Skip to main content
Top
Published in: BMC Gastroenterology 1/2008

Open Access 01-12-2008 | Research article

The pro-apoptotic K-Ras 4A proto-oncoprotein does not affect tumorigenesis in the Apc Min/+mouse small intestine

Authors: Charles E Patek, Mark J Arends, Lorraine Rose, Feijun Luo, Marion Walker, Paul S Devenney, Rachel L Berry, Nicola J Lawrence, Rachel A Ridgway, Owen J Sansom, Martin L Hooper

Published in: BMC Gastroenterology | Issue 1/2008

Login to get access

Abstract

Background

Alterations in gene splicing occur in human sporadic colorectal cancer (CRC) and may contribute to tumour progression. The K-ras proto-oncogene encodes two splice variants, K-ras 4A and 4B, and K-ras activating mutations which jointly affect both isoforms are prevalent in CRC. Past studies have established that splicing of both the K-ras oncogene and proto-oncogene is altered in CRC in favour of K-ras 4B. The present study addressed whether the K-Ras 4A proto-oncoprotein can suppress tumour development in the absence of its oncogenic allele, utilising the Apc Min/+ (Min) mouse that spontaneously develops intestinal tumours that do not harbour K-ras activating mutations, and the K-ras tmΔ4A/tmΔ4A mouse that can express the K-ras 4B splice variant only. By this means tumorigenesis in the small intestine was compared between Apc Min/+, K-ras +/+ and Apc Min/+, K-ras tmΔ4A/tmΔ4A mice that can, and cannot, express the K-ras 4A proto-oncoprotein respectively.

Methods

The relative levels of expression of the K-ras splice variants in normal small intestine and small intestinal tumours were quantified by real-time RT-qPCR analysis. Inbred (C57BL/6) Apc Min/+, K-ras +/+ and Apc Min/+, K-ras tmΔ4A/tmΔ4A mice were generated and the genotypes confirmed by PCR analysis. Survival of stocks was compared by the Mantel-Haenszel test, and tumour number and area compared by Student's t-test in outwardly healthy mice at approximately 106 and 152 days of age. DNA sequencing of codons 12, 13 and 61 was performed to confirm the intestinal tumours did not harbour a K-ras activating mutation.

Results

The K-ras 4A transcript accounted for about 50% of K-ras expressed in the small intestine of both wild-type and Min mice. Tumours in the small intestine of Min mice showed increased levels of K-ras 4B transcript expression, but no appreciable change in K-ras 4A transcript levels. No K-ras activating mutations were detected in 27 intestinal tumours derived from Min and compound mutant Min mice. K-Ras 4A deficiency did not affect mouse survival, or tumour number, size or histopathology.

Conclusion

The K-Ras 4A proto-oncoprotein does not exhibit tumour suppressor activity in the small intestine, even though the K-ras 4A/4B ratio is reduced in adenomas lacking K-ras activating mutations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jas JR: Colorectal cancer: a multipathway disease. Crit Rev Oncog. 2006, 12: 273-287.CrossRef Jas JR: Colorectal cancer: a multipathway disease. Crit Rev Oncog. 2006, 12: 273-287.CrossRef
2.
go back to reference Srebrow A, Kornblihtt AR: The connection between splicing and cancer. J Cell Sci. 2006, 119: 2635-2641. 10.1242/jcs.03053.CrossRefPubMed Srebrow A, Kornblihtt AR: The connection between splicing and cancer. J Cell Sci. 2006, 119: 2635-2641. 10.1242/jcs.03053.CrossRefPubMed
3.
go back to reference Venables JP: Unbalanced alternative splicing and its significance in cancer. Bioessays. 2006, 28: 378-386. 10.1002/bies.20390.CrossRefPubMed Venables JP: Unbalanced alternative splicing and its significance in cancer. Bioessays. 2006, 28: 378-386. 10.1002/bies.20390.CrossRefPubMed
4.
go back to reference Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, Schweitzer A, Awad T, Sugnet C, Dee S, Davies C, Williams A, Turpaz Y: Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics. 2006, 7: 325-43. 10.1186/1471-2164-7-325.CrossRefPubMedPubMedCentral Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, Schweitzer A, Awad T, Sugnet C, Dee S, Davies C, Williams A, Turpaz Y: Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics. 2006, 7: 325-43. 10.1186/1471-2164-7-325.CrossRefPubMedPubMedCentral
5.
go back to reference Skotheim RI, Nees M: Alternative splicing in cancer: Noise, functional, or systematic ?. Int J Biochem Cell Biol. 2007, 39: 1432-1449. 10.1016/j.biocel.2007.02.016.CrossRefPubMed Skotheim RI, Nees M: Alternative splicing in cancer: Noise, functional, or systematic ?. Int J Biochem Cell Biol. 2007, 39: 1432-1449. 10.1016/j.biocel.2007.02.016.CrossRefPubMed
6.
go back to reference Malumbres M, Barbacid M: RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003, 3: 459-465. 10.1038/nrc1097.CrossRefPubMed Malumbres M, Barbacid M: RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003, 3: 459-465. 10.1038/nrc1097.CrossRefPubMed
7.
go back to reference Li B-H, Zhao P, Liu S-Z, Yu Y-M, Han M, Wen J-K: Matrix metallo-proteinase-2 and tissue inhibitor of metalloproteinase-2 in colorectal carcinoma invasion and metastasis. World J Gastroenterol. 2005, 11: 3046-3050.CrossRefPubMedPubMedCentral Li B-H, Zhao P, Liu S-Z, Yu Y-M, Han M, Wen J-K: Matrix metallo-proteinase-2 and tissue inhibitor of metalloproteinase-2 in colorectal carcinoma invasion and metastasis. World J Gastroenterol. 2005, 11: 3046-3050.CrossRefPubMedPubMedCentral
8.
go back to reference Pollock CB, Shirasawa S, Sasasuki T, Kolch W, Dhillon AS: Oncogenic K-RAS is required to maintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells. Cancer Res. 2005, 65: 1244-1250. 10.1158/0008-5472.CAN-04-1911.CrossRefPubMed Pollock CB, Shirasawa S, Sasasuki T, Kolch W, Dhillon AS: Oncogenic K-RAS is required to maintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells. Cancer Res. 2005, 65: 1244-1250. 10.1158/0008-5472.CAN-04-1911.CrossRefPubMed
9.
go back to reference Smakman N, Borel Rinkes IH, Voest EE, Kranenburg O: Control of colorectal metastasis formation by K-Ras. Biochim Biophys Acta. 2005, 1756: 103-114.PubMed Smakman N, Borel Rinkes IH, Voest EE, Kranenburg O: Control of colorectal metastasis formation by K-Ras. Biochim Biophys Acta. 2005, 1756: 103-114.PubMed
