Skip to main content
Top
Published in: BMC Nephrology 1/2013

Open Access 01-12-2013 | Research article

Association of chronic kidney disease (CKD) and failure to monitor renal function with adverse outcomes in people with diabetes: a primary care cohort study

Authors: Andrew P McGovern, Benjamin Rusholme, Simon Jones, Jeremy N van Vlymen, Harshana Liyanage, Hugh Gallagher, Charles RV Tomson, Kamlesh Khunti, Kevin Harris, Simon de Lusignan

Published in: BMC Nephrology | Issue 1/2013

Login to get access

Abstract

Background

Chronic kidney disease (CKD) is a known risk factor for cardiovascular events and all-cause mortality. We investigate the relationship between CKD stage, proteinuria, hypertension and these adverse outcomes in the people with diabetes. We also study the outcomes of people who did not have monitoring of renal function.

Methods

A cohort of people with type 1 and 2 diabetes (N = 35,502) from the Quality Improvement in Chronic Kidney Disease (QICKD) cluster randomised trial was followed up over 2.5 years. A composite of all-cause mortality, cardiovascular events, and end stage renal failure comprised the outcome measure. A multilevel logistic regression model was used to determine correlates with this outcome. Known cardiovascular and renal risk factors were adjusted for.

Results

Proteinuria and reduced estimated glomerular filtration rate (eGFR) were independently associated with adverse outcomes in people with diabetes. People with an eGFR <60 ml/min, proteinuria, and hypertension have the greatest odds ratio (OR) of adverse outcome; 1.58 (95% CI 1.36-1.83). Renal function was not monitored in 4460 (12.6%) people. Unmonitored renal function was associated with adverse events; OR 1.35 (95% CI 1.13-1.63) in people with hypertension and OR 1.32 (95% CI 1.07-1.64) in those without.

