Skip to main content
Top
Published in: Sports Medicine 5/2018

01-05-2018 | Systematic Review

Effects and Dose–Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: a Systematic Review and Meta-analysis

Authors: Armin H. Paravlic, Maamer Slimani, David Tod, Uros Marusic, Zoran Milanovic, Rado Pisot

Published in: Sports Medicine | Issue 5/2018

Login to get access

Abstract

Background

Motor imagery (MI), a mental simulation of a movement without overt muscle contraction, has been largely used to improve general motor tasks. However, the effects of MI practice on maximal voluntary strength (MVS) remain equivocal.

Objectives

The aims of this meta-analysis were to (1) estimate whether MI practice intervention can meaningfully improve MVS in healthy adults; (2) compare the effects of MI practice on MVS with its combination with physical practice (MI-C), and with physical practice (PP) training alone; and (3) investigate the dose–response relationships of MI practice.

Data Sources and Study Eligibility

Seven electronic databases were searched up to April 2017. Initially 717 studies were identified; however, after evaluation of the study characteristics, data from 13 articles involving 370 participants were extracted. The meta-analysis was completed on MVS as the primary parameter. In addition, parameters associated with training volume, training intensity, and time spent training were used to investigate dose–response relationships.

Results

MI practice moderately improved MVS. When compared to conventional PP, effects were of small benefit in favour of PP. MI-C when compared to PP showed unclear effects. MI practice produced moderate effects in both upper and lower extremities on MVS. The cortical representation area of the involved muscles did not modify the effects. Meta-regression analysis revealed that (a) a training period of 4 weeks, (b) a frequency of three times per week, (c) two to three sets per single session, (d) 25 repetitions per single set, and (e) single session duration of 15 min were associated with enhanced improvements in muscle strength following MI practice. Similar dose–response relationships were observed following MI and PP.

