Skip to main content
Top
Published in: Respiratory Research 1/2007

Open Access 01-12-2007 | Research

Maternal allergic contact dermatitis causes increased asthma risk in offspring

Authors: Robert H Lim, Mohamed S Arredouani, Alexey Fedulov, Lester Kobzik, Cedric Hubeau

Published in: Respiratory Research | Issue 1/2007

Login to get access

Abstract

Background

Offspring of asthmatic mothers have increased risk of developing asthma, based on human epidemiologic data and experimental animal models. The objective of this study was to determine whether maternal allergy at non-pulmonary sites can increase asthma risk in offspring.

Methods

BALB/c female mice received 2 topical applications of vehicle, dinitrochlorobenzene, or toluene diisocyanate before mating with untreated males. Dinitrochlorobenzene is a skin-sensitizer only and known to induce a Th1 response, while toluene diisocyanate is both a skin and respiratory sensitizer that causes a Th2 response. Both cause allergic contact dermatitis. Offspring underwent an intentionally suboptimal protocol of allergen sensitization and aerosol challenge, followed by evaluation of airway hyperresponsiveness, allergic airway inflammation, and cytokine production. Mothers were tested for allergic airway disease, evidence of dermatitis, cellularity of the draining lymph nodes, and systemic cytokine levels. The role of interleukin-4 was also explored using interleukin-4 deficient mice.

Results

Offspring of toluene diisocyanate but not dinitrochlorobenzene-treated mothers developed an asthmatic phenotype following allergen sensitization and challenge, seen as increased Penh values, airway inflammation, bronchoalveolar lavage total cell counts and eosinophilia, and Th2 cytokine imbalance in the lung. Toluene diisocyanate treated interleukin-4 deficient mothers were able to transfer asthma risk to offspring. Mothers in both experimental groups developed allergic contact dermatitis, but not allergic airway disease.

Conclusion

Maternal non-respiratory allergy (Th2-skewed dermatitis caused by toluene diisocyanate) can result in the maternal transmission of asthma risk in mice.
Literature
2.
go back to reference Cohn L, Elias JA, Chupp GL: Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol 2004, 22:789–815.CrossRefPubMed Cohn L, Elias JA, Chupp GL: Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol 2004, 22:789–815.CrossRefPubMed
3.
go back to reference Latzin P, Frey U, Roiha HL, Baldwin DN, Regamey N, Strippoli MP, Zwahlen M, Kuehni CE: Prospectively assessed incidence, severity, and determinants of respiratory symptoms in the first year of life. Pediatr Pulmonol 2007,42(1):41–50.CrossRefPubMed Latzin P, Frey U, Roiha HL, Baldwin DN, Regamey N, Strippoli MP, Zwahlen M, Kuehni CE: Prospectively assessed incidence, severity, and determinants of respiratory symptoms in the first year of life. Pediatr Pulmonol 2007,42(1):41–50.CrossRefPubMed
4.
go back to reference Kurukulaaratchy RJ, Matthews S, Waterhouse L, Arshad SH: Factors influencing symptom expression in children with bronchial hyperresponsiveness at 10 years of age. J Allergy Clin Immunol 2003,112(2):311–316.CrossRefPubMed Kurukulaaratchy RJ, Matthews S, Waterhouse L, Arshad SH: Factors influencing symptom expression in children with bronchial hyperresponsiveness at 10 years of age. J Allergy Clin Immunol 2003,112(2):311–316.CrossRefPubMed
5.
go back to reference Celedon JC, Litonjua AA, Ryan L, Platts-Mills T, Weiss ST, Gold DR: Exposure to cat allergen, maternal history of asthma, and wheezing in first 5 years of life. Lancet 2002,360(9335):781–782.CrossRefPubMed Celedon JC, Litonjua AA, Ryan L, Platts-Mills T, Weiss ST, Gold DR: Exposure to cat allergen, maternal history of asthma, and wheezing in first 5 years of life. Lancet 2002,360(9335):781–782.CrossRefPubMed
6.
go back to reference Uthoff H, Spenner A, Reckelkamm W, Ahrens B, Wolk G, Hackler R, Hardung F, Schaefer J, Scheffold A, Renz H, Herz U: Critical role of preconceptional immunization for protective and nonpathological specific immunity in murine neonates. J Immunol 2003,171(7):3485–3492.CrossRefPubMed Uthoff H, Spenner A, Reckelkamm W, Ahrens B, Wolk G, Hackler R, Hardung F, Schaefer J, Scheffold A, Renz H, Herz U: Critical role of preconceptional immunization for protective and nonpathological specific immunity in murine neonates. J Immunol 2003,171(7):3485–3492.CrossRefPubMed
7.
go back to reference Devereux G, Barker RN, Seaton A: Antenatal determinants of neonatal immune responses to allergens. Clin Exp Allergy 2002,32(1):43–50.CrossRefPubMed Devereux G, Barker RN, Seaton A: Antenatal determinants of neonatal immune responses to allergens. Clin Exp Allergy 2002,32(1):43–50.CrossRefPubMed
8.
go back to reference Blumer N, Herz U, Wegmann M, Renz H: Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy 2005,35(3):397–402.CrossRefPubMed Blumer N, Herz U, Wegmann M, Renz H: Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy 2005,35(3):397–402.CrossRefPubMed
9.
go back to reference Hamada K, Suzaki Y, Goldman A, Ning YY, Goldsmith C, Palecanda A, Coull B, Hubeau C, Kobzik L: Allergen-independent maternal transmission of asthma susceptibility. J Immunol 2003,170(4):1683–1689.CrossRefPubMed Hamada K, Suzaki Y, Goldman A, Ning YY, Goldsmith C, Palecanda A, Coull B, Hubeau C, Kobzik L: Allergen-independent maternal transmission of asthma susceptibility. J Immunol 2003,170(4):1683–1689.CrossRefPubMed
10.
go back to reference Fedulov A, Silverman E, Xiang Y, Leme A, Kobzik L: Immunostimulatory CpG oligonucleotides abrogate allergic susceptibility in a murine model of maternal asthma transmission. J Immunol 2005,175(7):4292–4300.CrossRefPubMed Fedulov A, Silverman E, Xiang Y, Leme A, Kobzik L: Immunostimulatory CpG oligonucleotides abrogate allergic susceptibility in a murine model of maternal asthma transmission. J Immunol 2005,175(7):4292–4300.CrossRefPubMed
11.
go back to reference Leme AS, Hubeau C, Xiang Y, Goldman A, Hamada K, Suzaki Y, Kobzik L: Role of breast milk in a mouse model of maternal transmission of asthma susceptibility. J Immunol 2006,176(2):762–769.CrossRefPubMed Leme AS, Hubeau C, Xiang Y, Goldman A, Hamada K, Suzaki Y, Kobzik L: Role of breast milk in a mouse model of maternal transmission of asthma susceptibility. J Immunol 2006,176(2):762–769.CrossRefPubMed
12.
go back to reference Hubeau C, Apostolou I, Kobzik L: Adoptively transferred allergen-specific T cells cause maternal transmission of asthma risk. Am J Pathol 2006,168(6):1931–1939.CrossRefPubMedPubMedCentral Hubeau C, Apostolou I, Kobzik L: Adoptively transferred allergen-specific T cells cause maternal transmission of asthma risk. Am J Pathol 2006,168(6):1931–1939.CrossRefPubMedPubMedCentral
13.
go back to reference Hopkins JE, Naisbitt DJ, Kitteringham NR, Dearman RJ, Kimber I, Park BK: Selective haptenation of cellular or extracellular protein by chemical allergens: association with cytokine polarization. Chem Res Toxicol 2005,18(2):375–381.CrossRefPubMed Hopkins JE, Naisbitt DJ, Kitteringham NR, Dearman RJ, Kimber I, Park BK: Selective haptenation of cellular or extracellular protein by chemical allergens: association with cytokine polarization. Chem Res Toxicol 2005,18(2):375–381.CrossRefPubMed
14.
go back to reference Matheson JM, Johnson VJ, Luster MI: Immune mediators in a murine model for occupational asthma: studies with toluene diisocyanate. Toxicol Sci 2005,84(1):99–109.CrossRefPubMed Matheson JM, Johnson VJ, Luster MI: Immune mediators in a murine model for occupational asthma: studies with toluene diisocyanate. Toxicol Sci 2005,84(1):99–109.CrossRefPubMed
15.
go back to reference Baumer W, Seegers U, Braun M, Tschernig T, Kietzmann M: TARC and RANTES, but not CTACK, are induced in two models of allergic contact dermatitis. Effects of cilomilast and diflorasone diacetate on T-cell-attracting chemokines. Br J Dermatol 2004,151(4):823–830.CrossRefPubMed Baumer W, Seegers U, Braun M, Tschernig T, Kietzmann M: TARC and RANTES, but not CTACK, are induced in two models of allergic contact dermatitis. Effects of cilomilast and diflorasone diacetate on T-cell-attracting chemokines. Br J Dermatol 2004,151(4):823–830.CrossRefPubMed
16.
go back to reference Ban M, Morel G, Langonne I, Huguet N, Pepin E, Binet S: TDI can induce respiratory allergy with Th2-dominated response in mice. Toxicology 2006,218(1):39–47.CrossRefPubMed Ban M, Morel G, Langonne I, Huguet N, Pepin E, Binet S: TDI can induce respiratory allergy with Th2-dominated response in mice. Toxicology 2006,218(1):39–47.CrossRefPubMed
17.
go back to reference Redlich CA, Wisnewski AV, Gordon T: Mouse models of diisocyanate asthma. Am J Respir Cell Mol Biol 2002,27(4):385–390.CrossRefPubMed Redlich CA, Wisnewski AV, Gordon T: Mouse models of diisocyanate asthma. Am J Respir Cell Mol Biol 2002,27(4):385–390.CrossRefPubMed
18.
go back to reference Dearman RJ, Warbrick EV, Humphreys IR, Kimber I: Characterization in mice of the immunological properties of five allergenic acid anhydrides. J Appl Toxicol 2000,20(3):221–230.CrossRefPubMed Dearman RJ, Warbrick EV, Humphreys IR, Kimber I: Characterization in mice of the immunological properties of five allergenic acid anhydrides. J Appl Toxicol 2000,20(3):221–230.CrossRefPubMed
19.
go back to reference Dearman RJ, Filby A, Humphreys IR, Kimber I: Interleukins 5 and 13 characterize immune responses to respiratory sensitizing acid anhydrides. J Appl Toxicol 2002,22(5):317–325.CrossRefPubMed Dearman RJ, Filby A, Humphreys IR, Kimber I: Interleukins 5 and 13 characterize immune responses to respiratory sensitizing acid anhydrides. J Appl Toxicol 2002,22(5):317–325.CrossRefPubMed
20.
go back to reference Noben-Trauth N, Kohler G, Burki K, Ledermann B: Efficient targeting of the IL-4 gene in a BALB/c embryonic stem cell line. Transgenic Res 1996,5(6):487–491.CrossRefPubMed Noben-Trauth N, Kohler G, Burki K, Ledermann B: Efficient targeting of the IL-4 gene in a BALB/c embryonic stem cell line. Transgenic Res 1996,5(6):487–491.CrossRefPubMed
21.
go back to reference Bates J, Irvin C, Brusasco V, Drazen J, Fredberg J, Loring S, Eidelman D, Ludwig M, Macklem P, Martin J, Milic-Emili J, Hantos Z, Hyatt R, Lai-Fook S, Leff A, Solway J, Lutchen K, Suki B, Mitzner W, Pare P, Pride N, Sly P: The use and misuse of Penh in animal models of lung disease. Am J Respir Cell Mol Biol 2004,31(3):373–374.CrossRefPubMed Bates J, Irvin C, Brusasco V, Drazen J, Fredberg J, Loring S, Eidelman D, Ludwig M, Macklem P, Martin J, Milic-Emili J, Hantos Z, Hyatt R, Lai-Fook S, Leff A, Solway J, Lutchen K, Suki B, Mitzner W, Pare P, Pride N, Sly P: The use and misuse of Penh in animal models of lung disease. Am J Respir Cell Mol Biol 2004,31(3):373–374.CrossRefPubMed
22.
go back to reference Adler A, Cieslewicz G, Irvin CG: Unrestrained plethysmography is an unreliable measure of airway responsiveness in BALB/c and C57BL/6 mice. J Appl Physiol 2004,97(1):286–292.CrossRefPubMed Adler A, Cieslewicz G, Irvin CG: Unrestrained plethysmography is an unreliable measure of airway responsiveness in BALB/c and C57BL/6 mice. J Appl Physiol 2004,97(1):286–292.CrossRefPubMed
23.
go back to reference Bates JH, Irvin CG: Measuring lung function in mice: the phenotyping uncertainty principle. J Appl Physiol 2003,94(4):1297–1306.CrossRefPubMed Bates JH, Irvin CG: Measuring lung function in mice: the phenotyping uncertainty principle. J Appl Physiol 2003,94(4):1297–1306.CrossRefPubMed
24.
go back to reference Lee JK, Park JH, Park SH, Kim HS, Oh HY: A nonradioisotopic endpoint for measurement of lymph node cell proliferation in a murine allergic contact dermatitis model, using bromodeoxyuridine immunohistochemistry. J Pharmacol Toxicol Methods 2002,48(1):53–61.CrossRefPubMed Lee JK, Park JH, Park SH, Kim HS, Oh HY: A nonradioisotopic endpoint for measurement of lymph node cell proliferation in a murine allergic contact dermatitis model, using bromodeoxyuridine immunohistochemistry. J Pharmacol Toxicol Methods 2002,48(1):53–61.CrossRefPubMed
25.
go back to reference Vanoirbeek JA, Tarkowski M, Vanhooren HM, De Vooght V, Nemery B, Hoet PH: Validation of a mouse model of chemical-induced asthma using trimellitic anhydride, a respiratory sensitizer, and dinitrochlorobenzene, a dermal sensitizer. J Allergy Clin Immunol 2006,117(5):1090–1097.CrossRefPubMed Vanoirbeek JA, Tarkowski M, Vanhooren HM, De Vooght V, Nemery B, Hoet PH: Validation of a mouse model of chemical-induced asthma using trimellitic anhydride, a respiratory sensitizer, and dinitrochlorobenzene, a dermal sensitizer. J Allergy Clin Immunol 2006,117(5):1090–1097.CrossRefPubMed
26.
go back to reference Kimber I, Basketter DA, Gerberick GF, Dearman RJ: Allergic contact dermatitis. Int Immunopharmacol 2002,2(2–3):201–211.CrossRefPubMed Kimber I, Basketter DA, Gerberick GF, Dearman RJ: Allergic contact dermatitis. Int Immunopharmacol 2002,2(2–3):201–211.CrossRefPubMed
27.
go back to reference Herrick CA, Das J, Xu L, Wisnewski AV, Redlich CA, Bottomly K: Differential roles for CD4 and CD8 T cells after diisocyanate sensitization: genetic control of TH2-induced lung inflammation. J Allergy Clin Immunol 2003,111(5):1087–1094.CrossRefPubMed Herrick CA, Das J, Xu L, Wisnewski AV, Redlich CA, Bottomly K: Differential roles for CD4 and CD8 T cells after diisocyanate sensitization: genetic control of TH2-induced lung inflammation. J Allergy Clin Immunol 2003,111(5):1087–1094.CrossRefPubMed
Metadata
Title
Maternal allergic contact dermatitis causes increased asthma risk in offspring
Authors
Robert H Lim
Mohamed S Arredouani
Alexey Fedulov
Lester Kobzik
Cedric Hubeau
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2007
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-8-56

Other articles of this Issue 1/2007

Respiratory Research 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine