Skip to main content
Top
Published in: Respiratory Research 1/2005

Open Access 01-12-2005 | Research

Predominant constitutive CFTR conductance in small airways

Authors: Xiaofei Wang, Christian Lytle, Paul M Quinton

Published in: Respiratory Research | Issue 1/2005

Login to get access

Abstract

Background

The pathological hallmarks of chronic obstructive pulmonary disease (COPD) are inflammation of the small airways (bronchiolitis) and destruction of lung parenchyma (emphysema). These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter.

Methods

We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole.

Results

In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath) of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25), but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 ± 3 mV; n = 25) were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM)+IBMX (100 μM), ATP (100 μM), or adenosine (100 μM), but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM), GlyH-101* (5–50 μM), and CFTRInh-172* (5 μM). RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways.

Conclusion

These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.
Literature
1.
go back to reference Shaw RJ, Djukanovic R, Tashkin DP, Millar AB, du Bois RM, Orr PA: The role of small airways in lung disease. Respir Med 2002, 96:67–80.CrossRefPubMed Shaw RJ, Djukanovic R, Tashkin DP, Millar AB, du Bois RM, Orr PA: The role of small airways in lung disease. Respir Med 2002, 96:67–80.CrossRefPubMed
2.
go back to reference Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD: The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004, 350:2645–2653.CrossRefPubMed Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD: The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004, 350:2645–2653.CrossRefPubMed
3.
go back to reference Knowles MR, Gatzy J, Boucher RC: Relative ion permeability of normal and cystic fibrosis nasal epithelium. Journal of Clinical Investigation 1983, 71:1410–1417.CrossRefPubMedPubMedCentral Knowles MR, Gatzy J, Boucher RC: Relative ion permeability of normal and cystic fibrosis nasal epithelium. Journal of Clinical Investigation 1983, 71:1410–1417.CrossRefPubMedPubMedCentral
4.
go back to reference Olver RE, Davis B, Marin MG, Nadel JA: Active transport of Na+ and Cl- across the canine tracheal epithelium in vitro. Am Rev Respir Dis 1975, 112:811–815.PubMed Olver RE, Davis B, Marin MG, Nadel JA: Active transport of Na+ and Cl- across the canine tracheal epithelium in vitro. Am Rev Respir Dis 1975, 112:811–815.PubMed
5.
go back to reference Joris L, Quinton PM: Components of electrogenic transport in unstimulated equine tracheal epithelium. Am J Physiol 1991, 260:L510–5.PubMed Joris L, Quinton PM: Components of electrogenic transport in unstimulated equine tracheal epithelium. Am J Physiol 1991, 260:L510–5.PubMed
6.
go back to reference Alton EW, Rogers DF, Logan-Sinclair R, Yacoub M, Barnes PJ, Geddes DM: Bioelectric properties of cystic fibrosis airways obtained at heart-lung transplantation. Thorax 1992, 47:1010–1014.CrossRefPubMedPubMedCentral Alton EW, Rogers DF, Logan-Sinclair R, Yacoub M, Barnes PJ, Geddes DM: Bioelectric properties of cystic fibrosis airways obtained at heart-lung transplantation. Thorax 1992, 47:1010–1014.CrossRefPubMedPubMedCentral
7.
go back to reference Joo NS, Irokawa T, Wu JV, Robbins RC, Whyte RI, Wine JJ: Absent secretion to vasoactive intestinal peptide in cystic fibrosis airway glands. J Biol Chem 2002, 277:50710–50715.CrossRefPubMed Joo NS, Irokawa T, Wu JV, Robbins RC, Whyte RI, Wine JJ: Absent secretion to vasoactive intestinal peptide in cystic fibrosis airway glands. J Biol Chem 2002, 277:50710–50715.CrossRefPubMed
8.
go back to reference Yankaskas JR, Knowles MR, Gatzy JT, Boucher RC: Persistence of abnormal chloride ion permeability in cystic fibrosis nasal epithelial cells in heterologous culture. Lancet 1985, 1:954–956.CrossRefPubMed Yankaskas JR, Knowles MR, Gatzy JT, Boucher RC: Persistence of abnormal chloride ion permeability in cystic fibrosis nasal epithelial cells in heterologous culture. Lancet 1985, 1:954–956.CrossRefPubMed
9.
go back to reference Kondo M, Finkbeiner WE, Widdicombe JH: Simple technique for culture of highly differentiated cells from dog tracheal epithelium. Am J Physiol 1991, 261:L106–17.PubMed Kondo M, Finkbeiner WE, Widdicombe JH: Simple technique for culture of highly differentiated cells from dog tracheal epithelium. Am J Physiol 1991, 261:L106–17.PubMed
10.
go back to reference Al-Bazzaz FJ, Tarka C, Farah M: Microperfusion of sheep bronchioles. Am J Physiol 1991, 260:L594–602.PubMed Al-Bazzaz FJ, Tarka C, Farah M: Microperfusion of sheep bronchioles. Am J Physiol 1991, 260:L594–602.PubMed
11.
go back to reference Al-Bazzaz FJ: Regulation of Na and Cl transport in sheep distal airways. Am J Physiol 1994, 267:L193–8.PubMed Al-Bazzaz FJ: Regulation of Na and Cl transport in sheep distal airways. Am J Physiol 1994, 267:L193–8.PubMed
12.
go back to reference Al-Bazzaz FJ, Gailey C: Ion transport by sheep distal airways in a miniature chamber. Am J Physiol Lung Cell Mol Physiol 2001, 281:L1028–34.PubMed Al-Bazzaz FJ, Gailey C: Ion transport by sheep distal airways in a miniature chamber. Am J Physiol Lung Cell Mol Physiol 2001, 281:L1028–34.PubMed
13.
go back to reference Ballard ST, Schepens SM, Falcone JC, Meininger GA, Taylor AE: Regional bioelectric properties of porcine airway epithelium. J Appl Physiol 1992, 73:2021–2027.PubMed Ballard ST, Schepens SM, Falcone JC, Meininger GA, Taylor AE: Regional bioelectric properties of porcine airway epithelium. J Appl Physiol 1992, 73:2021–2027.PubMed
14.
go back to reference Ballard ST, Taylor AE: Bioelectric properties of proximal bronchiolar epithelium. Am J Physiol 1994, 267:L79–84.PubMed Ballard ST, Taylor AE: Bioelectric properties of proximal bronchiolar epithelium. Am J Physiol 1994, 267:L79–84.PubMed
15.
go back to reference Burg MB, Isaacson L, Grantham J, Orloff J: Electrical properties of isolated perfused rabbit renal tubules. American Journal of Physiology 1968, 215(4):788–794. Burg MB, Isaacson L, Grantham J, Orloff J: Electrical properties of isolated perfused rabbit renal tubules. American Journal of Physiology 1968, 215(4):788–794.
16.
go back to reference Quinton PM: Effects of some ion transport inhibitors on secretion and reabsorption in intact and perfused single human sweat glands. Pflugers Arch 1981, 391:309–313.CrossRefPubMed Quinton PM: Effects of some ion transport inhibitors on secretion and reabsorption in intact and perfused single human sweat glands. Pflugers Arch 1981, 391:309–313.CrossRefPubMed
17.
go back to reference Quinton PM, Bijman J: Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N Engl J Med 1983, 308:1185–1189.CrossRefPubMed Quinton PM, Bijman J: Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N Engl J Med 1983, 308:1185–1189.CrossRefPubMed
18.
go back to reference Quinton PM: Missing Cl conductance in cystic fibrosis. Am J Physiol 1986, 251:C649–52.PubMed Quinton PM: Missing Cl conductance in cystic fibrosis. Am J Physiol 1986, 251:C649–52.PubMed
19.
go back to reference Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, Verkman AS: Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 2002, 110:1651–1658.CrossRefPubMedPubMedCentral Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, Verkman AS: Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 2002, 110:1651–1658.CrossRefPubMedPubMedCentral
20.
go back to reference Wang XF, Reddy MM, Wallace A, Quinton PM: Effect of a new Inhibitor on CFTR in the human native sweat duct. Ped Pulmon Supplement 25:198–199. Wang XF, Reddy MM, Wallace A, Quinton PM: Effect of a new Inhibitor on CFTR in the human native sweat duct. Ped Pulmon Supplement 25:198–199.
21.
go back to reference Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS: Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol 2004, 124:125–137.CrossRefPubMedPubMedCentral Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS: Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol 2004, 124:125–137.CrossRefPubMedPubMedCentral
22.
go back to reference Widdicombe JH, Welsh MJ: Ion transport by dog tracheal epithelium. Fed Proc 1980, 39:3062–3066.PubMed Widdicombe JH, Welsh MJ: Ion transport by dog tracheal epithelium. Fed Proc 1980, 39:3062–3066.PubMed
23.
go back to reference Widdicombe JH: Fluid transport across airway epithelia. Ciba Found Symp 1984, 109:109–120.PubMed Widdicombe JH: Fluid transport across airway epithelia. Ciba Found Symp 1984, 109:109–120.PubMed
24.
go back to reference Tos M: Development of the tracheal glands in man. Number, density, structure, shape, and distribution of mucous glands elucidated by quantitative studies of whole mounts. Acta Pathol Microbiol Scand 1966, 68:Suppl 185:3+.PubMed Tos M: Development of the tracheal glands in man. Number, density, structure, shape, and distribution of mucous glands elucidated by quantitative studies of whole mounts. Acta Pathol Microbiol Scand 1966, 68:Suppl 185:3+.PubMed
25.
go back to reference Ballard ST, Fountain JD, Inglis SK, Corboz MR, Taylor AE: Chloride secretion across distal airway epithelium: relationship to submucosal gland distribution. Am J Physiol 1995, 268:L526–31.PubMed Ballard ST, Fountain JD, Inglis SK, Corboz MR, Taylor AE: Chloride secretion across distal airway epithelium: relationship to submucosal gland distribution. Am J Physiol 1995, 268:L526–31.PubMed
26.
go back to reference Bucher U, Reid L: Development of the intrasegmental bronchial tree: the pattern of branching and development of cartilage at various stages of intra-uterine life. Thorax 1961, 16:207–218.CrossRefPubMedPubMedCentral Bucher U, Reid L: Development of the intrasegmental bronchial tree: the pattern of branching and development of cartilage at various stages of intra-uterine life. Thorax 1961, 16:207–218.CrossRefPubMedPubMedCentral
27.
go back to reference Plopper CG, Heidsiek JG, Weir AJ, George JA, Hyde DM: Tracheobronchial epithelium in the adult rhesus monkey: a quantitative histochemical and ultrastructural study. Am J Anat 1989, 184:31–40.CrossRefPubMed Plopper CG, Heidsiek JG, Weir AJ, George JA, Hyde DM: Tracheobronchial epithelium in the adult rhesus monkey: a quantitative histochemical and ultrastructural study. Am J Anat 1989, 184:31–40.CrossRefPubMed
28.
go back to reference Knowles MR, Buntin WH, Bromberg PA, Gatzy JT, Boucher RC: Measurements of transepithelial electric potential differences in the trachea and bronchi of human subjects in vivo. Am Rev Respir Dis 1982, 126:108–112.PubMed Knowles MR, Buntin WH, Bromberg PA, Gatzy JT, Boucher RC: Measurements of transepithelial electric potential differences in the trachea and bronchi of human subjects in vivo. Am Rev Respir Dis 1982, 126:108–112.PubMed
29.
go back to reference Boucher RCJ, Bromberg PA, Gatzy JT: Airway transepithelial electric potential in vivo: species and regional differences. J Appl Physiol 1980, 48:169–176.PubMed Boucher RCJ, Bromberg PA, Gatzy JT: Airway transepithelial electric potential in vivo: species and regional differences. J Appl Physiol 1980, 48:169–176.PubMed
30.
go back to reference Boucher RC, Stutts MJ, Bromberg PA, Gatzy JT: Regional differences in airway surface liquid composition. Journal of Applied Physiology 1981, 50:613–620.PubMed Boucher RC, Stutts MJ, Bromberg PA, Gatzy JT: Regional differences in airway surface liquid composition. Journal of Applied Physiology 1981, 50:613–620.PubMed
31.
go back to reference Reddy MM, Quinton PM: Hydrolytic and nonhydrolytic interactions in the ATP regulation of CFTR Cl- conductance. Am J Physiol 1996, 271:C35–42.PubMed Reddy MM, Quinton PM: Hydrolytic and nonhydrolytic interactions in the ATP regulation of CFTR Cl- conductance. Am J Physiol 1996, 271:C35–42.PubMed
32.
go back to reference Hamutcu R, Rowland JM, Horn MV, Kaminsky C, MacLaughlin EF, Starnes VA, Woo MS: Clinical findings and lung pathology in children with cystic fibrosis. Am J Respir Crit Care Med 2002, 165:1172–1175.CrossRefPubMed Hamutcu R, Rowland JM, Horn MV, Kaminsky C, MacLaughlin EF, Starnes VA, Woo MS: Clinical findings and lung pathology in children with cystic fibrosis. Am J Respir Crit Care Med 2002, 165:1172–1175.CrossRefPubMed
33.
go back to reference Baltimore RS, Christie CD, Smith GJ: Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis 1989, 140:1650–1661.CrossRefPubMed Baltimore RS, Christie CD, Smith GJ: Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis 1989, 140:1650–1661.CrossRefPubMed
35.
go back to reference Illek B, Tam AW, Fischer H, Machen TE: Anion selectivity of apical membrane conductance of Calu 3 human airway epithelium. Pflugers Arch 1999, 437:812–822.CrossRefPubMed Illek B, Tam AW, Fischer H, Machen TE: Anion selectivity of apical membrane conductance of Calu 3 human airway epithelium. Pflugers Arch 1999, 437:812–822.CrossRefPubMed
36.
go back to reference Gray MA, Plant S, Argent BE: cAMP-regulated whole cell chloride currents in pancreatic duct cells. Am J Physiol 1993, 264:C591–602.PubMed Gray MA, Plant S, Argent BE: cAMP-regulated whole cell chloride currents in pancreatic duct cells. Am J Physiol 1993, 264:C591–602.PubMed
37.
go back to reference Quinton PM, Reddy MM: Cl- conductance and acid secretion in the human sweat duct. Ann N Y Acad Sci 1989, 574:438–446.CrossRefPubMed Quinton PM, Reddy MM: Cl- conductance and acid secretion in the human sweat duct. Ann N Y Acad Sci 1989, 574:438–446.CrossRefPubMed
38.
go back to reference Kottgen M, Loffler T, Jacobi C, Nitschke R, Pavenstadt H, Schreiber R, Frische S, Nielsen S, Leipziger J: P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. J Clin Invest 2003, 111:371–379.CrossRefPubMedPubMedCentral Kottgen M, Loffler T, Jacobi C, Nitschke R, Pavenstadt H, Schreiber R, Frische S, Nielsen S, Leipziger J: P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. J Clin Invest 2003, 111:371–379.CrossRefPubMedPubMedCentral
39.
go back to reference Cobb BR, Ruiz F, King CM, Fortenberry J, Greer H, Kovacs T, Sorscher EJ, Clancy JP: A(2) adenosine receptors regulate CFTR through PKA and PLA(2). Am J Physiol Lung Cell Mol Physiol 2002, 282:L12–25.PubMed Cobb BR, Ruiz F, King CM, Fortenberry J, Greer H, Kovacs T, Sorscher EJ, Clancy JP: A(2) adenosine receptors regulate CFTR through PKA and PLA(2). Am J Physiol Lung Cell Mol Physiol 2002, 282:L12–25.PubMed
40.
go back to reference Carlin RW, Lee JH, Marcus DC, Schultz BD: Adenosine stimulates anion secretion across cultured and native adult human vas deferens epithelia. Biol Reprod 2003, 68:1027–1034.CrossRefPubMed Carlin RW, Lee JH, Marcus DC, Schultz BD: Adenosine stimulates anion secretion across cultured and native adult human vas deferens epithelia. Biol Reprod 2003, 68:1027–1034.CrossRefPubMed
41.
go back to reference Reddy MM, Quinton PM: Effect of anion transport blockers on CFTR in the human sweat duct. J Membr Biol 2002, 189:15–25.CrossRefPubMed Reddy MM, Quinton PM: Effect of anion transport blockers on CFTR in the human sweat duct. J Membr Biol 2002, 189:15–25.CrossRefPubMed
42.
go back to reference Salinas DB, Pedemonte N, Muanprasat C, Finkbeiner WF, Nielson DW, Verkman AS: CFTR involvement in nasal potential differences in mice and pigs studied using a thiazolidinone CFTR inhibitor. Am J Physiol Lung Cell Mol Physiol 2004, 287:L936–43.CrossRefPubMed Salinas DB, Pedemonte N, Muanprasat C, Finkbeiner WF, Nielson DW, Verkman AS: CFTR involvement in nasal potential differences in mice and pigs studied using a thiazolidinone CFTR inhibitor. Am J Physiol Lung Cell Mol Physiol 2004, 287:L936–43.CrossRefPubMed
43.
go back to reference Quinton PM: The Sweat Gland. In Cystic Fibrosis in Adults. Edited by: Yankaskas JR and Knowles MR. Philadelphia, Lipencott-Raven; 1999:419–438. Quinton PM: The Sweat Gland. In Cystic Fibrosis in Adults. Edited by: Yankaskas JR and Knowles MR. Philadelphia, Lipencott-Raven; 1999:419–438.
44.
go back to reference Reddy MM, Quinton PM: Bumetanide blocks CFTR GCl in the native sweat duct. Am J Physiol 1999, 276:C231–7.PubMed Reddy MM, Quinton PM: Bumetanide blocks CFTR GCl in the native sweat duct. Am J Physiol 1999, 276:C231–7.PubMed
Metadata
Title
Predominant constitutive CFTR conductance in small airways
Authors
Xiaofei Wang
Christian Lytle
Paul M Quinton
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2005
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-6-7

Other articles of this Issue 1/2005

Respiratory Research 1/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.