Conclusions

Proteinuria, eGFR < 60 ml/min, and failure to monitor renal function are associated with cardiovascular and renal events and mortality in people with diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kannel WB, McGee DL: Diabetes and cardiovascular risk factors: the Framingham study. Circulation. 1979, 59: 8-13. 10.1161/01.CIR.59.1.8.CrossRefPubMed Kannel WB, McGee DL: Diabetes and cardiovascular risk factors: the Framingham study. Circulation. 1979, 59: 8-13. 10.1161/01.CIR.59.1.8.CrossRefPubMed
2.
go back to reference Sarwar N, Gao P, Seshasai SR, et al: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010, 375: 2215-2222. 10.1016/S0140-6736(10)60484-9.CrossRefPubMed Sarwar N, Gao P, Seshasai SR, et al: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010, 375: 2215-2222. 10.1016/S0140-6736(10)60484-9.CrossRefPubMed
3.
go back to reference Foley RN, Collins AJ: End-stage renal disease in the United States: an update from the United States renal data system. J Am Soc Nephrol. 2007, 18: 2644-2648. 10.1681/ASN.2007020220.CrossRefPubMed Foley RN, Collins AJ: End-stage renal disease in the United States: an update from the United States renal data system. J Am Soc Nephrol. 2007, 18: 2644-2648. 10.1681/ASN.2007020220.CrossRefPubMed
4.
go back to reference Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY: Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004, 351: 1296-1305. 10.1056/NEJMoa041031.CrossRefPubMed Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY: Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004, 351: 1296-1305. 10.1056/NEJMoa041031.CrossRefPubMed
5.
go back to reference Weiner DE, Tighiouart H, Amin MG, et al: Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol. 2004, 15: 1307-1315. 10.1097/01.ASN.0000123691.46138.E2.CrossRefPubMed Weiner DE, Tighiouart H, Amin MG, et al: Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol. 2004, 15: 1307-1315. 10.1097/01.ASN.0000123691.46138.E2.CrossRefPubMed
6.
go back to reference So WY, Kong AP, Ma RC, et al: Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care. 2006, 29: 2046-2052. 10.2337/dc06-0248.CrossRefPubMed So WY, Kong AP, Ma RC, et al: Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care. 2006, 29: 2046-2052. 10.2337/dc06-0248.CrossRefPubMed
7.
go back to reference Mahmoodi BK, Matsushita K, Woodward M, et al: Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet. 2012, 380 (9854): 1649-1661. 10.1016/S0140-6736(12)61272-0.CrossRefPubMedPubMedCentral Mahmoodi BK, Matsushita K, Woodward M, et al: Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet. 2012, 380 (9854): 1649-1661. 10.1016/S0140-6736(12)61272-0.CrossRefPubMedPubMedCentral
8.
go back to reference van der Velde M, Matsushita K, Coresh J, et al: Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011, 79: 1341-1352. 10.1038/ki.2010.536.CrossRefPubMed van der Velde M, Matsushita K, Coresh J, et al: Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011, 79: 1341-1352. 10.1038/ki.2010.536.CrossRefPubMed
9.
go back to reference Fox CS, Matsushita K, Woodward M, et al: Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012, 380: 1662-1673. 10.1016/S0140-6736(12)61350-6.CrossRefPubMedPubMedCentral Fox CS, Matsushita K, Woodward M, et al: Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012, 380: 1662-1673. 10.1016/S0140-6736(12)61350-6.CrossRefPubMedPubMedCentral
10.
go back to reference National Institute for Health and Clinical Excellence: Early identification and management of chronic kidney disease in adults in primary and secondary care. 2008, London: National Institute for Health and Clinical Excellence National Institute for Health and Clinical Excellence: Early identification and management of chronic kidney disease in adults in primary and secondary care. 2008, London: National Institute for Health and Clinical Excellence
11.
go back to reference New JP, Middleton RJ, Klebe B, et al: Assessing the prevalence, monitoring and management of chronic kidney disease in patients with diabetes compared with those without diabetes in general practice. Diabet Med. 2007, 24: 364-369. 10.1111/j.1464-5491.2007.02075.x.CrossRefPubMed New JP, Middleton RJ, Klebe B, et al: Assessing the prevalence, monitoring and management of chronic kidney disease in patients with diabetes compared with those without diabetes in general practice. Diabet Med. 2007, 24: 364-369. 10.1111/j.1464-5491.2007.02075.x.CrossRefPubMed
12.
go back to reference UK Prospective Diabetes Study Group: Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998, 317: 703-713. 10.1136/bmj.317.7160.703.CrossRefPubMedCentral UK Prospective Diabetes Study Group: Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998, 317: 703-713. 10.1136/bmj.317.7160.703.CrossRefPubMedCentral
13.
go back to reference Ahmad J, Siddiqui MA, Ahmad H: Effective postponement of diabetic nephropathy with enalapril in normotensive type 2 diabetic patients with microalbuminuria. Diabetes care. 1997, 20: 1576-1581. 10.2337/diacare.20.10.1576.CrossRefPubMed Ahmad J, Siddiqui MA, Ahmad H: Effective postponement of diabetic nephropathy with enalapril in normotensive type 2 diabetic patients with microalbuminuria. Diabetes care. 1997, 20: 1576-1581. 10.2337/diacare.20.10.1576.CrossRefPubMed
14.
go back to reference Chan JC, Ko GT, Leung DH, et al: Long-term effects of angiotensin-converting enzyme inhibition and metabolic control in hypertensive type 2 diabetic patients. Kidney Int. 2000, 57: 590-600. 10.1046/j.1523-1755.2000.00879.x.CrossRefPubMed Chan JC, Ko GT, Leung DH, et al: Long-term effects of angiotensin-converting enzyme inhibition and metabolic control in hypertensive type 2 diabetic patients. Kidney Int. 2000, 57: 590-600. 10.1046/j.1523-1755.2000.00879.x.CrossRefPubMed
15.
go back to reference Ravid M, Brosh D, Levi Z, Bar-Dayan Y, Ravid D, Rachmani R: Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann Intern Med. 1998, 128: 982-988. 10.7326/0003-4819-128-12_Part_1-199806150-00004.CrossRefPubMed Ravid M, Brosh D, Levi Z, Bar-Dayan Y, Ravid D, Rachmani R: Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann Intern Med. 1998, 128: 982-988. 10.7326/0003-4819-128-12_Part_1-199806150-00004.CrossRefPubMed
16.
go back to reference Ravid M, Lang R, Rachmani R, Lishner M: Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med. 1996, 156: 286-289. 10.1001/archinte.1996.00440030080010.CrossRefPubMed Ravid M, Lang R, Rachmani R, Lishner M: Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med. 1996, 156: 286-289. 10.1001/archinte.1996.00440030080010.CrossRefPubMed
17.
go back to reference de Zeeuw D, Remuzzi G, Parving HH, et al: Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004, 65: 2309-2320. 10.1111/j.1523-1755.2004.00653.x.CrossRefPubMed de Zeeuw D, Remuzzi G, Parving HH, et al: Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004, 65: 2309-2320. 10.1111/j.1523-1755.2004.00653.x.CrossRefPubMed
18.
go back to reference de Lusignan S, Gallagher H, Jones S, et al: Audit-based education lowers systolic blood pressure in chronic kidney disease: the quality improvement in CKD (QICKD) trial results. Kidney Int. 2013, . Epub ahead of print de Lusignan S, Gallagher H, Jones S, et al: Audit-based education lowers systolic blood pressure in chronic kidney disease: the quality improvement in CKD (QICKD) trial results. Kidney Int. 2013, . Epub ahead of print
19.
go back to reference de Lusignan S, Gallagher H, Chan T, et al: The QICKD study protocol: a cluster randomised trial to compare quality improvement interventions to lower systolic BP in chronic kidney disease (CKD) in primary care. Implement Sci. 2009, 4: 39-10.1186/1748-5908-4-39.CrossRefPubMedPubMedCentral de Lusignan S, Gallagher H, Chan T, et al: The QICKD study protocol: a cluster randomised trial to compare quality improvement interventions to lower systolic BP in chronic kidney disease (CKD) in primary care. Implement Sci. 2009, 4: 39-10.1186/1748-5908-4-39.CrossRefPubMedPubMedCentral
20.
go back to reference de Lusignan S, Khunti K, Belsey J, et al: A method of identifying and correcting miscoding, misclassification and misdiagnosis in diabetes: a pilot and validation study of routinely collected data. Diabet Med. 2010, 27: 203-209. 10.1111/j.1464-5491.2009.02917.x.CrossRefPubMed de Lusignan S, Khunti K, Belsey J, et al: A method of identifying and correcting miscoding, misclassification and misdiagnosis in diabetes: a pilot and validation study of routinely collected data. Diabet Med. 2010, 27: 203-209. 10.1111/j.1464-5491.2009.02917.x.CrossRefPubMed
21.
go back to reference World Health Organisation: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. 1999, Geneva: World Health Organisation World Health Organisation: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. 1999, Geneva: World Health Organisation
22.