Conclusions

The present meta-analysis demonstrates that compared to a no-exercise control group of healthy adults, MI practice increases MVS, but less than PP. These findings suggest that MI practice could be considered as a substitute or additional training tool to preserve muscle function when athletes are not exposed to maximal training intensities.
Literature
1.
go back to reference Tod D, Edwards C, McGuigan M, Lovell G. A systematic review of the effect of cognitive strategies on strength performance. Sports Med. 2015;45(11):1589–602.PubMedCrossRef Tod D, Edwards C, McGuigan M, Lovell G. A systematic review of the effect of cognitive strategies on strength performance. Sports Med. 2015;45(11):1589–602.PubMedCrossRef
2.
go back to reference Tod D, Iredale F, Gill N. “Psyching-up” and muscular force production. Sports Med. 2003;33(1):47–58.PubMedCrossRef Tod D, Iredale F, Gill N. “Psyching-up” and muscular force production. Sports Med. 2003;33(1):47–58.PubMedCrossRef
3.
go back to reference Shelton TO, Mahoney MJ. The content and effect of “psyching-up” strategies in weight lifters. Cogn Ther Res. 1978;2(3):275–84.CrossRef Shelton TO, Mahoney MJ. The content and effect of “psyching-up” strategies in weight lifters. Cogn Ther Res. 1978;2(3):275–84.CrossRef
4.
go back to reference Whelan JP, Epkins CC, Meyers AW. Arousal interventions for athletic performance: influence of mental preparation and competitive experience. Anxiety Res. 1990;2(4):293–307.CrossRef Whelan JP, Epkins CC, Meyers AW. Arousal interventions for athletic performance: influence of mental preparation and competitive experience. Anxiety Res. 1990;2(4):293–307.CrossRef
5.
go back to reference Gould D, Weinberg R, Jackson A. Mental preparation strategies, cognitions, and strength performance. J Sport Psychol. 1980;2(4):329–39.CrossRef Gould D, Weinberg R, Jackson A. Mental preparation strategies, cognitions, and strength performance. J Sport Psychol. 1980;2(4):329–39.CrossRef
6.
go back to reference Cumming J, Williams SE. The role of imagery in performance. In: Murphy SM, editor. The Oxford Handbook of sport performance and psychology. New York: Oxford University Press; 2012. pp. 213–32. Cumming J, Williams SE. The role of imagery in performance. In: Murphy SM, editor. The Oxford Handbook of sport performance and psychology. New York: Oxford University Press; 2012. pp. 213–32.
7.
go back to reference Braun S, Kleynen M, van Heel T, Kruithof N, Wade D, Beurskens A. The effects of mental practice in neurological rehabilitation; a systematic review and meta-analysis. Front Hum Neurosci. 2013;7(August):390.PubMedPubMedCentral Braun S, Kleynen M, van Heel T, Kruithof N, Wade D, Beurskens A. The effects of mental practice in neurological rehabilitation; a systematic review and meta-analysis. Front Hum Neurosci. 2013;7(August):390.PubMedPubMedCentral
8.
go back to reference Caligiore D, Mustile M, Spalletta G, Baldassarre G. Action observation and motor imagery for rehabilitation in Parkinson’s disease: a systematic review and an integrative hypothesis. Neurosci Biobehav Rev. 2017;72:210–22.PubMedCrossRef Caligiore D, Mustile M, Spalletta G, Baldassarre G. Action observation and motor imagery for rehabilitation in Parkinson’s disease: a systematic review and an integrative hypothesis. Neurosci Biobehav Rev. 2017;72:210–22.PubMedCrossRef
9.
go back to reference Tamir R, Dickstein R, Huberman M. Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson’s disease. Neurorehabil Neural Repair. 2007;21(1):68–75.PubMedCrossRef Tamir R, Dickstein R, Huberman M. Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinson’s disease. Neurorehabil Neural Repair. 2007;21(1):68–75.PubMedCrossRef
10.
go back to reference Braun S, Beurskens A, Kleynen M, Schols J, Wade D. Rehabilitation with mental practice has similar effects on mobility as rehabilitation with relaxation in people with Parkinson’s disease: a multicentre randomised trial. J Physiother. 2011;57(1):27–34.PubMedCrossRef Braun S, Beurskens A, Kleynen M, Schols J, Wade D. Rehabilitation with mental practice has similar effects on mobility as rehabilitation with relaxation in people with Parkinson’s disease: a multicentre randomised trial. J Physiother. 2011;57(1):27–34.PubMedCrossRef
11.
go back to reference Newsome J, Knight P, Balnave R. Use of mental imagery to limit strength loss after immobilization. J Sport Rehabil. 2003;12(3):249–58.CrossRef Newsome J, Knight P, Balnave R. Use of mental imagery to limit strength loss after immobilization. J Sport Rehabil. 2003;12(3):249–58.CrossRef
12.
go back to reference Lee H, Kim H, Ahn M, You Y. Effects of proprioception training with exercise imagery on balance ability of stroke patients. J Phys Ther Sci. 2015;27:1–4.PubMedPubMedCentralCrossRef Lee H, Kim H, Ahn M, You Y. Effects of proprioception training with exercise imagery on balance ability of stroke patients. J Phys Ther Sci. 2015;27:1–4.PubMedPubMedCentralCrossRef
13.
go back to reference Dunsky A, Dickstein R, Marcovitz E, Levy S, Deutsch J. Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Arch Phys Med Rehabil. 2008;89(8):1580–8.PubMedCrossRef Dunsky A, Dickstein R, Marcovitz E, Levy S, Deutsch J. Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Arch Phys Med Rehabil. 2008;89(8):1580–8.PubMedCrossRef
14.
go back to reference Lebon F, Guillot A, Collet C. Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament. Appl Psychophysiol Biofeedback. 2012;37(1):45–51.PubMedCrossRef Lebon F, Guillot A, Collet C. Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament. Appl Psychophysiol Biofeedback. 2012;37(1):45–51.PubMedCrossRef
15.
go back to reference Cupal DD, Brewer BW. Effects of relaxation and guided imagery on knee strength, reinjury anxiety, and pain following anterior cruciate ligament reconstruction. Rehabil Psychol. 2001;46(1):28–43.CrossRef Cupal DD, Brewer BW. Effects of relaxation and guided imagery on knee strength, reinjury anxiety, and pain following anterior cruciate ligament reconstruction. Rehabil Psychol. 2001;46(1):28–43.CrossRef
16.