10.
go back to reference Voice JK, Klemke RL, Le A, Jackson JH: Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J Biol Chem. 1999, 274: 17164-17170. 10.1074/jbc.274.24.17164.CrossRefPubMed Voice JK, Klemke RL, Le A, Jackson JH: Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J Biol Chem. 1999, 274: 17164-17170. 10.1074/jbc.274.24.17164.CrossRefPubMed
11.
go back to reference Butz JA, Roberts KG, Edwards JS: Detecting changes in the relative expression of KRAS2 splice variants using polymerase colonies. Biotechnol Prog. 2004, 20: 1836-1839. 10.1021/bp0343054.CrossRefPubMed Butz JA, Roberts KG, Edwards JS: Detecting changes in the relative expression of KRAS2 splice variants using polymerase colonies. Biotechnol Prog. 2004, 20: 1836-1839. 10.1021/bp0343054.CrossRefPubMed
12.
go back to reference Plowman SJ, Berry RL, Bader SA, Luo F, Arends MJ, Harrison DJ, Hooper ML, Patek CE: K-ras 4A and 4B are co-expressed widely in human tissues, and their ratio is altered in sporadic colorectal cancer. J Exp Clin Cancer Res. 2006, 25: 259-267.PubMed Plowman SJ, Berry RL, Bader SA, Luo F, Arends MJ, Harrison DJ, Hooper ML, Patek CE: K-ras 4A and 4B are co-expressed widely in human tissues, and their ratio is altered in sporadic colorectal cancer. J Exp Clin Cancer Res. 2006, 25: 259-267.PubMed
13.
go back to reference Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ, Whitsett JA, Koretsky A, Varmus HE: Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumour suppressor genes. Genes Develop. 2001, 15: 3249-3262. 10.1101/gad.947701.CrossRefPubMedPubMedCentral Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ, Whitsett JA, Koretsky A, Varmus HE: Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumour suppressor genes. Genes Develop. 2001, 15: 3249-3262. 10.1101/gad.947701.CrossRefPubMedPubMedCentral
14.
go back to reference Ji H, Wang Z, Perera S, Li D, Liang M-C, Zaghlul S, McNamara K, Chen L, Albert M, Sun Y, Al-Hashem R, Chirieac LR, Padera R, Bronson RT, Thomas RK, Garraway LA, Janne PA, Johnson BE, Chin L, Wong K-K: Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models. Cancer Res. 2007, 67: 4933-4939. 10.1158/0008-5472.CAN-06-4592.CrossRefPubMed Ji H, Wang Z, Perera S, Li D, Liang M-C, Zaghlul S, McNamara K, Chen L, Albert M, Sun Y, Al-Hashem R, Chirieac LR, Padera R, Bronson RT, Thomas RK, Garraway LA, Janne PA, Johnson BE, Chin L, Wong K-K: Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models. Cancer Res. 2007, 67: 4933-4939. 10.1158/0008-5472.CAN-06-4592.CrossRefPubMed
15.
go back to reference Liao J, Wolfman JC, Wolfman A: K-Ras regulates the steady-state expression of matrix metalloproteinase 2 in fibroblasts. J Biol Chem. 2003, 278: 31871-31878. 10.1074/jbc.M301931200.CrossRefPubMed Liao J, Wolfman JC, Wolfman A: K-Ras regulates the steady-state expression of matrix metalloproteinase 2 in fibroblasts. J Biol Chem. 2003, 278: 31871-31878. 10.1074/jbc.M301931200.CrossRefPubMed
16.
go back to reference Plowman SJ, Arends MJ, Brownstein DG, Luo F, Devenney PS, Rose L, Ritchie A-M, Berry RL, Harrison DJ, Hooper ML, Patek CE: The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice. Exp Cell Res. 2006, 312: 16-26. 10.1016/j.yexcr.2005.10.004.CrossRefPubMed Plowman SJ, Arends MJ, Brownstein DG, Luo F, Devenney PS, Rose L, Ritchie A-M, Berry RL, Harrison DJ, Hooper ML, Patek CE: The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice. Exp Cell Res. 2006, 312: 16-26. 10.1016/j.yexcr.2005.10.004.CrossRefPubMed
17.
go back to reference Burdon T, Smith A, Savatier P: Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 2002, 12: 432-438. 10.1016/S0962-8924(02)02352-8.CrossRefPubMed Burdon T, Smith A, Savatier P: Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 2002, 12: 432-438. 10.1016/S0962-8924(02)02352-8.CrossRefPubMed
18.
go back to reference Plowman SJ, Williamson DJ, O'Sullivan MJ, Doig J, Ritchie A-M, Harrison DJ, Melton DW, Arends MJ, Hooper ML, Patek CE: While K-ras is essential for mouse development, expression of the K-ras 4A splice variant is dispensable. Mol Cell Biol. 2003, 23: 9245-9250. 10.1128/MCB.23.24.9245-9250.2003.CrossRefPubMedPubMedCentral Plowman SJ, Williamson DJ, O'Sullivan MJ, Doig J, Ritchie A-M, Harrison DJ, Melton DW, Arends MJ, Hooper ML, Patek CE: While K-ras is essential for mouse development, expression of the K-ras 4A splice variant is dispensable. Mol Cell Biol. 2003, 23: 9245-9250. 10.1128/MCB.23.24.9245-9250.2003.CrossRefPubMedPubMedCentral
19.
go back to reference Yamada Y, Mori H: Multistep carcinogenesis of the colon in Apc Min/+ mouse. Cancer Sci. 2007, 98: 6-10. 10.1111/j.1349-7006.2006.00348.x.CrossRefPubMed Yamada Y, Mori H: Multistep carcinogenesis of the colon in Apc Min/+ mouse. Cancer Sci. 2007, 98: 6-10. 10.1111/j.1349-7006.2006.00348.x.CrossRefPubMed
20.
go back to reference Shoemaker AR, Luongo C, Moser AR, Marton LJ, Dove WF: Somatic mutational mechanisms involved in intestinal tumor formation in Min mice. Cancer Res. 1997, 57: 1999-2006.PubMed Shoemaker AR, Luongo C, Moser AR, Marton LJ, Dove WF: Somatic mutational mechanisms involved in intestinal tumor formation in Min mice. Cancer Res. 1997, 57: 1999-2006.PubMed
22.
go back to reference Luongo C, Moser AR, Gledhill S, Dove WF: Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res. 1994, 54: 5947-5952.PubMed Luongo C, Moser AR, Gledhill S, Dove WF: Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res. 1994, 54: 5947-5952.PubMed
23.
go back to reference Lee ET: Statistical Methods for Survival Data Analysis. 1992, Wiley: New York, 2 Lee ET: Statistical Methods for Survival Data Analysis. 1992, Wiley: New York, 2
24.
go back to reference Pells S, Divjak M, Romanowski P, Impey H, Hawkins NJ, Clarke AR, Hooper ML, Williamson DJ: Developmentally-regulated expression of murine K-ras isoforms. Oncogene. 1997, 15: 1781-1786. 10.1038/sj.onc.1201354.CrossRefPubMed Pells S, Divjak M, Romanowski P, Impey H, Hawkins NJ, Clarke AR, Hooper ML, Williamson DJ: Developmentally-regulated expression of murine K-ras isoforms. Oncogene. 1997, 15: 1781-1786. 10.1038/sj.onc.1201354.CrossRefPubMed
25.
go back to reference McAlpine CA, Barak Y, Matise I, Cormier RT: Intestinal-specific PPARγ deficiency enhances tumorigenesis in the ApcMin/+ mice. Int J Cancer. 2006, 119: 2339-2346. 10.1002/ijc.22115.CrossRefPubMed McAlpine CA, Barak Y, Matise I, Cormier RT: Intestinal-specific PPARγ deficiency enhances tumorigenesis in the ApcMin/+ mice. Int J Cancer. 2006, 119: 2339-2346. 10.1002/ijc.22115.CrossRefPubMed
26.
