Skip to main content
Top
Published in: Sports Medicine 7/2019

01-07-2019 | Commentary

Exercise-Induced Myofibrillar Hypertrophy is a Contributory Cause of Gains in Muscle Strength

Authors: Christopher B. Taber, Andrew Vigotsky, Greg Nuckols, Cody T. Haun

Published in: Sports Medicine | Issue 7/2019

Login to get access

Excerpt

The primary focus of this commentary is to discuss the relationship between training-induced increases in muscle size (i.e., hypertrophy) and changes in strength. Recently, Buckner et al. and Hornsby et al. debated the contribution of hypertrophy to strength and the role hypertrophy plays in sports performance; however, this is not a new discussion [1, 2]. The exact contribution of hypertrophy to strength remains to be determined; yet, we feel certain considerations can provide clarity for future work. To provide these considerations, we begin by operationally defining both hypertrophy and strength. Thereafter, we address the strength-hypertrophy relationship through: (1) epistemological and statistical considerations, (2) molecular, mechanical, and single-fiber bases, and (3) exemplary training studies. …
Literature
1.
go back to reference Buckner SL, Dankel SJ, Mattocks KT, Jessee MB, Mouser JG, Counts BR, et al. The problem of muscle hypertrophy: revisited. Muscle Nerve. 2016;54(6):1012–4.CrossRefPubMed Buckner SL, Dankel SJ, Mattocks KT, Jessee MB, Mouser JG, Counts BR, et al. The problem of muscle hypertrophy: revisited. Muscle Nerve. 2016;54(6):1012–4.CrossRefPubMed
2.
go back to reference Hornsby WG, Gentles JA, Haff GG, Stone MH, Buckner SL, Dankel SJ, et al. What is the impact of muscle hypertrophy on strength and sport performance? J Strength Cond Res. 2018;40(6):99–111.CrossRef Hornsby WG, Gentles JA, Haff GG, Stone MH, Buckner SL, Dankel SJ, et al. What is the impact of muscle hypertrophy on strength and sport performance? J Strength Cond Res. 2018;40(6):99–111.CrossRef
3.
go back to reference Mihl C, Dassen W, Kuipers H. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J. 2008;16(4):129–33.CrossRefPubMedPubMedCentral Mihl C, Dassen W, Kuipers H. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J. 2008;16(4):129–33.CrossRefPubMedPubMedCentral
4.
go back to reference Johansson B. Different types of smooth muscle hypertrophy. Hypertension. 1984;6 Pt 6(2):III64. Johansson B. Different types of smooth muscle hypertrophy. Hypertension. 1984;6 Pt 6(2):III64.
5.
go back to reference Stone MH. Implications for connective tissue and bone alterations resulting from resistance exercise training. Med Sci Sports Exerc. 1988;20(5 Suppl):S162–8.CrossRefPubMed Stone MH. Implications for connective tissue and bone alterations resulting from resistance exercise training. Med Sci Sports Exerc. 1988;20(5 Suppl):S162–8.CrossRefPubMed
6.
go back to reference Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–98.CrossRefPubMed Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–98.CrossRefPubMed
7.
go back to reference Cribb PJ, Hayes A. Effects of supplement-timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006;38(11):1918–25.CrossRefPubMed Cribb PJ, Hayes A. Effects of supplement-timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006;38(11):1918–25.CrossRefPubMed
8.
go back to reference Roberts M, Romero M, Mobley C, Mumford P, Roberson P, Haun C, et al. Skeletal muscle mitochondrial volume and myozenin-1 protein differences exist between high versus low anabolic responders to resistance training: PeerJ Preprints2018. Report no.: 2167-9843. Roberts M, Romero M, Mobley C, Mumford P, Roberson P, Haun C, et al. Skeletal muscle mitochondrial volume and myozenin-1 protein differences exist between high versus low anabolic responders to resistance training: PeerJ Preprints2018. Report no.: 2167-9843.
9.
go back to reference MacDougall J, Sale D, Elder G, Sutton J. Muscle ultrastructural characteristics of elite powerlifters and bodybuilders. Eur J Appl Physiol Occup Physiol. 1982;48(1):117–26.CrossRefPubMed MacDougall J, Sale D, Elder G, Sutton J. Muscle ultrastructural characteristics of elite powerlifters and bodybuilders. Eur J Appl Physiol Occup Physiol. 1982;48(1):117–26.CrossRefPubMed
