Skip to main content
Top
Published in: BMC Immunology 1/2010

Open Access 01-12-2010 | Research article

GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro

Authors: Gitte S Jensen, Kathleen F Benson, Steve G Carter, John R Endres

Published in: BMC Immunology | Issue 1/2010

Login to get access

Abstract

Background

This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays.

Results

Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010.
Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro.
The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2.
Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA- and the PWM-induced expression of IL-10.

Conclusion

The data suggest that consumption of GanedenBC30TM may introduce both cell wall components and metabolites that modulate inflammatory processes in the gut. Both the cell wall and the supernatant possess strong immune modulating properties in vitro. The anti-inflammatory effects, combined with direct induction of IL-10, are of interest with respect to possible treatment of inflammatory bowel diseases as well as in support of a healthy immune system.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rescigno M, Lopatin U, Chieppa M: Interactions among dendritic cells, macrophages, and epithelial cells in the gut: implications for immune tolerance. Curr Opin Immunol. 2008, 20: 669-75. 10.1016/j.coi.2008.09.007.CrossRefPubMed Rescigno M, Lopatin U, Chieppa M: Interactions among dendritic cells, macrophages, and epithelial cells in the gut: implications for immune tolerance. Curr Opin Immunol. 2008, 20: 669-75. 10.1016/j.coi.2008.09.007.CrossRefPubMed
2.
go back to reference Ruemmele FM, Bier D, Marteau P, Rechkemmer G, Bourdet-Sicard R, Walker WA, Goulet O: Clinical evidence for immunomodulatory effects of probiotic bacteria. J Pediatr Gastroenterol Nutr. 2009, 48: 126-41. 10.1097/MPG.0b013e31817d80ca.CrossRefPubMed Ruemmele FM, Bier D, Marteau P, Rechkemmer G, Bourdet-Sicard R, Walker WA, Goulet O: Clinical evidence for immunomodulatory effects of probiotic bacteria. J Pediatr Gastroenterol Nutr. 2009, 48: 126-41. 10.1097/MPG.0b013e31817d80ca.CrossRefPubMed
3.
go back to reference Kim YS, Young MR, Bobe G, Colburn NH, Milner JA: Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prev Res (Phila Pa). 2009, 2: 200-8.CrossRef Kim YS, Young MR, Bobe G, Colburn NH, Milner JA: Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prev Res (Phila Pa). 2009, 2: 200-8.CrossRef
4.
go back to reference Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006, 444: 1027-31. 10.1038/nature05414.CrossRefPubMed Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006, 444: 1027-31. 10.1038/nature05414.CrossRefPubMed
5.
go back to reference Kushner I, Rzewnicki D, Samols D: What does minor elevation of C-reactive protein signify?. Am J Med. 2006, 119: e17-28. 10.1016/j.amjmed.2005.06.057.CrossRefPubMed Kushner I, Rzewnicki D, Samols D: What does minor elevation of C-reactive protein signify?. Am J Med. 2006, 119: e17-28. 10.1016/j.amjmed.2005.06.057.CrossRefPubMed
6.
go back to reference Karin M, Lawrence T, Nizet V: Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006, 124: 823-35. 10.1016/j.cell.2006.02.016.CrossRefPubMed Karin M, Lawrence T, Nizet V: Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006, 124: 823-35. 10.1016/j.cell.2006.02.016.CrossRefPubMed
7.
go back to reference Hormannsperger G, Haller D: Molecular crosstalk of probiotic bacteria with the intestinal immune system: Clinical relevance in the context of inflammatory bowel disease. Int J Med Microbiol. 2010, 300 (1): 63-73. 10.1016/j.ijmm.2009.08.006.CrossRefPubMed Hormannsperger G, Haller D: Molecular crosstalk of probiotic bacteria with the intestinal immune system: Clinical relevance in the context of inflammatory bowel disease. Int J Med Microbiol. 2010, 300 (1): 63-73. 10.1016/j.ijmm.2009.08.006.CrossRefPubMed
8.
go back to reference de Vrese M, Schrezenmeir J: Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008, 111: 1-66.PubMed de Vrese M, Schrezenmeir J: Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008, 111: 1-66.PubMed
9.
go back to reference Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC: Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis. 2009, 15: 300-10. 10.1002/ibd.20602.CrossRefPubMed Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC: Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis. 2009, 15: 300-10. 10.1002/ibd.20602.CrossRefPubMed
10.
go back to reference Duerkop BA, Vaishnava S, Hooper LV: Immune responses to the microbiota at the intestinal mucosal surface. Immunity. 2009, 31: 368-76. 10.1016/j.immuni.2009.08.009.CrossRefPubMed Duerkop BA, Vaishnava S, Hooper LV: Immune responses to the microbiota at the intestinal mucosal surface. Immunity. 2009, 31: 368-76. 10.1016/j.immuni.2009.08.009.CrossRefPubMed
12.
go back to reference Bezkorovainy A: Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr. 2001, 73: 399S-405S.PubMed Bezkorovainy A: Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr. 2001, 73: 399S-405S.PubMed
13.
go back to reference Graff S, Chaumeil JC, Boy P, Lai-Kuen R, Charrueau C: Formulations for protecting the probiotic Saccharomyces boulardii from degradation in acidic condition. Biol Pharm Bull. 2008, 31: 266-72. 10.1248/bpb.31.266.CrossRefPubMed Graff S, Chaumeil JC, Boy P, Lai-Kuen R, Charrueau C: Formulations for protecting the probiotic Saccharomyces boulardii from degradation in acidic condition. Biol Pharm Bull. 2008, 31: 266-72. 10.1248/bpb.31.266.CrossRefPubMed
14.
go back to reference Ljungh A, Wadstrom T: Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol. 2006, 7: 73-89.PubMed Ljungh A, Wadstrom T: Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol. 2006, 7: 73-89.PubMed
15.
go back to reference Casula G, Cutting SM: Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol. 2002, 68: 2344-52. 10.1128/AEM.68.5.2344-2352.2002.PubMedCentralCrossRefPubMed Casula G, Cutting SM: Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol. 2002, 68: 2344-52. 10.1128/AEM.68.5.2344-2352.2002.PubMedCentralCrossRefPubMed
16.
go back to reference Endres JR, Clewell A, Jade KA, Farber T, Hauswirth J, Schauss AG: Safety assessment of a proprietary preparation of a novel Probiotic, Bacillus coagulans, as a food ingredient. Food Chem Toxicol. 2009, 47: 1231-8. 10.1016/j.fct.2009.02.018.PubMedCentralCrossRefPubMed Endres JR, Clewell A, Jade KA, Farber T, Hauswirth J, Schauss AG: Safety assessment of a proprietary preparation of a novel Probiotic, Bacillus coagulans, as a food ingredient. Food Chem Toxicol. 2009, 47: 1231-8. 10.1016/j.fct.2009.02.018.PubMedCentralCrossRefPubMed
17.
go back to reference Sanders ME, Morelli L, Tompkins TA: Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf. 2003, 2: 101-110. 10.1111/j.1541-4337.2003.tb00017.x.CrossRef Sanders ME, Morelli L, Tompkins TA: Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf. 2003, 2: 101-110. 10.1111/j.1541-4337.2003.tb00017.x.CrossRef
18.
go back to reference Hun L: Bacillus coagulans significantly improved abdominal pain and bloating in patients with IBS. Postgrad Med. 2009, 121: 119-24. 10.3810/pgm.2009.03.1984.CrossRefPubMed Hun L: Bacillus coagulans significantly improved abdominal pain and bloating in patients with IBS. Postgrad Med. 2009, 121: 119-24. 10.3810/pgm.2009.03.1984.CrossRefPubMed
19.
go back to reference Baron M: A patented strain of Bacillus coagulans increased immune response to viral challenge. Postgrad Med. 2009, 121: 114-8. 10.3810/pgm.2009.03.1971.CrossRefPubMed Baron M: A patented strain of Bacillus coagulans increased immune response to viral challenge. Postgrad Med. 2009, 121: 114-8. 10.3810/pgm.2009.03.1971.CrossRefPubMed
20.
go back to reference Ostad SN, Salarian AA, Ghahramani MH, Fazeli MR, Samadi N, Jamalifar H: Live and heat-inactivated lactobacilli from feces inhibit Salmonella typhi and Escherichia coli adherence to Caco-2 cells. Folia Microbiol (Praha). 2009, 54: 157-60. 10.1007/s12223-009-0024-7.CrossRef Ostad SN, Salarian AA, Ghahramani MH, Fazeli MR, Samadi N, Jamalifar H: Live and heat-inactivated lactobacilli from feces inhibit Salmonella typhi and Escherichia coli adherence to Caco-2 cells. Folia Microbiol (Praha). 2009, 54: 157-60. 10.1007/s12223-009-0024-7.CrossRef
21.
go back to reference Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D: Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol. 2008, 10: 37-54.PubMed Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D: Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol. 2008, 10: 37-54.PubMed
23.
go back to reference Draing C, Sigel S, Deininger S, Traub S, Munke R, Mayer C, Hareng L, Hartung T, von Aulock S, Hermann C: Cytokine induction by Gram-positive bacteria. Immunobiology. 2008, 213: 285-96. 10.1016/j.imbio.2007.12.001.CrossRefPubMed Draing C, Sigel S, Deininger S, Traub S, Munke R, Mayer C, Hareng L, Hartung T, von Aulock S, Hermann C: Cytokine induction by Gram-positive bacteria. Immunobiology. 2008, 213: 285-96. 10.1016/j.imbio.2007.12.001.CrossRefPubMed
24.
go back to reference Li WI, Brackett BG, Halper J: Culture supernatant of Lactobacillus acidophilus stimulates proliferation of embryonic cells. Exp Biol Med (Maywood). 2005, 230: 494-500. Li WI, Brackett BG, Halper J: Culture supernatant of Lactobacillus acidophilus stimulates proliferation of embryonic cells. Exp Biol Med (Maywood). 2005, 230: 494-500.
25.
go back to reference Honzel D, Carter SG, Redman KA, Schauss AG, Endres JR, Jensen GS: Comparison of Chemical and Cell-Based Antioxidant Methods for Evaluation of Foods and Natural Products: Generating Multifaceted Data by Parallel Testing Using Erythrocytes and Polymorphonuclear Cells. J Agric Food Chem. 2008, 56: 8319-8325. 10.1021/jf800401d.CrossRefPubMed Honzel D, Carter SG, Redman KA, Schauss AG, Endres JR, Jensen GS: Comparison of Chemical and Cell-Based Antioxidant Methods for Evaluation of Foods and Natural Products: Generating Multifaceted Data by Parallel Testing Using Erythrocytes and Polymorphonuclear Cells. J Agric Food Chem. 2008, 56: 8319-8325. 10.1021/jf800401d.CrossRefPubMed
26.
go back to reference Jensen GS, Patterson KM, Barnes J, Schauss AG, Beaman R, Reeves SG, Robinson LE: A Double-Blind Placebo-Controlled, Randomized Pilot Study: Consumption of a High-Metabolite Immunogen from Yeast Culture has Beneficial Effects on Erythrocyte Health and Mucosal Immune Protection in Healthy Subjects. Open Nutrition Journal. 2008, 2: 68-75. 10.2174/1874288200802010068.CrossRef Jensen GS, Patterson KM, Barnes J, Schauss AG, Beaman R, Reeves SG, Robinson LE: A Double-Blind Placebo-Controlled, Randomized Pilot Study: Consumption of a High-Metabolite Immunogen from Yeast Culture has Beneficial Effects on Erythrocyte Health and Mucosal Immune Protection in Healthy Subjects. Open Nutrition Journal. 2008, 2: 68-75. 10.2174/1874288200802010068.CrossRef
27.
go back to reference Hart AN, Zaske LA, Patterson KM, Drapeau C, Jensen GS: Natural killer cell activation and modulation of chemokine receptor profile in vitro by an extract from the cyanophyta Aphanizomenon flos-aquae. J Med Food. 2007, 10: 435-41. 10.1089/jmf.2007.401.CrossRefPubMed Hart AN, Zaske LA, Patterson KM, Drapeau C, Jensen GS: Natural killer cell activation and modulation of chemokine receptor profile in vitro by an extract from the cyanophyta Aphanizomenon flos-aquae. J Med Food. 2007, 10: 435-41. 10.1089/jmf.2007.401.CrossRefPubMed
28.
go back to reference Jensen GS, Hart AN, Schauss AG: An antiinflammatory immunogen from yeast culture induces activation and alters chemokine receptor expression on human natural killer cells and B lymphocytes in vitro. Nutrition Research. 2007, 27: 327-335. 10.1016/j.nutres.2007.04.008.CrossRef Jensen GS, Hart AN, Schauss AG: An antiinflammatory immunogen from yeast culture induces activation and alters chemokine receptor expression on human natural killer cells and B lymphocytes in vitro. Nutrition Research. 2007, 27: 327-335. 10.1016/j.nutres.2007.04.008.CrossRef
29.
go back to reference Alter G, Malenfant JM, Altfeld M: CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004, 294: 15-22. 10.1016/j.jim.2004.08.008.CrossRefPubMed Alter G, Malenfant JM, Altfeld M: CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004, 294: 15-22. 10.1016/j.jim.2004.08.008.CrossRefPubMed
30.
go back to reference Clausen J, Vergeiner B, Enk M, Petzer AL, Gastl G, Gunsilius E: Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells. Immunobiology. 2003, 207: 85-93. 10.1078/0171-2985-00219.CrossRefPubMed Clausen J, Vergeiner B, Enk M, Petzer AL, Gastl G, Gunsilius E: Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells. Immunobiology. 2003, 207: 85-93. 10.1078/0171-2985-00219.CrossRefPubMed
31.
go back to reference Harris G, KuoLee R, Chen W: Role of Toll-like receptors in health and diseases of gastrointestinal tract. World J Gastroenterol. 2006, 12: 2149-60.PubMedCentralPubMed Harris G, KuoLee R, Chen W: Role of Toll-like receptors in health and diseases of gastrointestinal tract. World J Gastroenterol. 2006, 12: 2149-60.PubMedCentralPubMed
32.
go back to reference Neurath MF, Finotto S, Glimcher LH: The role of Th1/Th2 polarization in mucosal immunity. Nat Med. 2002, 8: 567-73. 10.1038/nm0602-567.CrossRefPubMed Neurath MF, Finotto S, Glimcher LH: The role of Th1/Th2 polarization in mucosal immunity. Nat Med. 2002, 8: 567-73. 10.1038/nm0602-567.CrossRefPubMed
33.
go back to reference Nicholson LB, Raveney BJ, Munder M: Monocyte dependent regulation of autoimmune inflammation. Curr Mol Med. 2009, 9: 23-9. 10.2174/156652409787314499.CrossRefPubMed Nicholson LB, Raveney BJ, Munder M: Monocyte dependent regulation of autoimmune inflammation. Curr Mol Med. 2009, 9: 23-9. 10.2174/156652409787314499.CrossRefPubMed
34.
go back to reference Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L: A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol. 2006, 4: 754-9. 10.1016/j.cgh.2006.03.028.CrossRefPubMed Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L: A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol. 2006, 4: 754-9. 10.1016/j.cgh.2006.03.028.CrossRefPubMed
35.
go back to reference Moretto MM, Weiss LM, Combe CL, Khan IA: IFN-gamma-producing dendritic cells are important for priming of gut intraepithelial lymphocyte response against intracellular parasitic infection. J Immunol. 2007, 179: 2485-92.PubMedCentralCrossRefPubMed Moretto MM, Weiss LM, Combe CL, Khan IA: IFN-gamma-producing dendritic cells are important for priming of gut intraepithelial lymphocyte response against intracellular parasitic infection. J Immunol. 2007, 179: 2485-92.PubMedCentralCrossRefPubMed
Metadata
Title
GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro
Authors
Gitte S Jensen
Kathleen F Benson
Steve G Carter
John R Endres
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2010
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/1471-2172-11-15

Other articles of this Issue 1/2010

BMC Immunology 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.