 2000, 6: 3607-3613.PubMed
20.
go back to reference Dong SM, Kim HS, Rha SH, Sidransky D: Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin Cancer Res. 2001, 7: 1982-1986.PubMed Dong SM, Kim HS, Rha SH, Sidransky D: Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin Cancer Res. 2001, 7: 1982-1986.PubMed
21.
go back to reference Strathdee G, Appleton K, Illand M, Millan DW, Sargent J, Paul J, Brown R: Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am J Pathol. 2001, 158: 1121-1127.CrossRefPubMedPubMedCentral Strathdee G, Appleton K, Illand M, Millan DW, Sargent J, Paul J, Brown R: Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am J Pathol. 2001, 158: 1121-1127.CrossRefPubMedPubMedCentral
22.
go back to reference Rathi A, Virmani AK, Schorge JO, Elias KJ, Maruyama R, Minna JD, Mok SC, Girard L, Fishman DA, Gazdar AF: Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women. Clin Cancer Res. 2002, 8: 3324-3331.PubMed Rathi A, Virmani AK, Schorge JO, Elias KJ, Maruyama R, Minna JD, Mok SC, Girard L, Fishman DA, Gazdar AF: Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women. Clin Cancer Res. 2002, 8: 3324-3331.PubMed
23.
go back to reference Horowitz N, Pinto K, Mutch DG, Herzog TJ, Rader JS, Gibb R, Bocker-Edmonston T, Goodfellow PJ: Microsatellite instability, MLH1 promoter methylation, loss of mismatch repair in endometrial cancer and concomitant atypical hyperplasia. Gynecol Oncol. 2002, 86: 62-68. 10.1006/gyno.2002.6724.CrossRefPubMed Horowitz N, Pinto K, Mutch DG, Herzog TJ, Rader JS, Gibb R, Bocker-Edmonston T, Goodfellow PJ: Microsatellite instability, MLH1 promoter methylation, loss of mismatch repair in endometrial cancer and concomitant atypical hyperplasia. Gynecol Oncol. 2002, 86: 62-68. 10.1006/gyno.2002.6724.CrossRefPubMed
24.
go back to reference Narayan G, Arias-pulido H, Koul S, Vargas H, Zhang FF, Villella J, Schneider A, Terry MB, Mansukhani M, Murty VV: Frequent Promoter Methylation of CDH1, DAPK, RARB, and HIC1 Genes in Carcinoma of Cervix Uteri: Its Relationship to Clinical Outcome. Mol Cancer. 2003, 2: 24-10.1186/1476-4598-2-24.CrossRefPubMedPubMedCentral Narayan G, Arias-pulido H, Koul S, Vargas H, Zhang FF, Villella J, Schneider A, Terry MB, Mansukhani M, Murty VV: Frequent Promoter Methylation of CDH1, DAPK, RARB, and HIC1 Genes in Carcinoma of Cervix Uteri: Its Relationship to Clinical Outcome. Mol Cancer. 2003, 2: 24-10.1186/1476-4598-2-24.CrossRefPubMedPubMedCentral
25.
go back to reference Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG: MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene. 1998, 17: 2413-2417. 10.1038/sj.onc.1202178.CrossRefPubMed Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG: MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene. 1998, 17: 2413-2417. 10.1038/sj.onc.1202178.CrossRefPubMed
26.
go back to reference Narod SA, Ford D, Devilee P, Barkardottir RB, Lynch HT, Smith SA, Ponder BA, Weber BL, Garber JE, Birch JM, Cornelis RS, Kelsell DP, Spurr NK, Smyth E, Haites N, Sobol H, Bignon YJ, Chang-Claude J, Hamann U, Lindblom A, Borg A, Piver SM, Gallion HH, Struewing JP, Whittemore PT, Goldgar DE, Easton DF: An evaluation of genetic heterogeneity in 145 breast-ovarian cancer families. Breast Cancer Linkage Consortium. Am J Hum Genet. 1995, 56: 254-264.PubMedPubMedCentral Narod SA, Ford D, Devilee P, Barkardottir RB, Lynch HT, Smith SA, Ponder BA, Weber BL, Garber JE, Birch JM, Cornelis RS, Kelsell DP, Spurr NK, Smyth E, Haites N, Sobol H, Bignon YJ, Chang-Claude J, Hamann U, Lindblom A, Borg A, Piver SM, Gallion HH, Struewing JP, Whittemore PT, Goldgar DE, Easton DF: An evaluation of genetic heterogeneity in 145 breast-ovarian cancer families. Breast Cancer Linkage Consortium. Am J Hum Genet. 1995, 56: 254-264.PubMedPubMedCentral
27.
go back to reference McCoy ML, Mueller CR, Roskelley CD: The role of the breast cancer susceptibility gene BRCA1 in sporadic epithelial ovarian cancer. Reprod Biol Endocrinol. 2003, 1: 72-10.1186/1477-7827-1-72.CrossRefPubMedPubMedCentral McCoy ML, Mueller CR, Roskelley CD: The role of the breast cancer susceptibility gene BRCA1 in sporadic epithelial ovarian cancer. Reprod Biol Endocrinol. 2003, 1: 72-10.1186/1477-7827-1-72.CrossRefPubMedPubMedCentral
28.
go back to reference Zöchbauer-Müller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R, Virmani AK, Milchgrub S, Gazdar AF, Minna JD: 5' CpG Island Methylation of the FHIT Gene Is Correlated with Loss of Gene Expression in Lung and Breast Cancer. Cancer Res. 2001, 61: 3581-3585.PubMed Zöchbauer-Müller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R, Virmani AK, Milchgrub S, Gazdar AF, Minna JD: 5' CpG Island Methylation of the FHIT Gene Is Correlated with Loss of Gene Expression in Lung and Breast Cancer. Cancer Res. 2001, 61: 3581-3585.PubMed
29.
go back to reference Lea JS, Ashfaq R, Muneer S, Burbee DG, Miller DS, Minna JD, Muller CY: Understanding the mechanisms of FHIT inactivation in cervical cancer for biomarker development. J Soc Gynecol Investig. 2004, 11: 329-337. 10.1016/j.jsgi.2003.12.008.CrossRefPubMed Lea JS, Ashfaq R, Muneer S, Burbee DG, Miller DS, Minna JD, Muller CY: Understanding the mechanisms of FHIT inactivation in cervical cancer for biomarker development. J Soc Gynecol Investig. 2004, 11: 329-337. 10.1016/j.jsgi.2003.12.008.CrossRefPubMed
30.
go back to reference Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A: Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 1995, 9: 15-30.CrossRefPubMed Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A: Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 1995, 9: 15-30.CrossRefPubMed
31.
go back to reference Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L, Kimchi A: DAP kinase links the control of apoptosis to metastasis. Nature. 1997, 390: 180-184. 10.1038/36599.CrossRefPubMed Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L, Kimchi A: DAP kinase links the control of apoptosis to metastasis. Nature. 1997, 390: 180-184. 10.1038/36599.CrossRefPubMed
32.
go back to reference Katzenellenbogen RA, Baylin SB, Herman JG: Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood. 1999, 93: 4347-4353.PubMed Katzenellenbogen RA, Baylin SB, Herman JG: Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood. 1999, 93: 4347-4353.PubMed
33.
go back to reference Kwong J, Lo KW, To KF, Teo PM, Johnson PJ, Huang DP: Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res. 2002, 8: 131-137.PubMed Kwong J, Lo KW, To KF, Teo PM, Johnson PJ, Huang DP: Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res. 2002, 8: 131-137.PubMed
34.
go back to reference Simpson DJ, Clayton RN, Farrell WE: Preferential loss of Death Associated Protein kinase expression in invasive pituitary tumours is associated with either CpG island methylation or homozygous deletion. Oncogene. 2002, 21: 1217-1224. 10.1038/sj.onc.1205195.CrossRefPubMed Simpson DJ, Clayton RN, Farrell WE: Preferential loss of Death Associated Protein kinase expression in invasive pituitary tumours is associated with either CpG island methylation or homozygous deletion. Oncogene. 2002, 21: 1217-1224. 10.1038/sj.onc.1205195.CrossRefPubMed
35.
go back to reference Toyooka S, Toyooka KO, Miyajima K, Reddy JL, Toyota M, Sathyanarayana UG, Padar A, Tockman MS, Lam S, Shivapurkar N, Gazdar AF: Epigenetic Down-Regulation of Death-associated Protein Kinase in Lung Cancers. Clin Cancer Res. 2003, 9: 3034-3041.PubMed Toyooka S, Toyooka KO, Miyajima K, Reddy JL, Toyota M, Sathyanarayana UG, Padar A, Tockman MS, Lam S, Shivapurkar N, Gazdar AF: Epigenetic Down-Regulation of Death-associated Protein Kinase in Lung Cancers. Clin Cancer Res. 2003, 9: 3034-3041.PubMed
Metadata
Title
Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data
Authors
Hui-Juan Yang
Vincent WS Liu
Yue Wang
Percy CK Tsang
Hextan YS Ngan
Publication date
01-12-2006
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2006
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-6-212

Other articles of this Issue 1/2006

BMC Cancer 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine