Skip to main content
Top
Published in: Sports Medicine 7/2019

01-07-2019 | Insulins | Systematic Review

Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies

Authors: Antonio García-Hermoso, Rodrigo Ramírez-Campillo, Mikel Izquierdo

Published in: Sports Medicine | Issue 7/2019

Login to get access

Abstract

Background

No previous systematic review has quantitatively examined the association between muscular fitness during childhood and adolescence and health parameters later in life.

Objective

The aim was to systematically review and meta-analyze the current evidence for a prospective association between muscular fitness in childhood and adolescence and future health status.

Methods

Two authors systematically searched MEDLINE, EMBASE and SPORTDiscus electronic databases and conducted manual searching of reference lists of selected articles. Relevant articles were identified by the following criteria: apparently healthy children and adolescents aged 3–18 years with muscular fitness assessed at baseline (e.g., handgrip, standing long jump, sit-ups, among others), and a follow-up period of ≥ 1 year. The outcome measures were anthropometric and adiposity measurements and cardiometabolic, bone and musculoskeletal health parameters. Two authors independently extracted data.

Results

Thirty studies were included in the meta-analysis, yielding a total of 21,686 participants. The meta-analysis found a significant, moderate-large (p < 0.05) effect size between muscular fitness at baseline and body mass index (r = − 0.14; 95% confidence interval (CI) − 0.21 to − 0.07), skinfold thickness (r = − 0.32; 95% CI − 0.40 to − 0.23), homeostasis model assessment estimated insulin resistance (r = − 0.10; 95% CI − 0.16 to − 0.05), triglycerides (r = − 0.22; 95% CI − 0.30 to − 0.13), cardiovascular disease risk score (r = − 0.29; 95% CI − 0.39 to − 0.18), and bone mineral density (r = 0.166; 95% CI 0.086 to 0.243) at follow-up.

Conclusion

A prospective negative association was observed between muscular fitness in childhood/adolescence and adiposity and cardiometabolic parameters in later life, together with a positive association for bone health. There is inconclusive evidence for low back pain benefits.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ortega F, Ruiz J, Castillo M, et al. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond). 2008;32(1):1.CrossRef Ortega F, Ruiz J, Castillo M, et al. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond). 2008;32(1):1.CrossRef
2.
go back to reference Mintjens S, Menting MD, Daams JG, et al. Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk factors: a systematic review of longitudinal studies. Sports Med. 2018;48(11):2577–605.CrossRef Mintjens S, Menting MD, Daams JG, et al. Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk factors: a systematic review of longitudinal studies. Sports Med. 2018;48(11):2577–605.CrossRef
3.
go back to reference Ruiz JR, Castro-Piñero J, Artero EG, et al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med. 2009;43(12):909–23.CrossRef Ruiz JR, Castro-Piñero J, Artero EG, et al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med. 2009;43(12):909–23.CrossRef
4.
go back to reference Garcia-Hermoso A, Vegas-Heredia ED, Fernández-Vergara O, et al. Independent and combined effects of handgrip strength and adherence to a Mediterranean diet on blood pressure in Chilean children. Nutrition. 2019;60:170–4.CrossRef Garcia-Hermoso A, Vegas-Heredia ED, Fernández-Vergara O, et al. Independent and combined effects of handgrip strength and adherence to a Mediterranean diet on blood pressure in Chilean children. Nutrition. 2019;60:170–4.CrossRef
5.
go back to reference Ramírez-Vélez R, Peña-Ibagon JC, Martínez-Torres J, et al. Handgrip strength cutoff for cardiometabolic risk index among Colombian children and adolescents: the FUPRECOL Study. Sci Rep. 2017;7:42622.CrossRef Ramírez-Vélez R, Peña-Ibagon JC, Martínez-Torres J, et al. Handgrip strength cutoff for cardiometabolic risk index among Colombian children and adolescents: the FUPRECOL Study. Sci Rep. 2017;7:42622.CrossRef
6.
go back to reference Committee PAGA. Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: US Department of Health and Human Services; 2018. Committee PAGA. Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: US Department of Health and Human Services; 2018.
7.
go back to reference World Health Organization. Global health estimates: deaths by cause, age, sex and country, 2000–2012. Geneva: WHO; 2014. p. 9. World Health Organization. Global health estimates: deaths by cause, age, sex and country, 2000–2012. Geneva: WHO; 2014. p. 9.
8.
go back to reference Sandercock GR, Cohen DD. Temporal trends in muscular fitness of English 10-year-olds 1998–2014: an allometric approach. J Sci Med Sport. 2019;22(2):201–5.CrossRef Sandercock GR, Cohen DD. Temporal trends in muscular fitness of English 10-year-olds 1998–2014: an allometric approach. J Sci Med Sport. 2019;22(2):201–5.CrossRef
9.
go back to reference Moliner-Urdiales D, Ruiz J, Ortega F, et al. Secular trends in health-related physical fitness in Spanish adolescents: the AVENA and HELENA studies. J Sci Med Sport. 2010;13(6):584–8.CrossRef Moliner-Urdiales D, Ruiz J, Ortega F, et al. Secular trends in health-related physical fitness in Spanish adolescents: the AVENA and HELENA studies. J Sci Med Sport. 2010;13(6):584–8.CrossRef
10.
go back to reference García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, et al. Muscular strength as a predictor of all-cause mortality in apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99(10):2100–13.CrossRef García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, et al. Muscular strength as a predictor of all-cause mortality in apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99(10):2100–13.CrossRef
11.
go back to reference Steene-Johannessen J, Anderssen SA, Kolle E, et al. Low muscle fitness is associated with metabolic risk in youth. Med Sci Sports Exerc. 2009;41(7):1361–7.CrossRef Steene-Johannessen J, Anderssen SA, Kolle E, et al. Low muscle fitness is associated with metabolic risk in youth. Med Sci Sports Exerc. 2009;41(7):1361–7.CrossRef
12.
go back to reference Fraser BJ, Schmidt MD, Huynh QL, et al. Tracking of muscular strength and power from youth to young adulthood: longitudinal findings from the Childhood Determinants of Adult Health Study. J Sci Med Sport. 2010;20(10):927–31.CrossRef Fraser BJ, Schmidt MD, Huynh QL, et al. Tracking of muscular strength and power from youth to young adulthood: longitudinal findings from the Childhood Determinants of Adult Health Study. J Sci Med Sport. 2010;20(10):927–31.CrossRef
13.
go back to reference Smith JJ, Eather N, Morgan PJ, et al. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. 2014;44(9):1209–23.CrossRef Smith JJ, Eather N, Morgan PJ, et al. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. 2014;44(9):1209–23.CrossRef
14.
go back to reference Green S, Higgins J. Cochrane handbook for systematic reviews of interventions. Version; 2005. Green S, Higgins J. Cochrane handbook for systematic reviews of interventions. Version; 2005.
15.
go back to reference Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151(4):65–94.CrossRef Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151(4):65–94.CrossRef
16.
go back to reference Aires L, Andersen LB, Mendonça D, et al. A 3-year longitudinal analysis of changes in fitness, physical activity, fatness and screen time. Acta Paediatr. 2010;99(1):140–4.PubMed Aires L, Andersen LB, Mendonça D, et al. A 3-year longitudinal analysis of changes in fitness, physical activity, fatness and screen time. Acta Paediatr. 2010;99(1):140–4.PubMed
17.
go back to reference Grøntved A, Ried-Larsen M, Ekelund U, et al. Independent and combined association of muscle strength and cardiorespiratory fitness in youth with insulin resistance and β-cell function in young adulthood: the European Youth Heart Study. Diabetes Care. 2013;36(9):2575–81.CrossRef Grøntved A, Ried-Larsen M, Ekelund U, et al. Independent and combined association of muscle strength and cardiorespiratory fitness in youth with insulin resistance and β-cell function in young adulthood: the European Youth Heart Study. Diabetes Care. 2013;36(9):2575–81.CrossRef
18.
go back to reference Grøntved A, Ried-Larsen M, Møller NC, et al. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study). Br J Sports Med. 2015;49(2):90–4.CrossRef Grøntved A, Ried-Larsen M, Møller NC, et al. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study). Br J Sports Med. 2015;49(2):90–4.CrossRef
19.
go back to reference Toriola OO, Monyeki MA, Toriola AL. Two-year longitudinal health-related fitness, anthropometry and body composition status amongst adolescents in Tlokwe Municipality: the PAHL Study. Afr J Prim Health Care Fam Med. 2015;7(1):896.CrossRef Toriola OO, Monyeki MA, Toriola AL. Two-year longitudinal health-related fitness, anthropometry and body composition status amongst adolescents in Tlokwe Municipality: the PAHL Study. Afr J Prim Health Care Fam Med. 2015;7(1):896.CrossRef
21.
go back to reference Skrede T, Steene-Johannessen J, Anderssen S, et al. The prospective association between objectively measured sedentary time, moderate-to-vigorous physical activity and cardiometabolic risk factors in youth: a systematic review and meta-analysis. Obes Rev. 2019;20(1):55–74.CrossRef Skrede T, Steene-Johannessen J, Anderssen S, et al. The prospective association between objectively measured sedentary time, moderate-to-vigorous physical activity and cardiometabolic risk factors in youth: a systematic review and meta-analysis. Obes Rev. 2019;20(1):55–74.CrossRef
22.
go back to reference Nieminen P, Lehtiniemi H, Vähäkangas K, et al. Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiol Biostat Public Health. 2013;10(4):1–15. Nieminen P, Lehtiniemi H, Vähäkangas K, et al. Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiol Biostat Public Health. 2013;10(4):1–15.
23.
go back to reference Peterson RA, Brown SP. On the use of beta coefficients in meta-analysis. J Appl Psychol. 2005;90(1):175.CrossRef Peterson RA, Brown SP. On the use of beta coefficients in meta-analysis. J Appl Psychol. 2005;90(1):175.CrossRef
24.
go back to reference Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med. 1996;15(6):619–29.CrossRef Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med. 1996;15(6):619–29.CrossRef
25.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Erlbaum; 1988. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Erlbaum; 1988.
26.
go back to reference Higgins J, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.CrossRef Higgins J, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.CrossRef
27.
go back to reference Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRef Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRef
28.
go back to reference Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRef Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRef
29.
go back to reference Agostinis-Sobrinho C, Ruiz JR, Moreira C, et al. Changes in muscular fitness and its association with blood pressure in adolescents. Eur J Pediatr. 2018;177(7):1101–9.CrossRef Agostinis-Sobrinho C, Ruiz JR, Moreira C, et al. Changes in muscular fitness and its association with blood pressure in adolescents. Eur J Pediatr. 2018;177(7):1101–9.CrossRef
30.
go back to reference Barnekow-Bergkvist M, Hedberg G, Janlert U, et al. Adolescent determinants of cardiovascular risk factors in adult men and women. Scand J Public Health. 2001;29(3):208–17.CrossRef Barnekow-Bergkvist M, Hedberg G, Janlert U, et al. Adolescent determinants of cardiovascular risk factors in adult men and women. Scand J Public Health. 2001;29(3):208–17.CrossRef
31.
go back to reference Barnekow-Bergkvist M, Hedberg G, Pettersson U, et al. Relationships between physical activity and physical capacity in adolescent females and bone mass in adulthood. Scand J Med Sci Sports. 2006;16(6):447–55.CrossRef Barnekow-Bergkvist M, Hedberg G, Pettersson U, et al. Relationships between physical activity and physical capacity in adolescent females and bone mass in adulthood. Scand J Med Sci Sports. 2006;16(6):447–55.CrossRef
32.
go back to reference Cheng J, Maffulli N, Leung S, et al. Axial and peripheral bone mineral acquisition: a 3-year longitudinal study in Chinese adolescents. Eur J Pediatr. 1999;158(6):506–12.CrossRef Cheng J, Maffulli N, Leung S, et al. Axial and peripheral bone mineral acquisition: a 3-year longitudinal study in Chinese adolescents. Eur J Pediatr. 1999;158(6):506–12.CrossRef
33.
go back to reference Delvaux K, Lefevre J, Philippaerts R, et al. Bone mass and lifetime physical activity in Flemish males: a 27-year follow-up study. Med Sci Sports Exerc. 2001;33(11):1868–75.CrossRef Delvaux K, Lefevre J, Philippaerts R, et al. Bone mass and lifetime physical activity in Flemish males: a 27-year follow-up study. Med Sci Sports Exerc. 2001;33(11):1868–75.CrossRef
34.
go back to reference Feldman DE, Shrier I, Rossignol M, et al. Risk factors for the development of low back pain in adolescence. Am J Epidemiol. 2001;154(1):30–6.CrossRef Feldman DE, Shrier I, Rossignol M, et al. Risk factors for the development of low back pain in adolescence. Am J Epidemiol. 2001;154(1):30–6.CrossRef
35.
go back to reference Foley S, Quinn S, Dwyer T, et al. Measures of childhood fitness and body mass index are associated with bone mass in adulthood: a 20-year prospective study. J Bone Miner Res. 2008;23(7):994–1001.CrossRef Foley S, Quinn S, Dwyer T, et al. Measures of childhood fitness and body mass index are associated with bone mass in adulthood: a 20-year prospective study. J Bone Miner Res. 2008;23(7):994–1001.CrossRef
36.
go back to reference Fraser BJ, Blizzard L, Schmidt MD, et al. Childhood cardiorespiratory fitness, muscular fitness and adult measures of glucose homeostasis. J Sci Med Sport. 2018;21(9):935–40.CrossRef Fraser BJ, Blizzard L, Schmidt MD, et al. Childhood cardiorespiratory fitness, muscular fitness and adult measures of glucose homeostasis. J Sci Med Sport. 2018;21(9):935–40.CrossRef
37.
go back to reference Fraser BJ, Huynh QL, Schmidt MD, et al. Childhood muscular fitness phenotypes and adult metabolic syndrome. Med Sci Sports Exerc. 2016;48(9):1715–22.CrossRef Fraser BJ, Huynh QL, Schmidt MD, et al. Childhood muscular fitness phenotypes and adult metabolic syndrome. Med Sci Sports Exerc. 2016;48(9):1715–22.CrossRef
38.
go back to reference Freitas D, Beunen G, Maia J, et al. Tracking of fatness during childhood, adolescence and young adulthood: a 7-year follow-up study in Madeira Island, Portugal. Ann Hum Biol. 2012;39(1):59–67.CrossRef Freitas D, Beunen G, Maia J, et al. Tracking of fatness during childhood, adolescence and young adulthood: a 7-year follow-up study in Madeira Island, Portugal. Ann Hum Biol. 2012;39(1):59–67.CrossRef
39.
go back to reference Hasselstrøm H, Hansen S, Froberg K, et al. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int J Sports Med. 2002;23(1):27–31.CrossRef Hasselstrøm H, Hansen S, Froberg K, et al. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int J Sports Med. 2002;23(1):27–31.CrossRef
40.
go back to reference Hruby A, Chomitz VR, Arsenault LN, et al. Predicting maintenance or achievement of healthy weight in children: the impact of changes in physical fitness. Obesity. 2012;20(8):1710–7.CrossRef Hruby A, Chomitz VR, Arsenault LN, et al. Predicting maintenance or achievement of healthy weight in children: the impact of changes in physical fitness. Obesity. 2012;20(8):1710–7.CrossRef
41.
