Skip to main content
Top
Published in: Respiratory Research 1/2005

Open Access 01-12-2005 | Research

Role of contractile prostaglandins and Rho-kinase in growth factor-induced airway smooth muscle contraction

Authors: Dedmer Schaafsma, Reinoud Gosens, I Sophie T Bos, Herman Meurs, Johan Zaagsma, S Adriaan Nelemans

Published in: Respiratory Research | Issue 1/2005

Login to get access

Abstract

Background

In addition to their proliferative and differentiating effects, several growth factors are capable of inducing a sustained airway smooth muscle (ASM) contraction. These contractile effects were previously found to be dependent on Rho-kinase and have also been associated with the production of eicosanoids. However, the precise mechanisms underlying growth factor-induced contraction are still unknown. In this study we investigated the role of contractile prostaglandins and Rho-kinase in growth factor-induced ASM contraction.

Methods

Growth factor-induced contractions of guinea pig open-ring tracheal preparations were studied by isometric tension measurements. The contribution of Rho-kinase, mitogen-activated protein kinase (MAPK) and cyclooxygenase (COX) to these reponses was established, using the inhibitors Y-27632 (1 μM), U-0126 (3 μM) and indomethacin (3 μM), respectively. The Rho-kinase dependency of contractions induced by exogenously applied prostaglandin F (PGF) and prostaglandin E2 (PGE2) was also studied. In addition, the effects of the selective FP-receptor antagonist AL-8810 (10 μM) and the selective EP1-antagonist AH-6809 (10 μM) on growth factor-induced contractions were investigated, both in intact and epithelium-denuded preparations. Growth factor-induced PGF-and PGE2-release in the absence and presence of Y-27632, U-0126 and indomethacin, was assessed by an ELISA-assay.

Results

Epidermal growth factor (EGF)-and platelet-derived growth factor (PDGF)-induced contractions of guinea pig tracheal smooth muscle preparations were dependent on Rho-kinase, MAPK and COX. Interestingly, growth factor-induced PGF-and PGE2-release from tracheal rings was significantly reduced by U-0126 and indomethacin, but not by Y-27632. Also, PGF-and PGE2-induced ASM contractions were largely dependent on Rho-kinase, in contrast to other contractile agonists like histamine. The FP-receptor antagonist AL-8810 (10 μM) significantly reduced (approximately 50 %) and the EP1-antagonist AH-6809 (10 μM) abrogated growth factor-induced contractions, similarly in intact and epithelium-denuded preparations.

Conclusion

The results indicate that growth factors induce ASM contraction through contractile prostaglandins – not derived from the epithelium – which in turn rely on Rho-kinase for their contractile effects.
Literature
1.
go back to reference Bayes-Genis A, Conover CA, Schwartz RS: The insulin-like growth factor axis: A review of atherosclerosis and restenosis. Circ Res 2000, 86:125–130.CrossRefPubMed Bayes-Genis A, Conover CA, Schwartz RS: The insulin-like growth factor axis: A review of atherosclerosis and restenosis. Circ Res 2000, 86:125–130.CrossRefPubMed
2.
3.
go back to reference Sauro MD, Thomas B: Tyrphostin attenuates platelet-derived growth factor-induced contraction in aortic smooth muscle through inhibition of protein tyrosine kinase(s). J Pharmacol Exp Ther 1993, 267:1119–1125.PubMed Sauro MD, Thomas B: Tyrphostin attenuates platelet-derived growth factor-induced contraction in aortic smooth muscle through inhibition of protein tyrosine kinase(s). J Pharmacol Exp Ther 1993, 267:1119–1125.PubMed
4.
go back to reference Berk BC, Alexander RW, Brock TA, Gimbrone MAJ, Webb RC: Vasoconstriction: a new activity for platelet-derived growth factor. Science 1986, 232:87–90.CrossRefPubMed Berk BC, Alexander RW, Brock TA, Gimbrone MAJ, Webb RC: Vasoconstriction: a new activity for platelet-derived growth factor. Science 1986, 232:87–90.CrossRefPubMed
5.
go back to reference Taya S, Inagaki N, Sengiku H, Makino H, Iwamatsu A, Urakawa I, Nagao K, Kataoka S, Kaibuchi K: Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. J Cell Biol 2001, 155:809–820.CrossRefPubMedPubMedCentral Taya S, Inagaki N, Sengiku H, Makino H, Iwamatsu A, Urakawa I, Nagao K, Kataoka S, Kaibuchi K: Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. J Cell Biol 2001, 155:809–820.CrossRefPubMedPubMedCentral
6.
go back to reference Fukata Y, Amano M, Kaibuchi K: Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 2001, 22:32–39.CrossRefPubMed Fukata Y, Amano M, Kaibuchi K: Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 2001, 22:32–39.CrossRefPubMed
7.
go back to reference Pfitzer G: Invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol 2001, 91:497–503.PubMed Pfitzer G: Invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol 2001, 91:497–503.PubMed
8.
go back to reference SOMLYO ANDREWP, SOMLYO AVRILV: Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase. Physiol Rev 2003, 83:1325–1358.CrossRefPubMed SOMLYO ANDREWP, SOMLYO AVRILV: Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase. Physiol Rev 2003, 83:1325–1358.CrossRefPubMed
9.
go back to reference Wettschureck N, Offermanns S: Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 2002, 80:629–638.CrossRefPubMed Wettschureck N, Offermanns S: Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 2002, 80:629–638.CrossRefPubMed
10.
go back to reference Gosens R, Meurs H, Bromhaar MM, McKay S, Nelemans SA, Zaagsma J: Functional characterization of serum- and growth factor-induced phenotypic changes in intact bovine tracheal smooth muscle. Br J Pharmacol 2002, 137:459–466.CrossRefPubMedPubMedCentral Gosens R, Meurs H, Bromhaar MM, McKay S, Nelemans SA, Zaagsma J: Functional characterization of serum- and growth factor-induced phenotypic changes in intact bovine tracheal smooth muscle. Br J Pharmacol 2002, 137:459–466.CrossRefPubMedPubMedCentral
11.
go back to reference Gosens R, Nelemans SA, Hiemstra M, Grootte Bromhaar MM, Meurs H, Zaagsma J: Insulin induces a hypercontractile airway smooth muscle phenotype. Eur J Pharmacol 2003, 481:125–131.CrossRefPubMed Gosens R, Nelemans SA, Hiemstra M, Grootte Bromhaar MM, Meurs H, Zaagsma J: Insulin induces a hypercontractile airway smooth muscle phenotype. Eur J Pharmacol 2003, 481:125–131.CrossRefPubMed
12.
go back to reference Patel P, Itoh H, Lederis K, Hollenberg MD: Contraction of guinea pig trachea by epidermal growth factor--urogastrone. Can J Physiol Pharmacol 1988, 66:1308–1312.CrossRefPubMed Patel P, Itoh H, Lederis K, Hollenberg MD: Contraction of guinea pig trachea by epidermal growth factor--urogastrone. Can J Physiol Pharmacol 1988, 66:1308–1312.CrossRefPubMed
13.
go back to reference Nasuhara Y, Munakata M, Sato A, Amishima M, Homma Y, Kawakami Y: Mechanisms of epidermal growth factor-induced contraction of guinea pig airways. Eur J Pharmacol 1996, 296:161–168.CrossRefPubMed Nasuhara Y, Munakata M, Sato A, Amishima M, Homma Y, Kawakami Y: Mechanisms of epidermal growth factor-induced contraction of guinea pig airways. Eur J Pharmacol 1996, 296:161–168.CrossRefPubMed