go back to reference Marusic U, Grosprêtre S, Paravlic A, Kovač S, Pišot R, Taube W. Motor Imagery during Action Observation of Locomotor Tasks Improves Rehabilitation Outcome in Older Adults after Total Hip Arthroplasty. Neural Plast. 2018. https://doi.org/10.1155/2018/5651391. Marusic U, Grosprêtre S, Paravlic A, Kovač S, Pišot R, Taube W. Motor Imagery during Action Observation of Locomotor Tasks Improves Rehabilitation Outcome in Older Adults after Total Hip Arthroplasty. Neural Plast. 2018. https://​doi.​org/​10.​1155/​2018/​5651391.
18.
go back to reference Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: review and perspectives. Neuroscience. 2017;341:61–78.PubMedCrossRef Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: review and perspectives. Neuroscience. 2017;341:61–78.PubMedCrossRef
19.
go back to reference Martin KA, Moritz SE, Hall CR. Imagery use in sport: a literature review and applied model. Sport Psychol. 1999;13:245–68.CrossRef Martin KA, Moritz SE, Hall CR. Imagery use in sport: a literature review and applied model. Sport Psychol. 1999;13:245–68.CrossRef
20.
go back to reference Murphy SM. Imagery interventions in sport. Med Sci Sports Exerc. 1993;26:486–94. Murphy SM. Imagery interventions in sport. Med Sci Sports Exerc. 1993;26:486–94.
21.
go back to reference Orlick T, Partington J. Mental links to excellence. Sport Psychol. 1988;2:105–30.CrossRef Orlick T, Partington J. Mental links to excellence. Sport Psychol. 1988;2:105–30.CrossRef
22.
go back to reference Lotze M. Kinesthetic imagery of musical performance. Front Hum Neurosci. 2013;7:1–9.CrossRef Lotze M. Kinesthetic imagery of musical performance. Front Hum Neurosci. 2013;7:1–9.CrossRef
23.
go back to reference Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17(2):187–245.CrossRef Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17(2):187–245.CrossRef
24.
go back to reference Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, et al. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci. 1996;16(23):7688–98.PubMedCrossRef Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, et al. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci. 1996;16(23):7688–98.PubMedCrossRef
25.
go back to reference Finke RA. The functional equivalence of mental images and errors of movement. Cogn Psychol. 1979;11(2):235–64.PubMedCrossRef Finke RA. The functional equivalence of mental images and errors of movement. Cogn Psychol. 1979;11(2):235–64.PubMedCrossRef
26.
go back to reference Grezes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp. 2000;2001(12):1–19. Grezes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp. 2000;2001(12):1–19.
27.
go back to reference Decety J. Comparative analysis of actual and mental movement times in two graphic tasks. Brain Cogn. 1989;11(1):87–97.PubMedCrossRef Decety J. Comparative analysis of actual and mental movement times in two graphic tasks. Brain Cogn. 1989;11(1):87–97.PubMedCrossRef
28.
go back to reference Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381–91.PubMedCrossRef Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381–91.PubMedCrossRef
29.
go back to reference Decety J, Lindgren M. Sensation of effort and duration of mentally executed actions. Scand J Psychol. 1991;32(2):97–104.PubMedCrossRef Decety J, Lindgren M. Sensation of effort and duration of mentally executed actions. Scand J Psychol. 1991;32(2):97–104.PubMedCrossRef
30.
go back to reference Feltz D, Landers D. The effects of mental practice on motor skill learning and performance: a meta-analysis. J Sport Psychol. 1983;5(1):25–57.CrossRef Feltz D, Landers D. The effects of mental practice on motor skill learning and performance: a meta-analysis. J Sport Psychol. 1983;5(1):25–57.CrossRef
31.
go back to reference Scholefield SC, Cooke CP, Van Vliet PM, Heneghan NR. The effectiveness of mental imagery for improving strength in an asymptomatic population. Phys Ther Rev. 2015;20(2):86–97.CrossRef Scholefield SC, Cooke CP, Van Vliet PM, Heneghan NR. The effectiveness of mental imagery for improving strength in an asymptomatic population. Phys Ther Rev. 2015;20(2):86–97.CrossRef
32.
go back to reference Slimani M, Tod D, Chaabene H, Miarka B, Chamari K. Effects of mental imagery on muscular strength in healthy and patient participants: a systematic review. J Sport Sci Med. 2016;15(3):434–50. Slimani M, Tod D, Chaabene H, Miarka B, Chamari K. Effects of mental imagery on muscular strength in healthy and patient participants: a systematic review. J Sport Sci Med. 2016;15(3):434–50.
33.
go back to reference Manochio JP, Lattari E, Mello Portugal EM, Monteiro-Junior RS, Paes F, Budde H, et al. From mind to body: is mental practice effective on strength gains? A meta-analysis. CNS Neurol Disord Targets. 2015;14(9):1145–51.CrossRef Manochio JP, Lattari E, Mello Portugal EM, Monteiro-Junior RS, Paes F, Budde H, et al. From mind to body: is mental practice effective on strength gains? A meta-analysis. CNS Neurol Disord Targets. 2015;14(9):1145–51.CrossRef
34.
go back to reference Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester, UK: Wiley; 2009. pp. 249–95. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester, UK: Wiley; 2009. pp. 249–95.
35.
go back to reference Schuster C, Hilfiker R, Amft O, Scheidhauer A, Andrews B, Butler J, et al. Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines. BMC Med. 2011;9(1):75.PubMedPubMedCentralCrossRef Schuster C, Hilfiker R, Amft O, Scheidhauer A, Andrews B, Butler J, et al. Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines. BMC Med. 2011;9(1):75.PubMedPubMedCentralCrossRef
36.
go back to reference Driskell JE, Copper C, Moran A. Does mental practice enhance performance? J Appl Psychol. 1994;79(4):481–92.CrossRef Driskell JE, Copper C, Moran A. Does mental practice enhance performance? J Appl Psychol. 1994;79(4):481–92.CrossRef
37.
go back to reference Yu Q-H, Fu ASN, Kho A, Li J, Sun X-H, Chan CCH. Imagery perspective among young athletes: differentiation between external and internal visual imagery. J Sport Heal Sci. 2016;5(2):211–8.CrossRef Yu Q-H, Fu ASN, Kho A, Li J, Sun X-H, Chan CCH. Imagery perspective among young athletes: differentiation between external and internal visual imagery. J Sport Heal Sci. 2016;5(2):211–8.CrossRef
38.
go back to reference Olsson C-J, Jonsson B, Larsson A, Nyberg L. Motor representations and practice affect brain systems underlying imagery: an FMRI study of internal imagery in novices and active high jumpers. Open Neuroimaging J. 2008;2:5–13.CrossRef Olsson C-J, Jonsson B, Larsson A, Nyberg L. Motor representations and practice affect brain systems underlying imagery: an FMRI study of internal imagery in novices and active high jumpers. Open Neuroimaging J. 2008;2:5–13.CrossRef
39.
go back to reference Yao WX, Ranganathan VK, Allexandre D, Siemionow V, Yue GH. Kinesthetic imagery training of forceful muscle contractions increases brain signal and muscle strength. Front Hum Neurosci. 2013;7(September):561.PubMedPubMedCentral Yao WX, Ranganathan VK, Allexandre D, Siemionow V, Yue GH. Kinesthetic imagery training of forceful muscle contractions increases brain signal and muscle strength. Front Hum Neurosci. 2013;7(September):561.PubMedPubMedCentral
40.
go back to reference Decety Grèzes. Neural mechanisms subserving the perception of human actions. Trends Cogn Sci. 1999;3(5):172–8.PubMedCrossRef Decety Grèzes. Neural mechanisms subserving the perception of human actions. Trends Cogn Sci. 1999;3(5):172–8.PubMedCrossRef
41.
go back to reference Wernbom M, Augustsson J, Thomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–64.PubMedCrossRef Wernbom M, Augustsson J, Thomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–64.PubMedCrossRef
42.
go back to reference Peterson MD, Rhea MR, Alvar BA. Maximizing strength development in athletes: a meta-analysis to determine the dose–response relationship. J Strength Cond Res. 2004;18(2):377.PubMed Peterson MD, Rhea MR, Alvar BA. Maximizing strength development in athletes: a meta-analysis to determine the dose–response relationship. J Strength Cond Res. 2004;18(2):377.PubMed
43.
go back to reference American College of Sports Medicine. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;41(3):687–708. American College of Sports Medicine. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;41(3):687–708.
44.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (reprinted from annals of internal medicine). Phys Ther. 2009;89(9):873–80.PubMed Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (reprinted from annals of internal medicine). Phys Ther. 2009;89(9):873–80.PubMed
45.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.PubMedCrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.PubMedCrossRef
47.
go back to reference Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.PubMed Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.PubMed
48.
go back to reference Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ Br Med J. 2003;327(7414):557–60.CrossRef Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ Br Med J. 2003;327(7414):557–60.CrossRef
49.
go back to reference Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12.PubMedCrossRef Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12.PubMedCrossRef
50.
go back to reference Lebon F, Collet C, Guillot A. Benefits of motor imagery training on muscle strength. J Strength Cond Res. 2010;24(6):1680–7.PubMedCrossRef Lebon F, Collet C, Guillot A. Benefits of motor imagery training on muscle strength. J Strength Cond Res. 2010;24(6):1680–7.PubMedCrossRef
51.
go back to reference Yue G, Cole KJ. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol. 1992;67(5):1114–23.PubMedCrossRef Yue G, Cole KJ. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol. 1992;67(5):1114–23.PubMedCrossRef
52.
go back to reference Smith D, Collins D, Holmes P. Impact and mechanism of mental practice effects on strength. Int J Sport Exerc Psychol. 2003;1(3):293–306.CrossRef Smith D, Collins D, Holmes P. Impact and mechanism of mental practice effects on strength. Int J Sport Exerc Psychol. 2003;1(3):293–306.CrossRef
53.
go back to reference Reiser M. Kraftgewinne durch Vorstellung maximaler Muskelkontraktionen. Zeitschrift für Sport. 2005;12(1):11–21.CrossRef Reiser M. Kraftgewinne durch Vorstellung maximaler Muskelkontraktionen. Zeitschrift für Sport. 2005;12(1):11–21.CrossRef
54.
go back to reference Sidaway B, Trzaska AR. Can mental practice increase ankle dorsiflexor torque? Phys Ther. 2005;85(10):1053–60.PubMed Sidaway B, Trzaska AR. Can mental practice increase ankle dorsiflexor torque? Phys Ther. 2005;85(10):1053–60.PubMed
55.
go back to reference Darvishi M, Ahmadi S, Hierani A, Jabari N. Effects of motor imagery and maximal isometric action on grip strength of elderly men. World Appl Sci J. 2013;24(4):556–60. Darvishi M, Ahmadi S, Hierani A, Jabari N. Effects of motor imagery and maximal isometric action on grip strength of elderly men. World Appl Sci J. 2013;24(4):556–60.
56.
go back to reference Jiang C, Ranganathan VK, Zhang J, Siemionow V, Yue GH. Motor effort training with low exercise intensity improves muscle strength and descending command in aging. Medicine (Baltimore). 2016;24(August 2015):1–7. Jiang C, Ranganathan VK, Zhang J, Siemionow V, Yue GH. Motor effort training with low exercise intensity improves muscle strength and descending command in aging. Medicine (Baltimore). 2016;24(August 2015):1–7.
57.
go back to reference Shackell EM, Standing LG. Mind over matter: mental training increases physical strength. N Am J Psychol. 2007;9(1):189–200. Shackell EM, Standing LG. Mind over matter: mental training increases physical strength. N Am J Psychol. 2007;9(1):189–200.
58.
go back to reference Wright CJ, Smith D. The effect of PETTLEP imagery on strength performance. Int J Sport Exerc Psychol. 2009;7(1):18–31.CrossRef Wright CJ, Smith D. The effect of PETTLEP imagery on strength performance. Int J Sport Exerc Psychol. 2009;7(1):18–31.CrossRef
59.
go back to reference de Ruiter CJ, Hutter V, Icke C, Groen B, Gemmink A, Smilde H, et al. The effects of imagery training on fast isometric knee extensor torque development. J Sports Sci. 2012;30(2):166–74.PubMedCrossRef de Ruiter CJ, Hutter V, Icke C, Groen B, Gemmink A, Smilde H, et al. The effects of imagery training on fast isometric knee extensor torque development. J Sports Sci. 2012;30(2):166–74.PubMedCrossRef
60.
go back to reference Holmes PS, Collins DJ. The PETTLEP approach to motor imagery: a functional equivalence model for sport psychologists. J Appl Sport Psychol. 2001;13(1):60–83.CrossRef Holmes PS, Collins DJ. The PETTLEP approach to motor imagery: a functional equivalence model for sport psychologists. J Appl Sport Psychol. 2001;13(1):60–83.CrossRef
61.
go back to reference Bahari SM, Damirchi A, Rahmaninia F, Salehian MH. The effects of mental practice on strength gain and electromyographic changes in elbow flexor muscles. Ann Biol Res. 2011;2(6):198–207. Bahari SM, Damirchi A, Rahmaninia F, Salehian MH. The effects of mental practice on strength gain and electromyographic changes in elbow flexor muscles. Ann Biol Res. 2011;2(6):198–207.
62.
go back to reference Niazi SM, Bai N, Shahamat MD, Branch J, Branch A. Investigation of effects of imagery training on changes in the electrical activity of motor units of muscles and their strength in the lower extremities. Eur J Exp Biol. 2014;4(1):595–9. Niazi SM, Bai N, Shahamat MD, Branch J, Branch A. Investigation of effects of imagery training on changes in the electrical activity of motor units of muscles and their strength in the lower extremities. Eur J Exp Biol. 2014;4(1):595–9.
63.
go back to reference Cornwall M, Bruscato M, Barry S. Effect of mental practice on isometric muscular strength. J Orthop Sport Phys Ther. 1991;13(5):231–4.CrossRef Cornwall M, Bruscato M, Barry S. Effect of mental practice on isometric muscular strength. J Orthop Sport Phys Ther. 1991;13(5):231–4.CrossRef
64.
go back to reference Feigenbaum MS, Pollock ML. Prescription of resistance training for health and disease. Med Sci Sport Exerc. 1998;31(March):38–45. Feigenbaum MS, Pollock ML. Prescription of resistance training for health and disease. Med Sci Sport Exerc. 1998;31(March):38–45.
65.
go back to reference Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(81):1725–89.PubMedCrossRef Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(81):1725–89.PubMedCrossRef
66.
go back to reference Abazović E, Kovačević E, Kovač S, Bradić J. The effect of training of the non-dominant knee muscles on ipsi- and contralateral strength gains. Isokinet Exerc Sci. 2015;23(3):177–82.CrossRef Abazović E, Kovačević E, Kovač S, Bradić J. The effect of training of the non-dominant knee muscles on ipsi- and contralateral strength gains. Isokinet Exerc Sci. 2015;23(3):177–82.CrossRef
67.
go back to reference Munn J, Herbert RD, Gandevia SC. Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol. 2004;96(5):1861–6.PubMedCrossRef Munn J, Herbert RD, Gandevia SC. Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol. 2004;96(5):1861–6.PubMedCrossRef
68.
go back to reference Adamson M, MacQuaide N, Helgerud J, Hoff J, Kemi OJ. Unilateral arm strength training improves contralateral peak force and rate of force development. Eur J Appl Physiol. 2008;103(5):553–9.PubMedCrossRef Adamson M, MacQuaide N, Helgerud J, Hoff J, Kemi OJ. Unilateral arm strength training improves contralateral peak force and rate of force development. Eur J Appl Physiol. 2008;103(5):553–9.PubMedCrossRef
69.
go back to reference Ranganathan VK, Siemionow V, Liu JZ, Sahgal V, Yue GH. From mental power to muscle power—gaining strength by using the mind. Neuropsychologia. 2004;42(7):944–56.PubMedCrossRef Ranganathan VK, Siemionow V, Liu JZ, Sahgal V, Yue GH. From mental power to muscle power—gaining strength by using the mind. Neuropsychologia. 2004;42(7):944–56.PubMedCrossRef
70.
go back to reference Richardson A. Mental practice: a review and discussion part II. Res Q Am Assoc Health Phys Educ Recreat. 2015;1967(38):263–73. Richardson A. Mental practice: a review and discussion part II. Res Q Am Assoc Health Phys Educ Recreat. 2015;1967(38):263–73.
71.
go back to reference Zijdewind I, Toering ST, Bessem B, Van der Laan O, Diercks RL. Effects of imagery motor training on torque production of ankle plantar flexor muscles. Muscle Nerve. 2003;28(2):168–73.PubMedCrossRef Zijdewind I, Toering ST, Bessem B, Van der Laan O, Diercks RL. Effects of imagery motor training on torque production of ankle plantar flexor muscles. Muscle Nerve. 2003;28(2):168–73.PubMedCrossRef
72.
go back to reference Herbert RD, Dean C, Gandevia SC. Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiol Scand. 1998;163(4):361–8.PubMedCrossRef Herbert RD, Dean C, Gandevia SC. Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiol Scand. 1998;163(4):361–8.PubMedCrossRef
73.
go back to reference Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol. 1987;391:1–11.PubMedPubMedCentralCrossRef Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol. 1987;391:1–11.PubMedPubMedCentralCrossRef
74.
go back to reference Akima H, Takahashi H, Kuno SY, Masuda K, Masuda T, Shimojo H, et al. Early phase adaptations of muscle use and strength to isokinetic training. Med Sci Sports Exerc. 1999;31(4):588–94.PubMedCrossRef Akima H, Takahashi H, Kuno SY, Masuda K, Masuda T, Shimojo H, et al. Early phase adaptations of muscle use and strength to isokinetic training. Med Sci Sports Exerc. 1999;31(4):588–94.PubMedCrossRef
75.
go back to reference Hakkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, et al. Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci. 1998;53(6):B415–23.PubMedCrossRef Hakkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, et al. Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci. 1998;53(6):B415–23.PubMedCrossRef
76.
go back to reference Higbie EJ, Cureton KJ, Iii GLW, Prior BM, Warren GL III. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996;81(3):2173–81.PubMedCrossRef Higbie EJ, Cureton KJ, Iii GLW, Prior BM, Warren GL III. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996;81(3):2173–81.PubMedCrossRef
77.
go back to reference Formaggio E, Storti SF, Cerini R, Fiaschi A, Manganotti P. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration. Magn Reson Imaging. 2010;28(10):1403–12.PubMedCrossRef Formaggio E, Storti SF, Cerini R, Fiaschi A, Manganotti P. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration. Magn Reson Imaging. 2010;28(10):1403–12.PubMedCrossRef
78.
go back to reference Olsson C, Jonsson B, Nyberg L. Learning by doing versus learning by thinking: an fMRI study of motor and mental training. Front Hum Neurosci. 2008;2(5):1–7. Olsson C, Jonsson B, Nyberg L. Learning by doing versus learning by thinking: an fMRI study of motor and mental training. Front Hum Neurosci. 2008;2(5):1–7.
79.
go back to reference Lacourse MG, Orr ELR, Cramer SC, Cohen MJ. Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage. 2005;27(3):505–19.PubMedCrossRef Lacourse MG, Orr ELR, Cramer SC, Cohen MJ. Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage. 2005;27(3):505–19.PubMedCrossRef
80.
go back to reference Lotze M, Montoya P, Erb M, Hülsmann E, Flor H, Klose U, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci. 1999;11(5):491–501.PubMedCrossRef Lotze M, Montoya P, Erb M, Hülsmann E, Flor H, Klose U, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci. 1999;11(5):491–501.PubMedCrossRef
81.
go back to reference Fontani G, Migliorini S, Benocci R, Facchini A, Casini M, Corradeschi F. Effect of mental imagery on the development of skilled motor actions. Percept Mot Skills. 2007;105:803–26.PubMedCrossRef Fontani G, Migliorini S, Benocci R, Facchini A, Casini M, Corradeschi F. Effect of mental imagery on the development of skilled motor actions. Percept Mot Skills. 2007;105:803–26.PubMedCrossRef
82.
go back to reference Grosprêtre S, Lebon F, Papaxanthis C, Martin A. New evidence of corticospinal network modulation induced by motor imagery. J Neurophysiol. 2016;115:1279–88.PubMedCrossRef Grosprêtre S, Lebon F, Papaxanthis C, Martin A. New evidence of corticospinal network modulation induced by motor imagery. J Neurophysiol. 2016;115:1279–88.PubMedCrossRef
83.
go back to reference Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009;60(2):306–26.PubMedCrossRef Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009;60(2):306–26.PubMedCrossRef
84.
go back to reference Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930–49.PubMedCrossRef Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930–49.PubMedCrossRef
85.
go back to reference Dechent P, Merboldt K-D, Frahm J. Is the human primary motor cortex involved in motor imagery? Brain Res Cogn Brain Res. 2004;19(2):138–44.PubMedCrossRef Dechent P, Merboldt K-D, Frahm J. Is the human primary motor cortex involved in motor imagery? Brain Res Cogn Brain Res. 2004;19(2):138–44.PubMedCrossRef
86.
go back to reference Debarnot U, Clerget E, Olivier E. Role of the primary motor cortex in the early boost in performance following mental imagery training. PLoS One. 2011;6(10):e26717. Debarnot U, Clerget E, Olivier E. Role of the primary motor cortex in the early boost in performance following mental imagery training. PLoS One. 2011;6(10):e26717.
87.
go back to reference Li S, Latash ML, Zatsiorsky VM. Effects of motor imagery on finger force responses to transcranial magnetic stimulation. Cogn Brain Res. 2004;20(2):273–80.CrossRef Li S, Latash ML, Zatsiorsky VM. Effects of motor imagery on finger force responses to transcranial magnetic stimulation. Cogn Brain Res. 2004;20(2):273–80.CrossRef
88.
go back to reference Pascual-Leone A, Amedi A, Fregni F, Merabet LB. The plastic human brain cortex. Annu Rev Neurosci. 2005;28(1):377–401.PubMedCrossRef Pascual-Leone A, Amedi A, Fregni F, Merabet LB. The plastic human brain cortex. Annu Rev Neurosci. 2005;28(1):377–401.PubMedCrossRef
89.
go back to reference Baeck JS, Kim YT, Seo JH, Ryeom HK, Lee J, Choi SM, et al. Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training. Behav Brain Res. 2012;234(1):26–32.PubMedCrossRef Baeck JS, Kim YT, Seo JH, Ryeom HK, Lee J, Choi SM, et al. Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training. Behav Brain Res. 2012;234(1):26–32.PubMedCrossRef
90.
91.
go back to reference Bunno Y, Onigata C, Suzuki T. Excitability of spinal motor neurons during motor imagery of thenar muscle activity under maximal voluntary contractions of 50% and 100%. J Phys Ther Sci. 2015;27:2775–8.PubMedPubMedCentralCrossRef Bunno Y, Onigata C, Suzuki T. Excitability of spinal motor neurons during motor imagery of thenar muscle activity under maximal voluntary contractions of 50% and 100%. J Phys Ther Sci. 2015;27:2775–8.PubMedPubMedCentralCrossRef
92.
go back to reference Bunno Y, Yurugi Y, Onigata C, Suzuki T, Iwatsuki H. Influence of motor imagery of isometric opponens pollicis activity on the excitability of spinal motor neurons: a comparison using different muscle contraction strengths. J Phys Ther Sci. 2014;26(7):1069–73.PubMedPubMedCentralCrossRef Bunno Y, Yurugi Y, Onigata C, Suzuki T, Iwatsuki H. Influence of motor imagery of isometric opponens pollicis activity on the excitability of spinal motor neurons: a comparison using different muscle contraction strengths. J Phys Ther Sci. 2014;26(7):1069–73.PubMedPubMedCentralCrossRef
93.
go back to reference Bunno Y, Suzuki T, Iwatsuki H. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity. J Phys Ther Sci. 2015;27(12):3793–8.PubMedPubMedCentralCrossRef Bunno Y, Suzuki T, Iwatsuki H. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity. J Phys Ther Sci. 2015;27(12):3793–8.PubMedPubMedCentralCrossRef
94.
go back to reference Park J. Influence of mental practice on upper limb muscle activity and activities of daily living in chronic stroke patients. J Phys Ther Sci. 2016;28:1061–3.PubMedPubMedCentralCrossRef Park J. Influence of mental practice on upper limb muscle activity and activities of daily living in chronic stroke patients. J Phys Ther Sci. 2016;28:1061–3.PubMedPubMedCentralCrossRef
96.
go back to reference Di Rienzo F, Debarnot U, Daligault S, Saruco E, Delpuech C, Doyon J, et al. Online and offline performance gains following motor imagery practice: a comprehensive review of behavioral and neuroimaging studies. Front Aging Neurosci. 2016;10(June):1–15. Di Rienzo F, Debarnot U, Daligault S, Saruco E, Delpuech C, Doyon J, et al. Online and offline performance gains following motor imagery practice: a comprehensive review of behavioral and neuroimaging studies. Front Aging Neurosci. 2016;10(June):1–15.
98.
go back to reference Lotze M, Zentgraf K. Contribution of the primary motor cortex to motor imagery. In: Guillot A, Collet C, editors. Neurophysiological foundations of mental and motor imagery. New York: Oxford University Press; 2010. pp. 31–45. Lotze M, Zentgraf K. Contribution of the primary motor cortex to motor imagery. In: Guillot A, Collet C, editors. Neurophysiological foundations of mental and motor imagery. New York: Oxford University Press; 2010. pp. 31–45.
99.
go back to reference Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103–9.PubMedCrossRef Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103–9.PubMedCrossRef
100.
go back to reference Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex. 2008;18(12):2775–88.PubMedPubMedCentralCrossRef Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex. 2008;18(12):2775–88.PubMedPubMedCentralCrossRef
101.
go back to reference Ranganathan VK, Kuykendall T, Siemionow V, Yue GH. Level of mental effort determines training induced strength increases. Abstr Soc Neurosci. 2002;32:768. Ranganathan VK, Kuykendall T, Siemionow V, Yue GH. Level of mental effort determines training induced strength increases. Abstr Soc Neurosci. 2002;32:768.
102.
go back to reference Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V. Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp Brain Res. 2000;133(3):303–11.PubMedCrossRef Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V. Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp Brain Res. 2000;133(3):303–11.PubMedCrossRef
103.
go back to reference Kasess CH, Windischberger C, Cunnington R, Lanzenberger R, Pezawas L, Moser E. The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling. Neuroimage. 2008;40(2):828–37.PubMedCrossRef Kasess CH, Windischberger C, Cunnington R, Lanzenberger R, Pezawas L, Moser E. The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling. Neuroimage. 2008;40(2):828–37.PubMedCrossRef
104.
go back to reference Guillot A, Di Rienzo F, MacIntyre T, Moran A, Collet C. Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front Hum Neurosci. 2012;6(September):1–22. Guillot A, Di Rienzo F, MacIntyre T, Moran A, Collet C. Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front Hum Neurosci. 2012;6(September):1–22.
105.
go back to reference Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004;14(11):1246–55.PubMedCrossRef Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004;14(11):1246–55.PubMedCrossRef
106.
108.
go back to reference Moran A. Conceptual and methodological issues in the measurement of mental imagery skills in athletes. J Sport Behav. 1993;16:156–70. Moran A. Conceptual and methodological issues in the measurement of mental imagery skills in athletes. J Sport Behav. 1993;16:156–70.
109.
go back to reference Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage. 2008;41(4):1471–83.PubMedCrossRef Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage. 2008;41(4):1471–83.PubMedCrossRef
110.
go back to reference García Carrasco D, Aboitiz Cantalapiedra J. Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review. Neurology (English Ed.). 2016;31(1):43–52.CrossRef García Carrasco D, Aboitiz Cantalapiedra J. Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review. Neurology (English Ed.). 2016;31(1):43–52.CrossRef
112.
go back to reference Jiang C-H, Ranganathan VK, Siemionow V, Yue GH. The level of effort, rather than muscle exercise intensity determines strength gain following a six-week training. Life Sci. 2017;178:30–4.PubMedCrossRef Jiang C-H, Ranganathan VK, Siemionow V, Yue GH. The level of effort, rather than muscle exercise intensity determines strength gain following a six-week training. Life Sci. 2017;178:30–4.PubMedCrossRef
113.
go back to reference Guillot A, Lebon F, Rouffet D, Champely S, Doyon J, Collet C. Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol. 2007;66(1):18–27.PubMedCrossRef Guillot A, Lebon F, Rouffet D, Champely S, Doyon J, Collet C. Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol. 2007;66(1):18–27.PubMedCrossRef
114.
go back to reference Penfield W, Rasmussen T. The cerebral cortex of man: a clinical study of localization of function. J Am Med Assoc. 1950;144(16):1412. Penfield W, Rasmussen T. The cerebral cortex of man: a clinical study of localization of function. J Am Med Assoc. 1950;144(16):1412.
115.
go back to reference Bernhard C, Bohm E. Cortical representation and functional significance of the corticomotoneuronal system. AMA Arch Neurol Psychiatry. 1954;72(4):473–502.PubMedCrossRef Bernhard C, Bohm E. Cortical representation and functional significance of the corticomotoneuronal system. AMA Arch Neurol Psychiatry. 1954;72(4):473–502.PubMedCrossRef
116.
go back to reference de Luca CJ, LeFever RS, McCue MP, Xenakis AP. Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol. 1982;329:113–28.PubMedPubMedCentralCrossRef de Luca CJ, LeFever RS, McCue MP, Xenakis AP. Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol. 1982;329:113–28.PubMedPubMedCentralCrossRef
117.
go back to reference Abbruzzese G, Assini A, Buccolieri A, Schieppati M, Trompetto C. Comparison of intracortical inhibition and facilitation in distal and proximal arm muscles in humans. J Physiol. 1999;514(3):895–903.PubMedPubMedCentralCrossRef Abbruzzese G, Assini A, Buccolieri A, Schieppati M, Trompetto C. Comparison of intracortical inhibition and facilitation in distal and proximal arm muscles in humans. J Physiol. 1999;514(3):895–903.PubMedPubMedCentralCrossRef
118.
go back to reference Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555–63.PubMedCrossRef Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555–63.PubMedCrossRef
119.
go back to reference Yamada H, Kaneko K, Masuda T. Effects of voluntary activation on neuromuscular endurance analyzed by surface electromyography. Percept Mot Skills. 2002;95:613–9.PubMedCrossRef Yamada H, Kaneko K, Masuda T. Effects of voluntary activation on neuromuscular endurance analyzed by surface electromyography. Percept Mot Skills. 2002;95:613–9.PubMedCrossRef
120.
