Skip to main content
Top
Published in: BMC Infectious Diseases 1/2010

Open Access 01-12-2010 | Research article

Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms

Authors: Michelle M Nerandzic, Jennifer L Cadnum, Michael J Pultz, Curtis J Donskey

Published in: BMC Infectious Diseases | Issue 1/2010

Login to get access

Abstract

Background

Environmental surfaces play an important role in transmission of healthcare-associated pathogens. There is a need for new disinfection methods that are effective against Clostridium difficile spores, but also safe, rapid, and automated.

Methods

The Tru-D™ Rapid Room Disinfection device is a mobile, fully-automated room decontamination technology that utilizes ultraviolet-C irradiation to kill pathogens. We examined the efficacy of environmental disinfection using the Tru-D device in the laboratory and in rooms of hospitalized patients. Cultures for C. difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE) were collected from commonly touched surfaces before and after use of Tru-D.

Results

On inoculated surfaces, application of Tru-D at a reflected dose of 22,000 μWs/cm2 for ~45 minutes consistently reduced recovery of C. difficile spores and MRSA by >2-3 log10 colony forming units (CFU)/cm2 and of VRE by >3-4 log10 CFU/cm2. Similar killing of MRSA and VRE was achieved in ~20 minutes at a reflected dose of 12,000 μWs/cm2, but killing of C. difficile spores was reduced. Disinfection of hospital rooms with Tru-D reduced the frequency of positive MRSA and VRE cultures by 93% and of C. difficile cultures by 80%. After routine hospital cleaning of the rooms of MRSA carriers, 18% of sites under the edges of bedside tables (i.e., a frequently touched site not easily amenable to manual application of disinfectant) were contaminated with MRSA, versus 0% after Tru-D (P < 0.001). The system required <5 minutes to set up and did not require continuous monitoring.

Conclusions

The Tru-D Rapid Room Disinfection device is a novel, automated, and efficient environmental disinfection technology that significantly reduces C. difficile, VRE and MRSA contamination on commonly touched hospital surfaces.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goodman ER, Platt R, Bass R, Onderdonk AB, Yokoe DS, Huang SS: Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect Control Hosp Epidemiol. 2008, 29: 593-599. 10.1086/588566.CrossRefPubMedPubMedCentral Goodman ER, Platt R, Bass R, Onderdonk AB, Yokoe DS, Huang SS: Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect Control Hosp Epidemiol. 2008, 29: 593-599. 10.1086/588566.CrossRefPubMedPubMedCentral
2.
go back to reference Boyce JM, Pittet D: Guideline for hand hygiene in health-care settings: Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Infect Control Hosp Epidemiol. 2002, 23 (Suppl): S3-S40. 10.1086/503164.CrossRefPubMed Boyce JM, Pittet D: Guideline for hand hygiene in health-care settings: Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Infect Control Hosp Epidemiol. 2002, 23 (Suppl): S3-S40. 10.1086/503164.CrossRefPubMed
3.
go back to reference Bhalla A, Pultz NJ, Gries DM, Ray AJ, Eckstein EC, Aron DC, Donskey CJ: Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol. 2004, 25: 164-167. 10.1086/502369.CrossRefPubMed Bhalla A, Pultz NJ, Gries DM, Ray AJ, Eckstein EC, Aron DC, Donskey CJ: Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol. 2004, 25: 164-167. 10.1086/502369.CrossRefPubMed
4.
go back to reference Boyce JM, Potter-Bynoe G, Chenevert C, King T: Environmental contamination due to methicillin-resistant Staphylococcus aureus (MRSA): possible infection control implications. Infect Control Hosp Epidemiol. 1997, 18: 622-627. 10.1086/647686.CrossRefPubMed Boyce JM, Potter-Bynoe G, Chenevert C, King T: Environmental contamination due to methicillin-resistant Staphylococcus aureus (MRSA): possible infection control implications. Infect Control Hosp Epidemiol. 1997, 18: 622-627. 10.1086/647686.CrossRefPubMed
5.
go back to reference Eckstein BC, Adams DA, Eckstein EC, Rao A, Sethi AK, Yadavalli GK, Donskey CJ: Reduction of Clostridium difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods. BMC Infect Dis. 2007, 7: 61-10.1186/1471-2334-7-61.CrossRefPubMedPubMedCentral Eckstein BC, Adams DA, Eckstein EC, Rao A, Sethi AK, Yadavalli GK, Donskey CJ: Reduction of Clostridium difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods. BMC Infect Dis. 2007, 7: 61-10.1186/1471-2334-7-61.CrossRefPubMedPubMedCentral
6.
go back to reference Hayden MK, Bonten JM, Blom DW, Lyle EA, van de Vijver D, Weinstein RA: Reduction in acquisition of vancomycin-resistant Enterococcus after enforcement of routine environmental cleaning measures. Clin Infect Dis. 2006, 42: 1552-60. 10.1086/503845.CrossRefPubMed Hayden MK, Bonten JM, Blom DW, Lyle EA, van de Vijver D, Weinstein RA: Reduction in acquisition of vancomycin-resistant Enterococcus after enforcement of routine environmental cleaning measures. Clin Infect Dis. 2006, 42: 1552-60. 10.1086/503845.CrossRefPubMed
7.
go back to reference Hacek DM, Ogle AM, Fisher A, Robicsek A, Peterson LR: Significant impact of terminal room cleaning with bleach on reducing nosocomial Clostridium difficile. Amer J Infect Control. 2010, Hacek DM, Ogle AM, Fisher A, Robicsek A, Peterson LR: Significant impact of terminal room cleaning with bleach on reducing nosocomial Clostridium difficile. Amer J Infect Control. 2010,
8.
go back to reference Carling PC, Parry MF, Bruno-Murtha LA, Dick B: Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit Care Med. 2010, 38: 1212-4. 10.1097/CCM.0b013e3181cdf705.CrossRef Carling PC, Parry MF, Bruno-Murtha LA, Dick B: Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit Care Med. 2010, 38: 1212-4. 10.1097/CCM.0b013e3181cdf705.CrossRef
9.
go back to reference Conner-Kerr TA, Sullivan PK, Gaillard J, Jones RM: The effects of ultraviolet radiation on antibiotic-resistant bacteria in vitro. Ostomy Wound Management. 1998, 44: 50-6. Conner-Kerr TA, Sullivan PK, Gaillard J, Jones RM: The effects of ultraviolet radiation on antibiotic-resistant bacteria in vitro. Ostomy Wound Management. 1998, 44: 50-6.
10.
go back to reference Griego VM, Spence KD: Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl Env Microbiol. 1977, 35: 906-10. Griego VM, Spence KD: Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl Env Microbiol. 1977, 35: 906-10.
11.
go back to reference Hercik F: Action of ultraviolet light on spores and vegetative forms of Bacillus megatherium sp. J Gen Physiol. 1936, 20: 589-94. Hercik F: Action of ultraviolet light on spores and vegetative forms of Bacillus megatherium sp. J Gen Physiol. 1936, 20: 589-94.
12.
go back to reference Setlow P: Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol. 2006, 101: 514-25. 10.1111/j.1365-2672.2005.02736.x.CrossRefPubMed Setlow P: Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol. 2006, 101: 514-25. 10.1111/j.1365-2672.2005.02736.x.CrossRefPubMed
13.
go back to reference Setlow P: Resistance of spores of Bacillus species to ultraviolet light. Environ Mol Mutagen. 2001, 38: 97-104. 10.1002/em.1058.CrossRefPubMed Setlow P: Resistance of spores of Bacillus species to ultraviolet light. Environ Mol Mutagen. 2001, 38: 97-104. 10.1002/em.1058.CrossRefPubMed
14.
go back to reference Thai TP, Keast DH, Campbell KE, Woodbury MG, Houghton PE: Effect of ultraviolet light C on bacterial colonization in chronic wounds. Ostomy Wound Management. 2005, 51: 32-45. Thai TP, Keast DH, Campbell KE, Woodbury MG, Houghton PE: Effect of ultraviolet light C on bacterial colonization in chronic wounds. Ostomy Wound Management. 2005, 51: 32-45.
15.
go back to reference Owens MU, Deal DR, Shoemaker MO, Knudson GB, Meszaros JE, Deal JL: High-dose ultraviolet C light inactivates spores of Bacillus subtilis var. niger and Bacillus anthracis Sterne on non-reflective surfaces. Appl Biosafety. 2005, 10: 240-247.CrossRef Owens MU, Deal DR, Shoemaker MO, Knudson GB, Meszaros JE, Deal JL: High-dose ultraviolet C light inactivates spores of Bacillus subtilis var. niger and Bacillus anthracis Sterne on non-reflective surfaces. Appl Biosafety. 2005, 10: 240-247.CrossRef
16.
go back to reference Nerandzic MM, Donskey CJ: Effective and reduced-cost modified selective medium for isolation of Clostridium difficile. J Clin Microbiol. 2009, 47: 397-400. 10.1128/JCM.01591-08.CrossRefPubMed Nerandzic MM, Donskey CJ: Effective and reduced-cost modified selective medium for isolation of Clostridium difficile. J Clin Microbiol. 2009, 47: 397-400. 10.1128/JCM.01591-08.CrossRefPubMed
17.
go back to reference National Committee for Clinical Laboratory Standards: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, M7. 2005, National Committee for Clinical Laboratory Standards, Wayne, PA National Committee for Clinical Laboratory Standards: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, M7. 2005, National Committee for Clinical Laboratory Standards, Wayne, PA
19.
go back to reference Barbut F, Menuet D, Verachten M, Girou E: Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for reduction of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009, 30: 507-514. 10.1086/597232.CrossRefPubMed Barbut F, Menuet D, Verachten M, Girou E: Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for reduction of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009, 30: 507-514. 10.1086/597232.CrossRefPubMed
20.
go back to reference Boyce JM, Havill NL, Otter JA, McDonald LC, Adams NM, Cooper T, Thompson A, Wiggs L, Killgore G, Tauman A, Noble-Wang J: Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol. 2008, 29: 723-729. 10.1086/589906.CrossRefPubMed Boyce JM, Havill NL, Otter JA, McDonald LC, Adams NM, Cooper T, Thompson A, Wiggs L, Killgore G, Tauman A, Noble-Wang J: Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol. 2008, 29: 723-729. 10.1086/589906.CrossRefPubMed
21.
go back to reference Boyce JM: New approaches to decontamination of rooms after patients are discharged. Infect Control Hosp Epidemiol. 2009, 30: 515-517. 10.1086/598999.CrossRefPubMed Boyce JM: New approaches to decontamination of rooms after patients are discharged. Infect Control Hosp Epidemiol. 2009, 30: 515-517. 10.1086/598999.CrossRefPubMed
Metadata
Title
Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms
Authors
Michelle M Nerandzic
Jennifer L Cadnum
Michael J Pultz
Curtis J Donskey
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2010
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-10-197

Other articles of this Issue 1/2010

BMC Infectious Diseases 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.