go back to reference Janz K, Dawson J, Mahoney L. Increases in physical fitness during childhood improve cardiovascular health during adolescence: the Muscatine study. Int J Sports Med. 2002;23(S1):15–21.CrossRef Janz K, Dawson J, Mahoney L. Increases in physical fitness during childhood improve cardiovascular health during adolescence: the Muscatine study. Int J Sports Med. 2002;23(S1):15–21.CrossRef
42.
go back to reference Jekal Y, Kim Y, Yun JE, et al. The association of adolescent fatness and fitness with risk factors for adult metabolic syndrome: a 22-year follow-up study. J Phys Act Health. 2014;11(4):823–30.CrossRef Jekal Y, Kim Y, Yun JE, et al. The association of adolescent fatness and fitness with risk factors for adult metabolic syndrome: a 22-year follow-up study. J Phys Act Health. 2014;11(4):823–30.CrossRef
43.
go back to reference Kim J, Must A, Fitzmaurice GM, et al. Relationship of physical fitness to prevalence and incidence of overweight among schoolchildren. Obes Res. 2005;13(7):1246–54.CrossRef Kim J, Must A, Fitzmaurice GM, et al. Relationship of physical fitness to prevalence and incidence of overweight among schoolchildren. Obes Res. 2005;13(7):1246–54.CrossRef
44.
go back to reference Lopes VP, Maia JA, Rodrigues LP, et al. Motor coordination, physical activity and fitness as predictors of longitudinal change in adiposity during childhood. Eur J Sport Sci. 2012;12(4):384–91.CrossRef Lopes VP, Maia JA, Rodrigues LP, et al. Motor coordination, physical activity and fitness as predictors of longitudinal change in adiposity during childhood. Eur J Sport Sci. 2012;12(4):384–91.CrossRef
45.
go back to reference Mikkelsson LO, Nupponen H, Kaprio J, et al. Adolescent flexibility, endurance strength, and physical activity as predictors of adult tension neck, low back pain, and knee injury: a 25 year follow up study. Br J Sports Med. 2006;40(2):107–13.CrossRef Mikkelsson LO, Nupponen H, Kaprio J, et al. Adolescent flexibility, endurance strength, and physical activity as predictors of adult tension neck, low back pain, and knee injury: a 25 year follow up study. Br J Sports Med. 2006;40(2):107–13.CrossRef
46.
go back to reference Minck M, Ruiter L, Van Mechelen W, et al. Physical fitness, body fatness, and physical activity: the Amsterdam Growth and Health Study. Am J Hum Biol. 2000;12(5):593–9.CrossRef Minck M, Ruiter L, Van Mechelen W, et al. Physical fitness, body fatness, and physical activity: the Amsterdam Growth and Health Study. Am J Hum Biol. 2000;12(5):593–9.CrossRef
47.
go back to reference Newcomer K, Sinaki M. Low back pain and its relationship to back strength and physical activity in children. Acta Paediatr. 1996;85(12):1433–9.CrossRef Newcomer K, Sinaki M. Low back pain and its relationship to back strength and physical activity in children. Acta Paediatr. 1996;85(12):1433–9.CrossRef
48.
go back to reference Peterson MD, Gordon PM, Smeding S, et al. Grip strength is associated with longitudinal health maintenance and improvement in adolescents. J Pediatr. 2018;202:226–30.CrossRef Peterson MD, Gordon PM, Smeding S, et al. Grip strength is associated with longitudinal health maintenance and improvement in adolescents. J Pediatr. 2018;202:226–30.CrossRef
49.
go back to reference Salminen JJ, Erkintalo M, Laine M, et al. Low back pain in the young. A prospective three-year follow-up study of subjects with and without low back pain. Spine. 1995;20(19):2101–7.CrossRef Salminen JJ, Erkintalo M, Laine M, et al. Low back pain in the young. A prospective three-year follow-up study of subjects with and without low back pain. Spine. 1995;20(19):2101–7.CrossRef
50.
go back to reference Sjölie AN, Ljunggren AE. The significance of high lumbar mobility and low lumbar strength for current and future low back pain in adolescents. Spine. 2001;26(23):2629–36.CrossRef Sjölie AN, Ljunggren AE. The significance of high lumbar mobility and low lumbar strength for current and future low back pain in adolescents. Spine. 2001;26(23):2629–36.CrossRef
51.
go back to reference Wang Q, Alén M, Nicholson P, et al. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls—a 2-year longitudinal study. Bone. 2007;40(5):1196–202.CrossRef Wang Q, Alén M, Nicholson P, et al. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls—a 2-year longitudinal study. Bone. 2007;40(5):1196–202.CrossRef
52.
go back to reference Zaqout M, Michels N, Bammann K, et al. Influence of physical fitness on cardio-metabolic risk factors in European children. The IDEFICS study. Int J Obes (Lond). 2016;40(7):1119–25.CrossRef Zaqout M, Michels N, Bammann K, et al. Influence of physical fitness on cardio-metabolic risk factors in European children. The IDEFICS study. Int J Obes (Lond). 2016;40(7):1119–25.CrossRef