go back to reference World Health Organisation: Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. 2011, Geneva: World Health Organisation World Health Organisation: Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. 2011, Geneva: World Health Organisation
23.
go back to reference de Lusignan S, Chan T: The development of primary care information technology in the United kingdom. J Ambul Care Manage. 2008, 31: 201-210. 10.1097/01.JAC.0000324664.88131.d2.CrossRefPubMed de Lusignan S, Chan T: The development of primary care information technology in the United kingdom. J Ambul Care Manage. 2008, 31: 201-210. 10.1097/01.JAC.0000324664.88131.d2.CrossRefPubMed
24.
go back to reference Schade CP, Sullivan FM, de Lusignan S, Madeley J: E-Prescribing, efficiency, quality: lessons from the computerization of UK family practice. J Am Med Inform Assoc. 2006, 13: 470-475. 10.1197/jamia.M2041.CrossRefPubMedPubMedCentral Schade CP, Sullivan FM, de Lusignan S, Madeley J: E-Prescribing, efficiency, quality: lessons from the computerization of UK family practice. J Am Med Inform Assoc. 2006, 13: 470-475. 10.1197/jamia.M2041.CrossRefPubMedPubMedCentral
25.
go back to reference Department for Communities and Local Government: The english indices of deprivation 2007. 2008, London: Department for Communities and Local Government Department for Communities and Local Government: The english indices of deprivation 2007. 2008, London: Department for Communities and Local Government
26.
go back to reference National Institute for Health and Clinical Excellence: Hypertension: clinical management of primary hypertension in adults. 2011, London: National Institute for Health and Clinical Excellence National Institute for Health and Clinical Excellence: Hypertension: clinical management of primary hypertension in adults. 2011, London: National Institute for Health and Clinical Excellence
27.
go back to reference National Institute for Health and Clinical Excellence: Type 2 diabetes: the management of type 2 diabetes (update). 2008, London: National Institute for Health and Clinical Excellence National Institute for Health and Clinical Excellence: Type 2 diabetes: the management of type 2 diabetes (update). 2008, London: National Institute for Health and Clinical Excellence
28.
go back to reference National Institute for Health and Clinical Excellence: Diagnosis and management of type 1 diabetes in children, young people and adults. 2004, London: National Institute for Health and Clinical Excellence National Institute for Health and Clinical Excellence: Diagnosis and management of type 1 diabetes in children, young people and adults. 2004, London: National Institute for Health and Clinical Excellence
29.
go back to reference Abutaleb N: Why we should sub-divide CKD stage 3 into early (3a) and late (3b) components. Nephrol Dial Transplant. 2007, 22: 2728-2729. 10.1093/ndt/gfm349.CrossRefPubMed Abutaleb N: Why we should sub-divide CKD stage 3 into early (3a) and late (3b) components. Nephrol Dial Transplant. 2007, 22: 2728-2729. 10.1093/ndt/gfm349.CrossRefPubMed
30.
go back to reference National Institute for Health and Clinical Excellence: Chronic kidney disease. Early identification and management of chronic kidney disease in adults in primary and secondary care. 2008, London: National Institute for Health and Clinical Excellence National Institute for Health and Clinical Excellence: Chronic kidney disease. Early identification and management of chronic kidney disease in adults in primary and secondary care. 2008, London: National Institute for Health and Clinical Excellence
31.
go back to reference Lamb EJ, MacKenzie F, Stevens PE: How should proteinuria be detected and measured?. Ann Clin Biochem. 2009, 46: 205-217. 10.1258/acb.2009.009007.CrossRefPubMed Lamb EJ, MacKenzie F, Stevens PE: How should proteinuria be detected and measured?. Ann Clin Biochem. 2009, 46: 205-217. 10.1258/acb.2009.009007.CrossRefPubMed
33.
go back to reference Maindonald J, Braun J: Data analysis and graphics using R: an example-based approach (Cambridge series in statistical and probabilistic mathematics). 2010, Cambridge: Cambridge University Press Maindonald J, Braun J: Data analysis and graphics using R: an example-based approach (Cambridge series in statistical and probabilistic mathematics). 2010, Cambridge: Cambridge University Press
34.
go back to reference de Lusignan S, Sadek N, Mulnier H, Tahir A, Russell-Jones D, Khunti K: Miscoding, misclassification and misdiagnosis of diabetes in primary care. Diabet Med. 2012, 29: 181-189. 10.1111/j.1464-5491.2011.03419.x.CrossRefPubMed de Lusignan S, Sadek N, Mulnier H, Tahir A, Russell-Jones D, Khunti K: Miscoding, misclassification and misdiagnosis of diabetes in primary care. Diabet Med. 2012, 29: 181-189. 10.1111/j.1464-5491.2011.03419.x.CrossRefPubMed