go back to reference Smits R, Kartheuser A, Jasgmohan-Ahangur S, Leblanc V, Breukel C, de Vries A, van Kranen H, van Kriecken JH, Williamson S, Edelmann W, Kucherlapati R, Khan P.M, Fodde R: Loss of Apc and the entire chromosome 18 but absence of mutations at the Ras and Tp53 genes in intestinal tumors from Apc1638N, a mouse model for Apc-driven carcinogenesis. Carcinogenesis. 1997, 18: 321-327. 10.1093/carcin/18.2.321.CrossRefPubMed Smits R, Kartheuser A, Jasgmohan-Ahangur S, Leblanc V, Breukel C, de Vries A, van Kranen H, van Kriecken JH, Williamson S, Edelmann W, Kucherlapati R, Khan P.M, Fodde R: Loss of Apc and the entire chromosome 18 but absence of mutations at the Ras and Tp53 genes in intestinal tumors from Apc1638N, a mouse model for Apc-driven carcinogenesis. Carcinogenesis. 1997, 18: 321-327. 10.1093/carcin/18.2.321.CrossRefPubMed
27.
go back to reference Tanaka T, Kohno H, Suzuki R, Hata K, Sugie S, Niho N, Sakano K, Takahashi M, Wakabayashi K: Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc(Min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer. 2006, 118: 25-34. 10.1002/ijc.21282.CrossRefPubMed Tanaka T, Kohno H, Suzuki R, Hata K, Sugie S, Niho N, Sakano K, Takahashi M, Wakabayashi K: Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc(Min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer. 2006, 118: 25-34. 10.1002/ijc.21282.CrossRefPubMed
28.
go back to reference Taketo MM: Mouse models of gastrointestinal tumors. Cancer Sci. 2006, 97: 355-361. 10.1111/j.1349-7006.2006.00190.x.CrossRefPubMed Taketo MM: Mouse models of gastrointestinal tumors. Cancer Sci. 2006, 97: 355-361. 10.1111/j.1349-7006.2006.00190.x.CrossRefPubMed
29.
go back to reference Halberg RB, Katzung DS, Hoff PD, Moser AR, Cole CE, Lubet RA, Donehower LA, Jacoby RF, Dove WF: Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specifically of modifiers. Proc Natl Acad Sci USA. 2000, 97: 3461-3466. 10.1073/pnas.050585597.CrossRefPubMedPubMedCentral Halberg RB, Katzung DS, Hoff PD, Moser AR, Cole CE, Lubet RA, Donehower LA, Jacoby RF, Dove WF: Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specifically of modifiers. Proc Natl Acad Sci USA. 2000, 97: 3461-3466. 10.1073/pnas.050585597.CrossRefPubMedPubMedCentral
30.
go back to reference Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A, Born van de M, Malats N, Sancho E, Boon E, Pawson T, Gallinger S, Pals S, Clevers H: EphB receptor activity suppresses colorectal cancer progression. Nature. 2005, 435: 1126-1130. 10.1038/nature03626.CrossRefPubMed Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A, Born van de M, Malats N, Sancho E, Boon E, Pawson T, Gallinger S, Pals S, Clevers H: EphB receptor activity suppresses colorectal cancer progression. Nature. 2005, 435: 1126-1130. 10.1038/nature03626.CrossRefPubMed
31.
go back to reference Rao CV, Yang TM, Swamy MV, Liu T, Fang Y, Mahmood R, Jhanwar-Uniyal M, Dai W: Colonic tumourigenesis in BubR1/Apc Min/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proc Natl Acad Sci USA. 2005, 102: 4365-4370. 10.1073/pnas.0407822102.CrossRefPubMedPubMedCentral Rao CV, Yang TM, Swamy MV, Liu T, Fang Y, Mahmood R, Jhanwar-Uniyal M, Dai W: Colonic tumourigenesis in BubR1/Apc Min/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proc Natl Acad Sci USA. 2005, 102: 4365-4370. 10.1073/pnas.0407822102.CrossRefPubMedPubMedCentral
32.