53.
go back to reference Welten D, Kemper H, Post G, et al. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res. 1994;9(7):1089–96.CrossRef Welten D, Kemper H, Post G, et al. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res. 1994;9(7):1089–96.CrossRef
54.
go back to reference Castro-Piñero J, Perez-Bey A, Cuenca-Garcia M, et al. Muscle fitness cut points for early assessment of cardiovascular risk in children and adolescents. J Pediatr. 2019;206:134–41.CrossRef Castro-Piñero J, Perez-Bey A, Cuenca-Garcia M, et al. Muscle fitness cut points for early assessment of cardiovascular risk in children and adolescents. J Pediatr. 2019;206:134–41.CrossRef
55.
go back to reference Monyeki K, Kemper H, Makgae P. Relationship between fat patterns, physical fitness and blood pressure of rural South African children: Ellisras Longitudinal Growth and Health Study. J Hum Hypertens. 2008;22(5):311.CrossRef Monyeki K, Kemper H, Makgae P. Relationship between fat patterns, physical fitness and blood pressure of rural South African children: Ellisras Longitudinal Growth and Health Study. J Hum Hypertens. 2008;22(5):311.CrossRef
57.
go back to reference Cattuzzo MT, dos Santos Henrique R, Ré AHN, et al. Motor competence and health related physical fitness in youth: a systematic review. J Sci Med Sport. 2016;19(2):123–9.CrossRef Cattuzzo MT, dos Santos Henrique R, Ré AHN, et al. Motor competence and health related physical fitness in youth: a systematic review. J Sci Med Sport. 2016;19(2):123–9.CrossRef
58.
go back to reference Castelli DM, Valley JA. Chapter 3: The relationship of physical fitness and motor competence to physical activity. J Teach Phys Educ. 2007;26(4):358–74.CrossRef Castelli DM, Valley JA. Chapter 3: The relationship of physical fitness and motor competence to physical activity. J Teach Phys Educ. 2007;26(4):358–74.CrossRef
59.
go back to reference Zurlo F, Larson K, Bogardus C, et al. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Investig. 1990;86(5):1423–7.CrossRef Zurlo F, Larson K, Bogardus C, et al. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Investig. 1990;86(5):1423–7.CrossRef
60.
go back to reference Moliner-Urdiales D, Ruiz JR, Vicente-Rodriguez G, et al. Associations of muscular and cardiorespiratory fitness with total and central body fat in adolescents: the HELENA study. Br J Sports Med. 2011;45(2):101–8.CrossRef Moliner-Urdiales D, Ruiz JR, Vicente-Rodriguez G, et al. Associations of muscular and cardiorespiratory fitness with total and central body fat in adolescents: the HELENA study. Br J Sports Med. 2011;45(2):101–8.CrossRef
61.
go back to reference García-Hermoso A, Ramírez-Vélez R, Ramírez-Campillo R, et al. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: a systematic review and meta-analysis. Br J Sports Med. 2018;52(3):161–6.CrossRef García-Hermoso A, Ramírez-Vélez R, Ramírez-Campillo R, et al. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: a systematic review and meta-analysis. Br J Sports Med. 2018;52(3):161–6.CrossRef
62.
go back to reference Moran J, Sandercock G, Ramirez-Campillo R, et al. A meta-analysis of resistance training in female youth: its effect on muscular strength, and shortcomings in the literature. Sports Med. 2018;48(7):1661–71.CrossRef Moran J, Sandercock G, Ramirez-Campillo R, et al. A meta-analysis of resistance training in female youth: its effect on muscular strength, and shortcomings in the literature. Sports Med. 2018;48(7):1661–71.CrossRef
63.
go back to reference Holten MKZM, Gaster M, Juel C, et al. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes Care. 2004;53(2):294–305.CrossRef Holten MKZM, Gaster M, Juel C, et al. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes Care. 2004;53(2):294–305.CrossRef
64.
go back to reference Álvarez C, Ramírez-Campillo R, Ramírez-Vélez R, et al. Metabolic effects of resistance or high-intensity interval training among glycemic control-nonresponsive children with insulin resistance. Int J Obes (Lond). 2018;42(1):79.CrossRef Álvarez C, Ramírez-Campillo R, Ramírez-Vélez R, et al. Metabolic effects of resistance or high-intensity interval training among glycemic control-nonresponsive children with insulin resistance. Int J Obes (Lond). 2018;42(1):79.CrossRef
65.
go back to reference Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40(1):14–27.CrossRef Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40(1):14–27.CrossRef
66.
go back to reference Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–5.PubMed Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–5.PubMed
67.
go back to reference Kelly P, Eisman J, Sambrook P. Interaction of genetic and environmental influences on peak bone density. Osteoporos Int. 1990;1(1):56–60.CrossRef Kelly P, Eisman J, Sambrook P. Interaction of genetic and environmental influences on peak bone density. Osteoporos Int. 1990;1(1):56–60.CrossRef
68.
go back to reference Babaroutsi E, Magkos F, Manios Y, et al. Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J Bone Miner Metab. 2005;23(2):157–66.CrossRef Babaroutsi E, Magkos F, Manios Y, et al. Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J Bone Miner Metab. 2005;23(2):157–66.CrossRef
69.
go back to reference Vicente-Rodriguez G, Dorado C, Perez-Gomez J, et al. Enhanced bone mass and physical fitness in young female handball players. Bone. 2004;35(5):1208–15.CrossRef Vicente-Rodriguez G, Dorado C, Perez-Gomez J, et al. Enhanced bone mass and physical fitness in young female handball players. Bone. 2004;35(5):1208–15.CrossRef
70.
go back to reference Gilsanz V, Roe TF, Mora S, et al. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325(23):1597–600.CrossRef Gilsanz V, Roe TF, Mora S, et al. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325(23):1597–600.CrossRef
71.
go back to reference Ramirez-Campillo R, Álvarez C, García-Hermoso A, et al. Methodological characteristics and future directions for plyometric jump training research: a scoping review. Sports Med. 2018;48(5):1059–81.CrossRef Ramirez-Campillo R, Álvarez C, García-Hermoso A, et al. Methodological characteristics and future directions for plyometric jump training research: a scoping review. Sports Med. 2018;48(5):1059–81.CrossRef
72.
go back to reference Vlachopoulos D, Barker AR, Ubago-Guisado E, et al. A 9-month jumping intervention to improve bone geometry in adolescent male athletes. Med Sci Sports Exerc. 2018;50(12):2544–54.CrossRef Vlachopoulos D, Barker AR, Ubago-Guisado E, et al. A 9-month jumping intervention to improve bone geometry in adolescent male athletes. Med Sci Sports Exerc. 2018;50(12):2544–54.CrossRef
73.
go back to reference Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602.CrossRef Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602.CrossRef
74.
go back to reference Hart LG, Deyo RA, Cherkin DC. Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a US national survey. Spine. 1995;20(1):11–9.CrossRef Hart LG, Deyo RA, Cherkin DC. Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a US national survey. Spine. 1995;20(1):11–9.CrossRef
75.
go back to reference Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil. 2014;95(5):986–95.CrossRef Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil. 2014;95(5):986–95.CrossRef
76.
go back to reference Wewege M, Booth J, Parmenter B. Aerobic vs. resistance exercise for chronic non-specific low back pain: a systematic review and meta-analysis. J Back Musculoskelet Rehabil. 2018;35:889–99.CrossRef Wewege M, Booth J, Parmenter B. Aerobic vs. resistance exercise for chronic non-specific low back pain: a systematic review and meta-analysis. J Back Musculoskelet Rehabil. 2018;35:889–99.CrossRef
77.
go back to reference Timpka S, Petersson IF, Zhou C, et al. Muscle strength in adolescent men and future musculoskeletal pain: a cohort study with 17 years of follow-up. BMJ Open. 2013;3(5):e002656.CrossRef Timpka S, Petersson IF, Zhou C, et al. Muscle strength in adolescent men and future musculoskeletal pain: a cohort study with 17 years of follow-up. BMJ Open. 2013;3(5):e002656.CrossRef
78.
go back to reference Hill AB. The environment and disease: association or causation? J R Soc Med. 1965;58:295–300.CrossRef Hill AB. The environment and disease: association or causation? J R Soc Med. 1965;58:295–300.CrossRef
79.
go back to reference Moran J, Sandercock GR, Ramírez-Campillo R, et al. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J Sports Sci. 2017;35(11):1041–51.CrossRef Moran J, Sandercock GR, Ramírez-Campillo R, et al. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J Sports Sci. 2017;35(11):1041–51.CrossRef
Metadata
Title
Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies
Authors
Antonio García-Hermoso
Rodrigo Ramírez-Campillo
Mikel Izquierdo
Publication date
01-07-2019
Publisher
Springer International Publishing
Keywords
Insulins
Insulins
Published in
Sports Medicine / Issue 7/2019
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-019-01098-6

Other articles of this Issue 7/2019

Sports Medicine 7/2019 Go to the issue