35.
go back to reference Collins AJ, Vassalotti JA, Wang C, et al: Who should be targeted for CKD screening? impact of diabetes, hypertension, and cardiovascular disease. Am J Kidney Dis. 2009, 53: S71-S77. 10.1053/j.ajkd.2008.07.057.CrossRefPubMed Collins AJ, Vassalotti JA, Wang C, et al: Who should be targeted for CKD screening? impact of diabetes, hypertension, and cardiovascular disease. Am J Kidney Dis. 2009, 53: S71-S77. 10.1053/j.ajkd.2008.07.057.CrossRefPubMed
36.
go back to reference Islam TM, Fox CS, Mann D, Muntner P: Age-related associations of hypertension and diabetes mellitus with chronic kidney disease. BMC Nephrol. 2009, 10: 17-10.1186/1471-2369-10-17.CrossRefPubMedPubMedCentral Islam TM, Fox CS, Mann D, Muntner P: Age-related associations of hypertension and diabetes mellitus with chronic kidney disease. BMC Nephrol. 2009, 10: 17-10.1186/1471-2369-10-17.CrossRefPubMedPubMedCentral
37.
go back to reference Middleton RJ, Foley RN, Hegarty J, et al: The unrecognized prevalence of chronic kidney disease in diabetes. Nephrol Dial Transplant. 2006, 21: 88-92. 10.1093/ndt/gfi163.CrossRefPubMed Middleton RJ, Foley RN, Hegarty J, et al: The unrecognized prevalence of chronic kidney disease in diabetes. Nephrol Dial Transplant. 2006, 21: 88-92. 10.1093/ndt/gfi163.CrossRefPubMed
38.
go back to reference Hassan Sadek N, Sadek AR, Tahir A, Khunti K, Desombre T, de Lusignan S: Evaluating tools to support a new practical classification of diabetes: excellent control may represent misdiagnosis and omission from disease registers is associated with worse control. Int J Clin Pract. 2012, 66: 874-882. 10.1111/j.1742-1241.2012.02979.x.CrossRefPubMedPubMedCentral Hassan Sadek N, Sadek AR, Tahir A, Khunti K, Desombre T, de Lusignan S: Evaluating tools to support a new practical classification of diabetes: excellent control may represent misdiagnosis and omission from disease registers is associated with worse control. Int J Clin Pract. 2012, 66: 874-882. 10.1111/j.1742-1241.2012.02979.x.CrossRefPubMedPubMedCentral
39.
go back to reference Astor BC, Matsushita K, Gansevoort RT, et al: Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int. 2011, 79: 1331-1340. 10.1038/ki.2010.550.CrossRefPubMed Astor BC, Matsushita K, Gansevoort RT, et al: Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int. 2011, 79: 1331-1340. 10.1038/ki.2010.550.CrossRefPubMed
40.
go back to reference Matsushita K, van der Velde M, Astor BC, et al: Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010, 375: 2073-2081.CrossRefPubMedPubMedCentral Matsushita K, van der Velde M, Astor BC, et al: Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010, 375: 2073-2081.CrossRefPubMedPubMedCentral
41.
42.
go back to reference de Lusignan S, van Weel C: The use of routinely collected computer data for research in primary care: opportunities and challenges. Fam Pract. 2006, 23: 253-263.CrossRefPubMed de Lusignan S, van Weel C: The use of routinely collected computer data for research in primary care: opportunities and challenges. Fam Pract. 2006, 23: 253-263.CrossRefPubMed
43.
go back to reference de Lusignan S, Tomson C, Harris K, van Vlymen J, Gallagher H: Creatinine fluctuation has a greater effect than the formula to estimate glomerular filtration rate on the prevalence of chronic kidney disease. Nephron Clin Pract. 2011, 117: c213-c224. 10.1159/000320341.CrossRefPubMed de Lusignan S, Tomson C, Harris K, van Vlymen J, Gallagher H: Creatinine fluctuation has a greater effect than the formula to estimate glomerular filtration rate on the prevalence of chronic kidney disease. Nephron Clin Pract. 2011, 117: c213-c224. 10.1159/000320341.CrossRefPubMed
Metadata
Title
Association of chronic kidney disease (CKD) and failure to monitor renal function with adverse outcomes in people with diabetes: a primary care cohort study
Authors
Andrew P McGovern
Benjamin Rusholme
Simon Jones
Jeremy N van Vlymen
Harshana Liyanage
Hugh Gallagher
Charles RV Tomson
Kamlesh Khunti
Kevin Harris
Simon de Lusignan
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2013
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/1471-2369-14-198

Other articles of this Issue 1/2013

BMC Nephrology 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.