10.
go back to reference Siff M. Biomechanical foundations of strength and power training. London: Blackwell Scientific Ltd; 2000. p. 103–39. Siff M. Biomechanical foundations of strength and power training. London: Blackwell Scientific Ltd; 2000. p. 103–39.
11.
go back to reference Stone MH. Position statement: explosive exercise and training. Strength Cond J. 1993;15(3):7–15.CrossRef Stone MH. Position statement: explosive exercise and training. Strength Cond J. 1993;15(3):7–15.CrossRef
12.
go back to reference Parente V, D’Antona G, Adami R, Miotti D, Capodaglio P, De Vito G, et al. Long-term resistance training improves force and unloaded shortening velocity of single muscle fibres of elderly women. Eur J Appl Physiol. 2008;104(5):885.CrossRefPubMed Parente V, D’Antona G, Adami R, Miotti D, Capodaglio P, De Vito G, et al. Long-term resistance training improves force and unloaded shortening velocity of single muscle fibres of elderly women. Eur J Appl Physiol. 2008;104(5):885.CrossRefPubMed
13.
go back to reference Ahtiainen JP, Walker S, Peltonen H, Holviala J, Sillanpää E, Karavirta L, et al. Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. Age. 2016;38(1):10.CrossRefPubMedPubMedCentral Ahtiainen JP, Walker S, Peltonen H, Holviala J, Sillanpää E, Karavirta L, et al. Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. Age. 2016;38(1):10.CrossRefPubMedPubMedCentral
14.
go back to reference Street SF. Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol. 1983;114(3):346–64.CrossRefPubMed Street SF. Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol. 1983;114(3):346–64.CrossRefPubMed
15.
go back to reference Ramaswamy KS, Palmer ML, Van Der Meulen JH, Renoux A, Kostrominova TY, Michele DE, et al. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol. 2011;589(5):1195–208.CrossRefPubMedPubMedCentral Ramaswamy KS, Palmer ML, Van Der Meulen JH, Renoux A, Kostrominova TY, Michele DE, et al. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol. 2011;589(5):1195–208.CrossRefPubMedPubMedCentral
16.
go back to reference Huijing PA. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech. 1999;32(4):329–45.CrossRefPubMed Huijing PA. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech. 1999;32(4):329–45.CrossRefPubMed
17.
go back to reference Jones D, Rutherford O, Parker D. Physiological changes in skeletal muscle as a result of strength training. Q J Exp Physiol. 1989;74(3):233–56.CrossRefPubMed Jones D, Rutherford O, Parker D. Physiological changes in skeletal muscle as a result of strength training. Q J Exp Physiol. 1989;74(3):233–56.CrossRefPubMed
18.
go back to reference Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318.CrossRefPubMed Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318.CrossRefPubMed
19.
go back to reference van der Pijl R, Strom J, Conijn S, Lindqvist J, Labeit S, Granzier H, et al. Titin-based mechanosensing modulates muscle hypertrophy. J Cachexia Sarcopenia Muscle. 2018;9(5):947–61.CrossRefPubMedPubMedCentral van der Pijl R, Strom J, Conijn S, Lindqvist J, Labeit S, Granzier H, et al. Titin-based mechanosensing modulates muscle hypertrophy. J Cachexia Sarcopenia Muscle. 2018;9(5):947–61.CrossRefPubMedPubMedCentral
20.
go back to reference Miller MS, Callahan DM, Toth MJ. Skeletal muscle myofilament adaptations to aging, disease, and disuse and their effects on whole muscle performance in older adult humans. Front Physiol. 2014;5:369.CrossRefPubMedPubMedCentral Miller MS, Callahan DM, Toth MJ. Skeletal muscle myofilament adaptations to aging, disease, and disuse and their effects on whole muscle performance in older adult humans. Front Physiol. 2014;5:369.CrossRefPubMedPubMedCentral
21.
go back to reference Gilliver S, Degens H, Rittweger J, Sargeant A, Jones D. Variation in the determinants of power of chemically skinned human muscle fibres. Exp Physiol. 2009;94(10):1070–8.CrossRefPubMed Gilliver S, Degens H, Rittweger J, Sargeant A, Jones D. Variation in the determinants of power of chemically skinned human muscle fibres. Exp Physiol. 2009;94(10):1070–8.CrossRefPubMed
22.
go back to reference Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D. Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol. 2000;89(1):143–52.CrossRefPubMed Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D. Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol. 2000;89(1):143–52.CrossRefPubMed
23.
go back to reference Widrick JJ, Stelzer JE, Shoepe TC, Garner DP. Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):R408–16.CrossRefPubMed Widrick JJ, Stelzer JE, Shoepe TC, Garner DP. Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):R408–16.CrossRefPubMed
24.
go back to reference Dankel SJ, Kang M, Abe T, Loenneke JP. Resistance training induced changes in strength and specific force at the fiber and whole muscle level: a meta-analysis. Eur J Appl Physiol. 2019;119(1):265–78.CrossRefPubMed Dankel SJ, Kang M, Abe T, Loenneke JP. Resistance training induced changes in strength and specific force at the fiber and whole muscle level: a meta-analysis. Eur J Appl Physiol. 2019;119(1):265–78.CrossRefPubMed
25.
go back to reference Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S135–45.CrossRefPubMed Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S135–45.CrossRefPubMed
26.
go back to reference Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise. Sports Med. 2006;36(2):133–49.CrossRefPubMed Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise. Sports Med. 2006;36(2):133–49.CrossRefPubMed
27.
go back to reference Moritani T. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.PubMed Moritani T. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.PubMed
28.
go back to reference Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368–73.CrossRefPubMed Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368–73.CrossRefPubMed
29.
go back to reference Balshaw TG, Massey GJ, Maden-Wilkinson TM, Lanza MB, Folland JP. Neural adaptations after 4 years vs 12 weeks of resistance training vs untrained. Scand J Med Sci. 2019;29:348–59. Balshaw TG, Massey GJ, Maden-Wilkinson TM, Lanza MB, Folland JP. Neural adaptations after 4 years vs 12 weeks of resistance training vs untrained. Scand J Med Sci. 2019;29:348–59.
30.
go back to reference Maeo S, Shan X, Otsuka S, Kanehisa H, Kawakami Y. Neuromuscular adaptations to work-matched maximal eccentric versus concentric training. Med Sci Sports Exerc. 2018;50(8):1629.CrossRefPubMedPubMedCentral Maeo S, Shan X, Otsuka S, Kanehisa H, Kawakami Y. Neuromuscular adaptations to work-matched maximal eccentric versus concentric training. Med Sci Sports Exerc. 2018;50(8):1629.CrossRefPubMedPubMedCentral
31.
go back to reference Erskine RM, Jones DA, Maffulli N, Williams AG, Stewart CE, Degens H. What causes in vivo muscle specific tension to increase following resistance training? Exp Physiol. 2011;96(2):145–55.CrossRefPubMed Erskine RM, Jones DA, Maffulli N, Williams AG, Stewart CE, Degens H. What causes in vivo muscle specific tension to increase following resistance training? Exp Physiol. 2011;96(2):145–55.CrossRefPubMed
32.
go back to reference Erskine RM, Fletcher G, Folland JP. The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol. 2014;114(6):1239–49.CrossRefPubMed Erskine RM, Fletcher G, Folland JP. The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol. 2014;114(6):1239–49.CrossRefPubMed
33.
go back to reference Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, et al. Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand. 1996;157(2):175–86.CrossRefPubMed Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, et al. Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand. 1996;157(2):175–86.CrossRefPubMed
34.
go back to reference Cribb PJ, Williams AD, Stathis CG, Carey MF, Hayes A. Effects of whey isolate, creatine and resistance training on muscle hypertrophy. Med Sci Sports Exerc. 2007;39(2):298–307.CrossRefPubMed Cribb PJ, Williams AD, Stathis CG, Carey MF, Hayes A. Effects of whey isolate, creatine and resistance training on muscle hypertrophy. Med Sci Sports Exerc. 2007;39(2):298–307.CrossRefPubMed
35.
go back to reference Baker D, Wilson G, Carlyon R. Periodization: the effect on strength of manipulating volume and intensity. J Strength Cond Res. 1994;8(4):235–42. Baker D, Wilson G, Carlyon R. Periodization: the effect on strength of manipulating volume and intensity. J Strength Cond Res. 1994;8(4):235–42.
36.
go back to reference Appleby B, Newton RU, Cormie P. Changes in strength over a 2-year period in professional rugby union players. J Strength Cond Res. 2012;26(9):2538–46.CrossRefPubMed Appleby B, Newton RU, Cormie P. Changes in strength over a 2-year period in professional rugby union players. J Strength Cond Res. 2012;26(9):2538–46.CrossRefPubMed
37.
go back to reference Siahkouhian M, Hedayatneja M. Correlations of anthropometric and body composition variables with the performance of young elite weightlifters. J Hum Kinet. 2010;25:125–31.CrossRef Siahkouhian M, Hedayatneja M. Correlations of anthropometric and body composition variables with the performance of young elite weightlifters. J Hum Kinet. 2010;25:125–31.CrossRef
38.
go back to reference Blazevich AJ, Coleman DR, Horne S, Cannavan D. Anatomical predictors of maximum isometric and concentric knee extensor moment. Eur J Appl Physiol. 2009;105(6):869–78.CrossRefPubMed Blazevich AJ, Coleman DR, Horne S, Cannavan D. Anatomical predictors of maximum isometric and concentric knee extensor moment. Eur J Appl Physiol. 2009;105(6):869–78.CrossRefPubMed
39.
go back to reference Trezise J, Collier N, Blazevich AJ. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. Eur J Appl Physiol. 2016;116(6):1159–77.CrossRefPubMed Trezise J, Collier N, Blazevich AJ. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. Eur J Appl Physiol. 2016;116(6):1159–77.CrossRefPubMed
40.
go back to reference Lietzke M. Relation between weight-lifting totals and body weight. Science. 1956;124(3220):486–7.CrossRefPubMed Lietzke M. Relation between weight-lifting totals and body weight. Science. 1956;124(3220):486–7.CrossRefPubMed
41.
go back to reference Brechue WF, Abe T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol. 2002;86(4):327–36.CrossRefPubMed Brechue WF, Abe T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol. 2002;86(4):327–36.CrossRefPubMed
42.
go back to reference Vigotsky AD, Schoenfeld BJ, Than C, Brown JM. Methods matter: the relationship between strength and hypertrophy depends on methods of measurement and analysis. PeerJ. 2018;6:e5071.CrossRefPubMedPubMedCentral Vigotsky AD, Schoenfeld BJ, Than C, Brown JM. Methods matter: the relationship between strength and hypertrophy depends on methods of measurement and analysis. PeerJ. 2018;6:e5071.CrossRefPubMedPubMedCentral
43.
go back to reference Loenneke JP, Rossow LM, Fahs CA, Thiebaud RS, Grant Mouser J, Bemben MG. Time-course of muscle growth, and its relationship with muscle strength in both young and older women. Geriatr Gerontol Int. 2017;17(11):2000–7.CrossRefPubMed Loenneke JP, Rossow LM, Fahs CA, Thiebaud RS, Grant Mouser J, Bemben MG. Time-course of muscle growth, and its relationship with muscle strength in both young and older women. Geriatr Gerontol Int. 2017;17(11):2000–7.CrossRefPubMed
45.
go back to reference Fuller WA. Measurement error models, vol. 305. Hoboken: Wiley; 2009. Fuller WA. Measurement error models, vol. 305. Hoboken: Wiley; 2009.
46.
go back to reference Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508–23.CrossRefPubMed Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508–23.CrossRefPubMed
47.
go back to reference Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, et al. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 2001;281(6):E1172–81.CrossRefPubMed Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, et al. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 2001;281(6):E1172–81.CrossRefPubMed
Metadata
Title
Exercise-Induced Myofibrillar Hypertrophy is a Contributory Cause of Gains in Muscle Strength
Authors
Christopher B. Taber
Andrew Vigotsky
Greg Nuckols
Cody T. Haun
Publication date
01-07-2019
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 7/2019
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-019-01107-8

Other articles of this Issue 7/2019

Sports Medicine 7/2019 Go to the issue