go back to reference Amiridis IG, Martin A, Morlon B, Martin L, Cometti G, Pousson M, et al. Co-activation and tension regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur J Appl Physiol Occup Physiol. 1996;73(1–2):149–56.PubMedCrossRef Amiridis IG, Martin A, Morlon B, Martin L, Cometti G, Pousson M, et al. Co-activation and tension regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur J Appl Physiol Occup Physiol. 1996;73(1–2):149–56.PubMedCrossRef
121.
go back to reference Herbert RD, Gandevia SC. Muscle activation in unilateral and bilateral efforts assessed by motor nerve and cortical stimulation. J Appl Physiol. 1996;80(4):1351–6.PubMedCrossRef Herbert RD, Gandevia SC. Muscle activation in unilateral and bilateral efforts assessed by motor nerve and cortical stimulation. J Appl Physiol. 1996;80(4):1351–6.PubMedCrossRef
122.
go back to reference Bergmann J, Kumpulainen S, Avela J, Gruber M. Acute effects of motor imagery on performance and neuromuscular control in maximal drop jumps. J Imag Res Sport Phys Act. 2013;8(1):45–53. Bergmann J, Kumpulainen S, Avela J, Gruber M. Acute effects of motor imagery on performance and neuromuscular control in maximal drop jumps. J Imag Res Sport Phys Act. 2013;8(1):45–53.
123.
go back to reference Avila BJ, Brown LE, Coburn JW, Statler TA. Effects of imagery on force production and jump performance. J Exerc Physiol. 2015;18(4):42–8. Avila BJ, Brown LE, Coburn JW, Statler TA. Effects of imagery on force production and jump performance. J Exerc Physiol. 2015;18(4):42–8.
124.
go back to reference Wakefield C, Smith D. From strength to strength: a single-case design study of PETTLEP imagery frequency. Sport Psychol. 2011;25(3):305–20.CrossRef Wakefield C, Smith D. From strength to strength: a single-case design study of PETTLEP imagery frequency. Sport Psychol. 2011;25(3):305–20.CrossRef
125.
go back to reference Krieger JW. Single versus multiple sets of resistance exercise: a meta-regression. J Strength Cond Res. 2009;23(6):1890–901.PubMedCrossRef Krieger JW. Single versus multiple sets of resistance exercise: a meta-regression. J Strength Cond Res. 2009;23(6):1890–901.PubMedCrossRef
126.
go back to reference Granacher U, Borde R, Hortoba T. Dose–response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Med. 2015;45:1693–720.PubMedPubMedCentralCrossRef Granacher U, Borde R, Hortoba T. Dose–response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Med. 2015;45:1693–720.PubMedPubMedCentralCrossRef
127.
go back to reference Babault N, Pousson M, Ballay Y, Van Hoecke J. Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol. 2001;91(6):2628–34.PubMedCrossRef Babault N, Pousson M, Ballay Y, Van Hoecke J. Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol. 2001;91(6):2628–34.PubMedCrossRef
128.
go back to reference Schoenfeld BJ, Wilson JM, Lowery RP, Krieger JW. Muscular adaptations in low- versus high-load resistance training: a meta-analysis. Eur J Sport Sci. 2014;16(1):1–10.PubMedCrossRef Schoenfeld BJ, Wilson JM, Lowery RP, Krieger JW. Muscular adaptations in low- versus high-load resistance training: a meta-analysis. Eur J Sport Sci. 2014;16(1):1–10.PubMedCrossRef
129.
go back to reference Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):1119–24.PubMedCrossRef Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):1119–24.PubMedCrossRef
130.
go back to reference Loenneke JP, Wilson JM, Pujol TJ, Bemben MG. Acute and chronic testosterone response to blood flow restricted exercise. Horm Metab Res. 2011;43(10):669–73.PubMedCrossRef Loenneke JP, Wilson JM, Pujol TJ, Bemben MG. Acute and chronic testosterone response to blood flow restricted exercise. Horm Metab Res. 2011;43(10):669–73.PubMedCrossRef
131.
go back to reference Tran QT, Docherty D, Behm D. The effects of varying time under tension and volume load on acute neuromuscular responses. Eur J Appl Physiol. 2006;98(4):402–10.PubMedCrossRef Tran QT, Docherty D, Behm D. The effects of varying time under tension and volume load on acute neuromuscular responses. Eur J Appl Physiol. 2006;98(4):402–10.PubMedCrossRef
132.
go back to reference Burd NA, Andrews RJ, West DWD, Little JP, Cochran AJR, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(Pt 2):351–62.PubMedCrossRef Burd NA, Andrews RJ, West DWD, Little JP, Cochran AJR, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(Pt 2):351–62.PubMedCrossRef
133.
go back to reference Schott J, McCully K, Rutherford OM. The role of metabolites in strength training. Eur J Appl Physiol Occup Physiol. 1995;71(4):337–41.PubMedCrossRef Schott J, McCully K, Rutherford OM. The role of metabolites in strength training. Eur J Appl Physiol Occup Physiol. 1995;71(4):337–41.PubMedCrossRef
134.
go back to reference Taylor NF, Dodd KJ, Damiano DL. Progressive resistance exercise in physical therapy: a summary of systematic reviews. Phys Ther. 2005;85(11):1208–23.PubMed Taylor NF, Dodd KJ, Damiano DL. Progressive resistance exercise in physical therapy: a summary of systematic reviews. Phys Ther. 2005;85(11):1208–23.PubMed
135.
go back to reference Kreamer WJ, Kent A, Enzo C, Dudley GA, Dooly C, Feingenbaum MS. Progression models in resistance training for healthy adults. Med Sci Sport Exerc. 2009;41(3):687–708.CrossRef Kreamer WJ, Kent A, Enzo C, Dudley GA, Dooly C, Feingenbaum MS. Progression models in resistance training for healthy adults. Med Sci Sport Exerc. 2009;41(3):687–708.CrossRef
136.
go back to reference Rozand V, Lebon F, Stapley PJ, Papaxanthis C, Lepers R. A prolonged motor imagery session alter imagined and actual movement durations: potential implications for neurorehabilitation. Behav Brain Res. 2016;297:67–75.PubMedCrossRef Rozand V, Lebon F, Stapley PJ, Papaxanthis C, Lepers R. A prolonged motor imagery session alter imagined and actual movement durations: potential implications for neurorehabilitation. Behav Brain Res. 2016;297:67–75.PubMedCrossRef
Metadata
Title
Effects and Dose–Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: a Systematic Review and Meta-analysis
Authors
Armin H. Paravlic
Maamer Slimani
David Tod
Uros Marusic
Zoran Milanovic
Rado Pisot
Publication date
01-05-2018
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 5/2018
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-018-0874-8

Other articles of this Issue 5/2018

Sports Medicine 5/2018 Go to the issue