go back to reference Kohno M, Momoi M, Oo ML, Paik J-H, Lee Y-M, Venkataraman K, Ai Y, Ristimaki AP, First H, Sano H, Rosenberg D, Saba JD, Proia R, Hla T: Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol. 2006, 26: 7211-7223. 10.1128/MCB.02341-05.CrossRefPubMedPubMedCentral Kohno M, Momoi M, Oo ML, Paik J-H, Lee Y-M, Venkataraman K, Ai Y, Ristimaki AP, First H, Sano H, Rosenberg D, Saba JD, Proia R, Hla T: Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol. 2006, 26: 7211-7223. 10.1128/MCB.02341-05.CrossRefPubMedPubMedCentral
33.
go back to reference Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, Cerchietti L, Meng FG, Augenlicht LH, Mariadason JM, Hendrich B, Melnick A, Prokhortchouk E, Clarke A, Bird A: Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol. 2006, 26: 199-208. 10.1128/MCB.26.1.199-208.2006.CrossRefPubMedPubMedCentral Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, Cerchietti L, Meng FG, Augenlicht LH, Mariadason JM, Hendrich B, Melnick A, Prokhortchouk E, Clarke A, Bird A: Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol. 2006, 26: 199-208. 10.1128/MCB.26.1.199-208.2006.CrossRefPubMedPubMedCentral
34.
go back to reference Sansom OJ, Mansergh FC, Evans MJ, Wilkins JA, Clarke AR: Deficiency of SPARC suppresses intestinal tumorigenesis in APCMin/+ mice. Gut. 2007, 56: 1410-1414. 10.1136/gut.2006.116921.CrossRefPubMedPubMedCentral Sansom OJ, Mansergh FC, Evans MJ, Wilkins JA, Clarke AR: Deficiency of SPARC suppresses intestinal tumorigenesis in APCMin/+ mice. Gut. 2007, 56: 1410-1414. 10.1136/gut.2006.116921.CrossRefPubMedPubMedCentral
35.
go back to reference Korsisaar N, Man IM, Forrest WF, Pal N, Bai W, Fuh G, Peale FV, Smits R, Ferrara N: Inhibition of VEGF-A prevents the angiogenic switch and results in increased survival of Apc +/Min mice. Proc Natl Acad Sci USA. 2007, 104: 10625-10630. 10.1073/pnas.0704213104.CrossRef Korsisaar N, Man IM, Forrest WF, Pal N, Bai W, Fuh G, Peale FV, Smits R, Ferrara N: Inhibition of VEGF-A prevents the angiogenic switch and results in increased survival of Apc +/Min mice. Proc Natl Acad Sci USA. 2007, 104: 10625-10630. 10.1073/pnas.0704213104.CrossRef
36.
go back to reference Shao J, Washington MK, Saxena R, Sheng H: Heterozygous disruption of the PTEN promotes intestinal neoplasia in APCMin/+ mouse: roles of osteopontin. Carcinogenesis. 2007, 28: 2476-2483. 10.1093/carcin/bgm186.CrossRefPubMed Shao J, Washington MK, Saxena R, Sheng H: Heterozygous disruption of the PTEN promotes intestinal neoplasia in APCMin/+ mouse: roles of osteopontin. Carcinogenesis. 2007, 28: 2476-2483. 10.1093/carcin/bgm186.CrossRefPubMed
37.
go back to reference Kwong LN, Weiss KR, Haigis KM, Dove WF: Atm is a negative regulator of intestinal neoplasia. Oncogene. 2008, 27: 1013-1018. 10.1038/sj.onc.1210708.CrossRefPubMed Kwong LN, Weiss KR, Haigis KM, Dove WF: Atm is a negative regulator of intestinal neoplasia. Oncogene. 2008, 27: 1013-1018. 10.1038/sj.onc.1210708.CrossRefPubMed
38.
go back to reference Li P, Schulz S, Bombonati A, Palazzo JP, Hyslop TM, Xu Y, Baran AA, Siracusa LD, Pitari GM, Waldman SA: Guanylyl cyclase C suppresses intestinal tumorigenesis by restricting proliferation and maintaining genomic integrity. Gastroenterology. 2007, 133: 599-607. 10.1053/j.gastro.2007.05.052.CrossRefPubMed Li P, Schulz S, Bombonati A, Palazzo JP, Hyslop TM, Xu Y, Baran AA, Siracusa LD, Pitari GM, Waldman SA: Guanylyl cyclase C suppresses intestinal tumorigenesis by restricting proliferation and maintaining genomic integrity. Gastroenterology. 2007, 133: 599-607. 10.1053/j.gastro.2007.05.052.CrossRefPubMed
39.
go back to reference Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R, Jacks T: K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 1997, 11: 2468-2481. 10.1101/gad.11.19.2468.CrossRefPubMedPubMedCentral Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R, Jacks T: K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 1997, 11: 2468-2481. 10.1101/gad.11.19.2468.CrossRefPubMedPubMedCentral
40.
go back to reference Brooks DJ, James RM, Patek CE, Williamson J, Arends MJ: Mutant K-ras enhances apoptosis in embryonic stem cells in combination with DNA damage and is associated with increased levels of p19 (ARF). Oncogene. 2001, 20: 2144-2152. 10.1038/sj.onc.1204309.CrossRefPubMed Brooks DJ, James RM, Patek CE, Williamson J, Arends MJ: Mutant K-ras enhances apoptosis in embryonic stem cells in combination with DNA damage and is associated with increased levels of p19 (ARF). Oncogene. 2001, 20: 2144-2152. 10.1038/sj.onc.1204309.CrossRefPubMed
41.
go back to reference James RJ, Arends MJ, Plowman SJ, Brooks DG, Miles CG, West JD, Patek CE: K-ras proto-oncogene exhibits tumour suppressor activity as its absence promotes tumorigenesis in murine teratomas. Mol Cancer Res. 2003, 1: 820-825.PubMed James RJ, Arends MJ, Plowman SJ, Brooks DG, Miles CG, West JD, Patek CE: K-ras proto-oncogene exhibits tumour suppressor activity as its absence promotes tumorigenesis in murine teratomas. Mol Cancer Res. 2003, 1: 820-825.PubMed
42.
go back to reference Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J, Anderson MW, Sills RC, Hong HL, Devereux TR, Jacks T, Guan K-L, You M: Wildtype Kras 2 can inhibit lung carcinogenesis in mice. Nature Genet. 2001, 29: 25-33. 10.1038/ng721.CrossRefPubMed Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J, Anderson MW, Sills RC, Hong HL, Devereux TR, Jacks T, Guan K-L, You M: Wildtype Kras 2 can inhibit lung carcinogenesis in mice. Nature Genet. 2001, 29: 25-33. 10.1038/ng721.CrossRefPubMed
43.
go back to reference Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI: The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature. 2006, 443: 214-217. 10.1038/nature05077.CrossRefPubMed Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI: The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature. 2006, 443: 214-217. 10.1038/nature05077.CrossRefPubMed
44.
go back to reference Thompson TA, Hag JD, Lindstrom MJ, Griep AE, Lohse JK, Gould MN: Decreased susceptibility to MNU-induced mammary carcinogenesis in transgenic rats carrying multiple copies of a rat ras gene driven by the Harvey ras promoter. Oncogene. 2002, 21: 2797-2804. 10.1038/sj.onc.1205391.CrossRefPubMed Thompson TA, Hag JD, Lindstrom MJ, Griep AE, Lohse JK, Gould MN: Decreased susceptibility to MNU-induced mammary carcinogenesis in transgenic rats carrying multiple copies of a rat ras gene driven by the Harvey ras promoter. Oncogene. 2002, 21: 2797-2804. 10.1038/sj.onc.1205391.CrossRefPubMed
Metadata
Title
The pro-apoptotic K-Ras 4A proto-oncoprotein does not affect tumorigenesis in the Apc Min/+mouse small intestine
Authors
Charles E Patek
Mark J Arends
Lorraine Rose
Feijun Luo
Marion Walker
Paul S Devenney
Rachel L Berry
Nicola J Lawrence
Rachel A Ridgway
Owen J Sansom
Martin L Hooper
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2008
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/1471-230X-8-24

Other articles of this Issue 1/2008

BMC Gastroenterology 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.