14.
go back to reference Gosens R, Schaafsma D, Grootte Bromhaar MM, Vrugt B, Zaagsma J, Meurs H, Nelemans SA: Growth factor-induced contraction of human bronchial smooth muscle is Rho-kinase-dependent. Eur J Pharmacol 2004, 494:73–76.CrossRefPubMed Gosens R, Schaafsma D, Grootte Bromhaar MM, Vrugt B, Zaagsma J, Meurs H, Nelemans SA: Growth factor-induced contraction of human bronchial smooth muscle is Rho-kinase-dependent. Eur J Pharmacol 2004, 494:73–76.CrossRefPubMed
15.
go back to reference Amishima M, Munakata M, Nasuhara Y, Sato A, Takahashi T, Homma Y, Kawakami Y: Expression of epidermal growth factor and epidermal growth factor receptor immunoreactivity in the asthmatic human airway. Am J Respir Crit Care Med 1998, 157:1907–1912.CrossRefPubMed Amishima M, Munakata M, Nasuhara Y, Sato A, Takahashi T, Homma Y, Kawakami Y: Expression of epidermal growth factor and epidermal growth factor receptor immunoreactivity in the asthmatic human airway. Am J Respir Crit Care Med 1998, 157:1907–1912.CrossRefPubMed
16.
go back to reference Lewis CC, Chu HW, Westcott JY, Tucker A, Langmack EL, Sutherland ER, Kraft M: Airway fibroblasts exhibit a synthetic phenotype in severe asthma. J Allergy Clin Immunol 2005, 115:534–540.CrossRefPubMed Lewis CC, Chu HW, Westcott JY, Tucker A, Langmack EL, Sutherland ER, Kraft M: Airway fibroblasts exhibit a synthetic phenotype in severe asthma. J Allergy Clin Immunol 2005, 115:534–540.CrossRefPubMed
17.
go back to reference Leung TF, Wong GW, Ko FW, Li CY, Yung E, Lam CW, Fok TF: Analysis of Growth Factors and Inflammatory Cytokines in Exhaled Breath Condensate from Asthmatic Children. Int Arch Allergy Immunol 2005, 137:66–72.CrossRefPubMed Leung TF, Wong GW, Ko FW, Li CY, Yung E, Lam CW, Fok TF: Analysis of Growth Factors and Inflammatory Cytokines in Exhaled Breath Condensate from Asthmatic Children. Int Arch Allergy Immunol 2005, 137:66–72.CrossRefPubMed
18.
go back to reference Chiba Y, Takada Y, Miyamoto S, MitsuiSaito M, Karaki H, Misawa M: Augmented acetylcholine-induced, Rho-mediated Ca2+ sensitization of bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. Br J Pharmacol 1999, 127:597–600.CrossRefPubMedPubMedCentral Chiba Y, Takada Y, Miyamoto S, MitsuiSaito M, Karaki H, Misawa M: Augmented acetylcholine-induced, Rho-mediated Ca2+ sensitization of bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. Br J Pharmacol 1999, 127:597–600.CrossRefPubMedPubMedCentral
19.
go back to reference Chiba Y, Sakai H, Suenaga H, Kamata K, Misawa M: Enhanced Ca2+ sensitization of the bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. Res Commun Mol Pathol Pharmacol 1999, 106:77–85.PubMed Chiba Y, Sakai H, Suenaga H, Kamata K, Misawa M: Enhanced Ca2+ sensitization of the bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. Res Commun Mol Pathol Pharmacol 1999, 106:77–85.PubMed
20.
go back to reference Schaafsma D, Gosens R, Bos IS, Meurs H, Zaagsma J, Nelemans SA: Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction. Br J Pharmacol 2004, 143:477–484.CrossRefPubMedPubMedCentral Schaafsma D, Gosens R, Bos IS, Meurs H, Zaagsma J, Nelemans SA: Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction. Br J Pharmacol 2004, 143:477–484.CrossRefPubMedPubMedCentral
21.
go back to reference Zwick E, Hackel PO, Prenzel N, Ullrich A: The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol Sci 1999, 20:408–412.CrossRefPubMed Zwick E, Hackel PO, Prenzel N, Ullrich A: The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol Sci 1999, 20:408–412.CrossRefPubMed
22.
go back to reference Lopez-Ilasaca M: Signaling from G-protein-coupled receptors to mitogen-activated protein (MAP)-kinase cascades. Biochem Pharmacol 1998, 56:269–277.CrossRefPubMed Lopez-Ilasaca M: Signaling from G-protein-coupled receptors to mitogen-activated protein (MAP)-kinase cascades. Biochem Pharmacol 1998, 56:269–277.CrossRefPubMed
23.
go back to reference Fischer OM, Streit S, Hart S, Ullrich A: Beyond Herceptin and Gleevec. Curr Opin Chem Biol 2003, 7:490–495.CrossRefPubMed Fischer OM, Streit S, Hart S, Ullrich A: Beyond Herceptin and Gleevec. Curr Opin Chem Biol 2003, 7:490–495.CrossRefPubMed
24.
go back to reference Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ: cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993, 72:269–278.CrossRefPubMed Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ: cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993, 72:269–278.CrossRefPubMed
25.
go back to reference Ito K, Shimomura E, Iwanaga T, Shiraishi M, Shindo K, Nakamura J, Nagumo H, Seto M, Sasaki Y, Takuwa Y: Essential role of rho kinase in the Ca2+ sensitization of prostaglandin F(2alpha)-induced contraction of rabbit aortae. J Physiol 2003, 546:823–836.CrossRefPubMed Ito K, Shimomura E, Iwanaga T, Shiraishi M, Shindo K, Nakamura J, Nagumo H, Seto M, Sasaki Y, Takuwa Y: Essential role of rho kinase in the Ca2+ sensitization of prostaglandin F(2alpha)-induced contraction of rabbit aortae. J Physiol 2003, 546:823–836.CrossRefPubMed
26.
go back to reference Kelleher MD, Abe MK, Chao TS, Jain M, Green JM, Solway J, Rosner MR, Hershenson MB: Role of MAP kinase activation in bovine tracheal smooth muscle mitogenesis. Am J Physiol 1995, 268:L894-L901.PubMed Kelleher MD, Abe MK, Chao TS, Jain M, Green JM, Solway J, Rosner MR, Hershenson MB: Role of MAP kinase activation in bovine tracheal smooth muscle mitogenesis. Am J Physiol 1995, 268:L894-L901.PubMed
27.
go back to reference Gosens R, Schaafsma D, Meurs H, Zaagsma J, Nelemans SA: Role of Rho-kinase in maintaining airway smooth muscle contractile phenotype. Eur J Pharmacol 2004, 483:71–78.CrossRefPubMed Gosens R, Schaafsma D, Meurs H, Zaagsma J, Nelemans SA: Role of Rho-kinase in maintaining airway smooth muscle contractile phenotype. Eur J Pharmacol 2004, 483:71–78.CrossRefPubMed
28.
go back to reference Janssen LJ, Wattie J, Lu-Chao H, Tazzeo T: Muscarinic excitation-contraction coupling mechanisms in tracheal and bronchial smooth muscles. J Appl Physiol 2001, 91:1142–1151.PubMed Janssen LJ, Wattie J, Lu-Chao H, Tazzeo T: Muscarinic excitation-contraction coupling mechanisms in tracheal and bronchial smooth muscles. J Appl Physiol 2001, 91:1142–1151.PubMed
29.
go back to reference Margolis BL, Holub BJ, Troyer DA, Skorecki KL: Epidermal growth factor stimulates phospholipase A2 in vasopressin-treated rat glomerular mesangial cells. Biochem J 1988, 256:469–474.CrossRefPubMedPubMedCentral Margolis BL, Holub BJ, Troyer DA, Skorecki KL: Epidermal growth factor stimulates phospholipase A2 in vasopressin-treated rat glomerular mesangial cells. Biochem J 1988, 256:469–474.CrossRefPubMedPubMedCentral
30.
go back to reference Bornfeldt KE, Campbell JS, Koyama H, Argast GM, Leslie CC, Raines EW, Krebs EG, Ross R: The mitogen-activated protein kinase pathway can mediate growth inhibition and proliferation in smooth muscle cells. Dependence on the availability of downstream targets. J Clin Invest 1997, 100:875–885.CrossRefPubMedPubMedCentral Bornfeldt KE, Campbell JS, Koyama H, Argast GM, Leslie CC, Raines EW, Krebs EG, Ross R: The mitogen-activated protein kinase pathway can mediate growth inhibition and proliferation in smooth muscle cells. Dependence on the availability of downstream targets. J Clin Invest 1997, 100:875–885.CrossRefPubMedPubMedCentral
31.
go back to reference Boulven I, Palmier B, Robin P, Vacher M, Harbon S, Leiber D: Platelet-derived growth factor stimulates phospholipase C-gamma 1, extracellular signal-regulated kinase, and arachidonic acid release in rat myometrial cells: contribution to cyclic 3',5'-adenosine monophosphate production and effect on cell proliferation. Biol Reprod 2001, 65:496–506.CrossRefPubMed Boulven I, Palmier B, Robin P, Vacher M, Harbon S, Leiber D: Platelet-derived growth factor stimulates phospholipase C-gamma 1, extracellular signal-regulated kinase, and arachidonic acid release in rat myometrial cells: contribution to cyclic 3',5'-adenosine monophosphate production and effect on cell proliferation. Biol Reprod 2001, 65:496–506.CrossRefPubMed
32.
go back to reference Ndukwu IM, White SR, Leff AR, Mitchell RW: EP1 receptor blockade attenuates both spontaneous tone and PGE2-elicited contraction in guinea pig trachealis. Am J Physiol 1997, 273:L626-L633.PubMed Ndukwu IM, White SR, Leff AR, Mitchell RW: EP1 receptor blockade attenuates both spontaneous tone and PGE2-elicited contraction in guinea pig trachealis. Am J Physiol 1997, 273:L626-L633.PubMed
33.
go back to reference Van Amsterdam RG: Beta-adrenoceptor responsiveness in non-allergic and allergic airways - An in-vitro approach. 1991, 68–69. Van Amsterdam RG: Beta-adrenoceptor responsiveness in non-allergic and allergic airways - An in-vitro approach. 1991, 68–69.
34.
go back to reference Shum WW, Le GY, Jones RL, Gurney AM, Sasaki Y: Involvement of Rho-kinase in contraction of guinea-pig aorta induced by prostanoid EP3 receptor agonists. Br J Pharmacol 2003, 139:1449–1461.CrossRefPubMedPubMedCentral Shum WW, Le GY, Jones RL, Gurney AM, Sasaki Y: Involvement of Rho-kinase in contraction of guinea-pig aorta induced by prostanoid EP3 receptor agonists. Br J Pharmacol 2003, 139:1449–1461.CrossRefPubMedPubMedCentral
35.
go back to reference Tilley SL, Hartney JM, Erikson CJ, Jania C, Nguyen M, Stock J, McNeisch J, Valancius C, Panettieri RAJ, Penn RB, Koller BH: Receptors and pathways mediating the effects of prostaglandin E2 on airway tone. Am J Physiol Lung Cell Mol Physiol 2003, 284:L599-L606.CrossRefPubMed Tilley SL, Hartney JM, Erikson CJ, Jania C, Nguyen M, Stock J, McNeisch J, Valancius C, Panettieri RAJ, Penn RB, Koller BH: Receptors and pathways mediating the effects of prostaglandin E2 on airway tone. Am J Physiol Lung Cell Mol Physiol 2003, 284:L599-L606.CrossRefPubMed
36.
go back to reference Catalli A, Janssen LJ: Augmentation of bovine airway smooth muscle responsiveness to carbachol, KCl, and histamine by the isoprostane 8-iso-PGE2. Am J Physiol Lung Cell Mol Physiol 2004, 287:L1035-L1041.CrossRefPubMed Catalli A, Janssen LJ: Augmentation of bovine airway smooth muscle responsiveness to carbachol, KCl, and histamine by the isoprostane 8-iso-PGE2. Am J Physiol Lung Cell Mol Physiol 2004, 287:L1035-L1041.CrossRefPubMed
37.
go back to reference Coleman RA, Smith WL, Narumiya S: International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994, 46:205–229.PubMed Coleman RA, Smith WL, Narumiya S: International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994, 46:205–229.PubMed
38.
go back to reference Funk CD: Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001, 294:1871–1875.CrossRefPubMed Funk CD: Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001, 294:1871–1875.CrossRefPubMed
39.
go back to reference Kelly CR, Williams GW, Sharif NA: Real-time intracellular Ca2+ mobilization by travoprost acid, bimatoprost, unoprostone, and other analogs via endogenous mouse, rat, and cloned human FP prostaglandin receptors. J Pharmacol Exp Ther 2003, 304:238–245.CrossRefPubMed Kelly CR, Williams GW, Sharif NA: Real-time intracellular Ca2+ mobilization by travoprost acid, bimatoprost, unoprostone, and other analogs via endogenous mouse, rat, and cloned human FP prostaglandin receptors. J Pharmacol Exp Ther 2003, 304:238–245.CrossRefPubMed
40.
go back to reference Griffin BW, Klimko P, Crider JY, Sharif NA: AL-8810: a novel prostaglandin F2 alpha analog with selective antagonist effects at the prostaglandin F2 alpha (FP) receptor. J Pharmacol Exp Ther 1999, 290:1278–1284.PubMed Griffin BW, Klimko P, Crider JY, Sharif NA: AL-8810: a novel prostaglandin F2 alpha analog with selective antagonist effects at the prostaglandin F2 alpha (FP) receptor. J Pharmacol Exp Ther 1999, 290:1278–1284.PubMed
41.
go back to reference Sametz W, Hennerbichler S, Glaser S, Wintersteiger R, Juan H: Characterization of prostanoid receptors mediating actions of the isoprostanes, 8-iso-PGE(2) and 8-iso-PGF(2alpha), in some isolated smooth muscle preparations. Br J Pharmacol 2000, 130:1903–1910.CrossRefPubMedPubMedCentral Sametz W, Hennerbichler S, Glaser S, Wintersteiger R, Juan H: Characterization of prostanoid receptors mediating actions of the isoprostanes, 8-iso-PGE(2) and 8-iso-PGF(2alpha), in some isolated smooth muscle preparations. Br J Pharmacol 2000, 130:1903–1910.CrossRefPubMedPubMedCentral
42.
go back to reference McKay S, Sharma HS: Autocrine regulation of asthmatic airway inflammation: role of airway smooth muscle. Respir Res 2002, 3:11.CrossRefPubMed McKay S, Sharma HS: Autocrine regulation of asthmatic airway inflammation: role of airway smooth muscle. Respir Res 2002, 3:11.CrossRefPubMed
Metadata
Title
Role of contractile prostaglandins and Rho-kinase in growth factor-induced airway smooth muscle contraction
Authors
Dedmer Schaafsma
Reinoud Gosens
I Sophie T Bos
Herman Meurs
Johan Zaagsma
S Adriaan Nelemans
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2005
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-6-85

Other articles of this Issue 1/2005

Respiratory Research 1/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.