Skip to main content
Top
Published in: Sports Medicine 1/2018

Open Access 01-03-2018 | Review Article

Administration of Caffeine in Alternate Forms

Authors: Kate A. Wickham, Lawrence L. Spriet

Published in: Sports Medicine | Special Issue 1/2018

Login to get access

Abstract

There has been recent interest in the ergogenic effects of caffeine delivered in low doses (~ 200 mg or ~ 3 mg/kg body mass) and administered in forms other than capsules, coffee and sports drinks, including chewing gum, bars, gels, mouth rinses, energy drinks and aerosols. Caffeinated chewing gum is absorbed quicker through the buccal mucosa compared with capsule delivery and absorption in the gut, although total caffeine absorption over time is not different. Rapid absorption may be important in many sporting situations. Caffeinated chewing gum improved endurance cycling performance, and there is limited evidence that repeated sprint cycling and power production may also be improved. Mouth rinsing with caffeine may stimulate nerves with direct links to the brain, in addition to caffeine absorption in the mouth. However, caffeine mouth rinsing has not been shown to have significant effects on cognitive performance. Delivering caffeine with mouth rinsing improved short-duration, high-intensity, repeated sprinting in normal and depleted glycogen states, while the majority of the literature indicates no ergogenic effect on aerobic exercise performance, and resistance exercise has not been adequately studied. Studies with caffeinated energy drinks have generally not examined the individual effects of caffeine on performance, making conclusions about this form of caffeine delivery impossible. Caffeinated aerosol mouth and nasal sprays may stimulate nerves with direct brain connections and enter the blood via mucosal and pulmonary absorption, although little support exists for caffeine delivered in this manner. Overall, more research is needed examining alternate forms of caffeine delivery including direct measures of brain activation and entry of caffeine into the blood, as well as more studies examining trained athletes and female subjects.
Literature
2.
go back to reference Ganio MS, Klau JF, Casa DJ, et al. Effect of caffeine on sport specific endurance performance: a systematic review. J Strength Cond Res. 2009;23:315–24.CrossRefPubMed Ganio MS, Klau JF, Casa DJ, et al. Effect of caffeine on sport specific endurance performance: a systematic review. J Strength Cond Res. 2009;23:315–24.CrossRefPubMed
3.
go back to reference Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39:813–32.CrossRefPubMed Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39:813–32.CrossRefPubMed
4.
go back to reference Astorino TA, Robertson DW. Efficacy of acute caffeine ingestion for short-term high intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24:257–65.CrossRefPubMed Astorino TA, Robertson DW. Efficacy of acute caffeine ingestion for short-term high intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24:257–65.CrossRefPubMed
5.
go back to reference Spriet LL. Caffeine. In: Maughan RJ, editor. The encyclopaedia of sports medicine: an IOC medical commission publication. Sports Nutrition. 19th ed. Oxford: Wiley; 2013. p. 313–23.CrossRef Spriet LL. Caffeine. In: Maughan RJ, editor. The encyclopaedia of sports medicine: an IOC medical commission publication. Sports Nutrition. 19th ed. Oxford: Wiley; 2013. p. 313–23.CrossRef
6.
go back to reference Spriet LL. Exercise and sports performance with low caffeine doses of caffeine. Sports Med. 2014;44:S175–84.CrossRefPubMed Spriet LL. Exercise and sports performance with low caffeine doses of caffeine. Sports Med. 2014;44:S175–84.CrossRefPubMed
7.
go back to reference Burke L, Desbrow B, Spriet LL. Caffeine for sports performance. Champaign: Human Kinetics; 2013. Burke L, Desbrow B, Spriet LL. Caffeine for sports performance. Champaign: Human Kinetics; 2013.
8.
go back to reference Kovacs EMR, Stegen JHCH, Brouns F, et al. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol. 1998;85:709–15.CrossRefPubMed Kovacs EMR, Stegen JHCH, Brouns F, et al. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol. 1998;85:709–15.CrossRefPubMed
9.
go back to reference Cureton KJ, Warren GL, Millard-Stafford ML, et al. Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab. 2007;17:35–55.CrossRefPubMed Cureton KJ, Warren GL, Millard-Stafford ML, et al. Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab. 2007;17:35–55.CrossRefPubMed
10.
go back to reference Van Nieuwenhoven MA, Brummer RJM, Brouns F, et al. Gastrointestinal function during exercise; comparison of water, sports drink, and sports drink with caffeine. J Appl Physiol. 2000;89:1079–85.CrossRefPubMed Van Nieuwenhoven MA, Brummer RJM, Brouns F, et al. Gastrointestinal function during exercise; comparison of water, sports drink, and sports drink with caffeine. J Appl Physiol. 2000;89:1079–85.CrossRefPubMed
11.
go back to reference Cox GR, Desbrow B, Montgomery PG, et al. Effect of different protocols of caffeine intake on metabolism and performance. J Appl Physiol. 2002;93:990–9.CrossRefPubMed Cox GR, Desbrow B, Montgomery PG, et al. Effect of different protocols of caffeine intake on metabolism and performance. J Appl Physiol. 2002;93:990–9.CrossRefPubMed
12.
go back to reference Talanian JL, Spriet LL. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl Physiol Nutr Metab. 2016;41:850–5.CrossRefPubMed Talanian JL, Spriet LL. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl Physiol Nutr Metab. 2016;41:850–5.CrossRefPubMed
13.
go back to reference Van Nieuwenhoven MA, Brouns F, Kivacs EM, et al. The effect of two sports drinks and water on GI complaints and performance during an 18-km run. Int J Sports Med. 2005;26:281–5.CrossRefPubMed Van Nieuwenhoven MA, Brouns F, Kivacs EM, et al. The effect of two sports drinks and water on GI complaints and performance during an 18-km run. Int J Sports Med. 2005;26:281–5.CrossRefPubMed
14.
go back to reference Stevenson EJ, Hayes PR, Allison SJ, et al. The effect of a carbohydrate-caffeine sports drink on simulated golf performance. Appl Physiol Nutr Metab. 2009;34:681–8.CrossRefPubMed Stevenson EJ, Hayes PR, Allison SJ, et al. The effect of a carbohydrate-caffeine sports drink on simulated golf performance. Appl Physiol Nutr Metab. 2009;34:681–8.CrossRefPubMed
15.
go back to reference Gant N, Ali A, Foskett A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int J Sports Nutr Exerc Metab. 2010;20:191–7.CrossRef Gant N, Ali A, Foskett A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int J Sports Nutr Exerc Metab. 2010;20:191–7.CrossRef
16.
go back to reference Guttierres APM, Alfenas RC, Lima JRP, et al. Metabolic effects of a caffeinated sports drink consumed during a soccer match. Motriz Rio Claro. 2013;19:688–95. Guttierres APM, Alfenas RC, Lima JRP, et al. Metabolic effects of a caffeinated sports drink consumed during a soccer match. Motriz Rio Claro. 2013;19:688–95.
17.
go back to reference Hogervorst E, Bandelow S, Schmitt J, et al. Caffeine improves physical and cognitive performance during exhaustive exercise. Med Sci Sports Exerc. 2008;40:1841–51.CrossRefPubMed Hogervorst E, Bandelow S, Schmitt J, et al. Caffeine improves physical and cognitive performance during exhaustive exercise. Med Sci Sports Exerc. 2008;40:1841–51.CrossRefPubMed
18.
go back to reference Newton R, Broughton L, Lind M, et al. Plasma and salivary pharmacokinetics of caffeine in man. Eur J Clin Pharmacol. 1981;21:45–52.CrossRefPubMed Newton R, Broughton L, Lind M, et al. Plasma and salivary pharmacokinetics of caffeine in man. Eur J Clin Pharmacol. 1981;21:45–52.CrossRefPubMed
19.
go back to reference Cooper R, Naclerio F, Allgrove J, et al. Effects of a carbohydrate and caffeine gel on intermittent sprint performance in recreationally trained males. Eur J Sport Sci. 2014;14:353–61.CrossRefPubMed Cooper R, Naclerio F, Allgrove J, et al. Effects of a carbohydrate and caffeine gel on intermittent sprint performance in recreationally trained males. Eur J Sport Sci. 2014;14:353–61.CrossRefPubMed
20.
go back to reference Scott AT, O’Leary T, Walker S, et al. Improvement of 2000-m rowing performance with caffeinated carbohydrate-gel ingestion. Int J Sports Physiol Perform. 2015;10:464–8.CrossRefPubMed Scott AT, O’Leary T, Walker S, et al. Improvement of 2000-m rowing performance with caffeinated carbohydrate-gel ingestion. Int J Sports Physiol Perform. 2015;10:464–8.CrossRefPubMed
21.
go back to reference Kamimori GH, Penetar DM, Headley DB, et al. Effect of three caffeine doses on plasma catecholamines and alertness during prolonged wakefulness. Eur J Clin Pharmacol. 2000;56:537–44.CrossRefPubMed Kamimori GH, Penetar DM, Headley DB, et al. Effect of three caffeine doses on plasma catecholamines and alertness during prolonged wakefulness. Eur J Clin Pharmacol. 2000;56:537–44.CrossRefPubMed
22.
go back to reference Kaplan GB, Greenblatt DJ, Ehrenberg BL, et al. Dose dependent pharmacokinetics and psychomotor effects of caffeine in humans. J Clin Pharmacol. 1997;37:693–703.CrossRefPubMed Kaplan GB, Greenblatt DJ, Ehrenberg BL, et al. Dose dependent pharmacokinetics and psychomotor effects of caffeine in humans. J Clin Pharmacol. 1997;37:693–703.CrossRefPubMed
23.
go back to reference Penetar D, McCann U, Thorne D, et al. Caffeine reversal of sleep deprivation effects on alertness and mood. Psychopharmacology. 1993;112:359–65.CrossRefPubMed Penetar D, McCann U, Thorne D, et al. Caffeine reversal of sleep deprivation effects on alertness and mood. Psychopharmacology. 1993;112:359–65.CrossRefPubMed
24.
go back to reference Kamimori GH, Karyekar CS, Otterstetter R, et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm. 2002;234:159–67.CrossRefPubMed Kamimori GH, Karyekar CS, Otterstetter R, et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm. 2002;234:159–67.CrossRefPubMed
25.
go back to reference Shargel L, Yu ABC. Applied biopharmaceutics and pharmacokinetics. 4th ed. Stamford: Appleton and Lange; 1999. Shargel L, Yu ABC. Applied biopharmaceutics and pharmacokinetics. 4th ed. Stamford: Appleton and Lange; 1999.
26.
go back to reference Syed SA, Kamimori GH, Kelly W, et al. Multiple dose pharmacokinetics of caffeine administered in chewing gum to normal healthy volunteers. Biopharm Drug Dispos. 2005;26:403–9.CrossRefPubMed Syed SA, Kamimori GH, Kelly W, et al. Multiple dose pharmacokinetics of caffeine administered in chewing gum to normal healthy volunteers. Biopharm Drug Dispos. 2005;26:403–9.CrossRefPubMed
27.
go back to reference Ryan EJ, Kim CH, Muller MD, et al. Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. J Strength Cond Res. 2012;26:844–50.CrossRefPubMed Ryan EJ, Kim CH, Muller MD, et al. Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. J Strength Cond Res. 2012;26:844–50.CrossRefPubMed
28.
go back to reference Ryan EJ, Kim CH, Fickes EJ, et al. Caffeine gum and cycling performance: a timing study. J Strength Cond Res. 2013;27:259–64.CrossRefPubMed Ryan EJ, Kim CH, Fickes EJ, et al. Caffeine gum and cycling performance: a timing study. J Strength Cond Res. 2013;27:259–64.CrossRefPubMed
29.
go back to reference Lane SC, Hawley JA, Desbrow B, et al. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab. 2014;39:1050–7.CrossRefPubMed Lane SC, Hawley JA, Desbrow B, et al. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab. 2014;39:1050–7.CrossRefPubMed
30.
go back to reference Oberlin-Brown KT, Siegel R, Kilding AE, et al. Oral presence of carbohydrate and caffeine in chewing gum: independent and combined effects on endurance cycling performance. Int J Sports Physiol Perfom. 2016;11:164–71.CrossRef Oberlin-Brown KT, Siegel R, Kilding AE, et al. Oral presence of carbohydrate and caffeine in chewing gum: independent and combined effects on endurance cycling performance. Int J Sports Physiol Perfom. 2016;11:164–71.CrossRef
31.
go back to reference Paton C, Costa V, Guglielmo L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J Sports Sci. 2015;33:1076–83.CrossRefPubMed Paton C, Costa V, Guglielmo L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J Sports Sci. 2015;33:1076–83.CrossRefPubMed
32.
go back to reference Paton CD, Lowe T, Irvine A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur J Appl Physiol. 2010;110:1243–50.CrossRefPubMed Paton CD, Lowe T, Irvine A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur J Appl Physiol. 2010;110:1243–50.CrossRefPubMed
33.
go back to reference Bellar D, Kamimori G, Judge L. Effects of low-dose caffeine supplementation on early morning performance in the standing shot put throw. Eur J Sports Sci. 2012;12:57–61.CrossRef Bellar D, Kamimori G, Judge L. Effects of low-dose caffeine supplementation on early morning performance in the standing shot put throw. Eur J Sports Sci. 2012;12:57–61.CrossRef
34.
go back to reference Lee J, Kim HT, Solares GJ, et al. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance. Int J Sports Med. 2015;36:107–12.PubMed Lee J, Kim HT, Solares GJ, et al. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance. Int J Sports Med. 2015;36:107–12.PubMed
35.
go back to reference Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36:2107–11.CrossRefPubMed Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36:2107–11.CrossRefPubMed
36.
go back to reference Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587:1779–94.CrossRefPubMedPubMedCentral Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587:1779–94.CrossRefPubMedPubMedCentral
37.
go back to reference Beaven CM, Maulder P, Pooley A, et al. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Appl Physiol Nutr Metab. 2013;38:633–7.CrossRefPubMed Beaven CM, Maulder P, Pooley A, et al. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Appl Physiol Nutr Metab. 2013;38:633–7.CrossRefPubMed
38.
go back to reference Clarke ND, Kornilios E, Richardson DL. Carbohydrate and caffeine mouth rinses do not affect maximum strength and muscular endurance performance. J Strength Cond Res. 2015;29:2926–31.CrossRefPubMed Clarke ND, Kornilios E, Richardson DL. Carbohydrate and caffeine mouth rinses do not affect maximum strength and muscular endurance performance. J Strength Cond Res. 2015;29:2926–31.CrossRefPubMed
39.
go back to reference Rubinstein I, Chandilawa R, Dagar S, et al. Adensoine A1 receptors mediate plasma exudation from the oral mucosa. J Appl Physiol. 2001;91:552–60.CrossRefPubMed Rubinstein I, Chandilawa R, Dagar S, et al. Adensoine A1 receptors mediate plasma exudation from the oral mucosa. J Appl Physiol. 2001;91:552–60.CrossRefPubMed
40.
go back to reference Doering TM, Fell JW, Leveritt MD, et al. The effect of a caffeinated mouth-rinse on endurance cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2014;24:90–7.CrossRefPubMed Doering TM, Fell JW, Leveritt MD, et al. The effect of a caffeinated mouth-rinse on endurance cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2014;24:90–7.CrossRefPubMed
41.
42.
go back to reference Meyerhof W, Batram C, Kuhn C, et al. The molecular receptive ranges of human tas2r bitter taste receptors. Chem Senses. 2010;35:157–70.CrossRefPubMed Meyerhof W, Batram C, Kuhn C, et al. The molecular receptive ranges of human tas2r bitter taste receptors. Chem Senses. 2010;35:157–70.CrossRefPubMed
43.
go back to reference Zald DH, Hagen MC, Pardo JV. Neural correlates of tasting concentrated quinine and sugar solutions. J Neurophysiol. 2002;87:1068–75.CrossRefPubMed Zald DH, Hagen MC, Pardo JV. Neural correlates of tasting concentrated quinine and sugar solutions. J Neurophysiol. 2002;87:1068–75.CrossRefPubMed
44.
go back to reference Gam S, Guelfi KJ, Fournier PA. Mouth rinsing and ingesting a bitter solution improves sprint cycling performance. Med Sci Sports Exerc. 2014;46:1648–57.CrossRefPubMed Gam S, Guelfi KJ, Fournier PA. Mouth rinsing and ingesting a bitter solution improves sprint cycling performance. Med Sci Sports Exerc. 2014;46:1648–57.CrossRefPubMed
45.
go back to reference De Pauw K, Roelands B, Knaepen K, et al. Effects of caffeine and maltodextrin mouth rinsing on P300, brain imaging, and cognitive performance. J Appl Physiol. 2015;118:776–82.CrossRefPubMed De Pauw K, Roelands B, Knaepen K, et al. Effects of caffeine and maltodextrin mouth rinsing on P300, brain imaging, and cognitive performance. J Appl Physiol. 2015;118:776–82.CrossRefPubMed
46.
go back to reference Pomportes L, Brisswalter J, Casini L, et al. Cognitive performance enhancement induced by caffeine, carbohydrate and guarana mouth rinsing during submaximal exercise. Nutrients. 2017;9:589.CrossRefPubMedCentral Pomportes L, Brisswalter J, Casini L, et al. Cognitive performance enhancement induced by caffeine, carbohydrate and guarana mouth rinsing during submaximal exercise. Nutrients. 2017;9:589.CrossRefPubMedCentral
47.
go back to reference Kizzi J, Sum A, Houston FE, et al. Influence of a caffeine mouth rinse on sprint cycling following glycogen depletion. Eur J Sport Sci. 2016;16:1087–94.CrossRefPubMed Kizzi J, Sum A, Houston FE, et al. Influence of a caffeine mouth rinse on sprint cycling following glycogen depletion. Eur J Sport Sci. 2016;16:1087–94.CrossRefPubMed
48.
go back to reference Sinclair J, Bottoms L. The effects of carbohydrate and caffeine mouth rinsing on arm crank time-trial performance. J Sports Res. 2014;1:34–44. Sinclair J, Bottoms L. The effects of carbohydrate and caffeine mouth rinsing on arm crank time-trial performance. J Sports Res. 2014;1:34–44.
49.
go back to reference Pataky MW, Womack CJ, Saunders MJ, et al. Caffeine and 3-km cycling performance: effects of mouth rinsing, genotype, and time of day. Scand J Med Sci Sports. 2016;26:613–9.CrossRefPubMed Pataky MW, Womack CJ, Saunders MJ, et al. Caffeine and 3-km cycling performance: effects of mouth rinsing, genotype, and time of day. Scand J Med Sci Sports. 2016;26:613–9.CrossRefPubMed
50.
go back to reference Womack CJ, Saunders MJ, Bechtel MK, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9:7.CrossRefPubMedPubMedCentral Womack CJ, Saunders MJ, Bechtel MK, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9:7.CrossRefPubMedPubMedCentral
51.
go back to reference Lesniak AY, Davis SE, Moir GL, et al. The effects of carbohydrate, caffeine and combined rinses on cycling performance. J Sport Human Perform. 2016;4:1–10. Lesniak AY, Davis SE, Moir GL, et al. The effects of carbohydrate, caffeine and combined rinses on cycling performance. J Sport Human Perform. 2016;4:1–10.
52.
go back to reference Dolan P, Witherbee K, Peterson K, et al. The effect of carbohydrate, caffeine and carbohydrate + caffeine mouth rinsing on intermittent running performance in collegiate male lacrosse athletes. J Strength Cond Res. 2017;31:2473–9.CrossRefPubMed Dolan P, Witherbee K, Peterson K, et al. The effect of carbohydrate, caffeine and carbohydrate + caffeine mouth rinsing on intermittent running performance in collegiate male lacrosse athletes. J Strength Cond Res. 2017;31:2473–9.CrossRefPubMed
53.
go back to reference Ballard SL, Wellborn-Kim JJ, Clausen KA. Effects of commercial energy drink consumption on athletic performance and body composition. Phys Sportsmed. 2010;38:107–17.CrossRefPubMed Ballard SL, Wellborn-Kim JJ, Clausen KA. Effects of commercial energy drink consumption on athletic performance and body composition. Phys Sportsmed. 2010;38:107–17.CrossRefPubMed
54.
go back to reference Spriet LL, Whitfield J. Taurine and skeletal muscle function. Curr Opin Clin Metab Care. 2015;18:96–101.CrossRef Spriet LL, Whitfield J. Taurine and skeletal muscle function. Curr Opin Clin Metab Care. 2015;18:96–101.CrossRef
55.
go back to reference Souza DB, Del Coso J, Casonatto J, et al. Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. Eur J Nutr. 2017;56:13–27.CrossRefPubMed Souza DB, Del Coso J, Casonatto J, et al. Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. Eur J Nutr. 2017;56:13–27.CrossRefPubMed
56.
go back to reference Geiss KR, Jester I, Falke W, et al. The effect of a taurine-containing drink on performance in 10 endurance athletes. Amino Acids. 1994;7:45–56.CrossRefPubMed Geiss KR, Jester I, Falke W, et al. The effect of a taurine-containing drink on performance in 10 endurance athletes. Amino Acids. 1994;7:45–56.CrossRefPubMed
57.
go back to reference Rutherford JA, Spriet LL, Stellingwerff T. The effect of acute taurine ingestion on endurance performance and metabolism in trained cyclists. Int J Sports Nutr Exerc Metab. 2010;20:322–9.CrossRef Rutherford JA, Spriet LL, Stellingwerff T. The effect of acute taurine ingestion on endurance performance and metabolism in trained cyclists. Int J Sports Nutr Exerc Metab. 2010;20:322–9.CrossRef
58.
go back to reference Kammerer M, Jaramillo JA, Garcia A, et al. Effects of energy drink major bioactive compounds on the performance of young adults in fitness and cognitive tests: a randomized controlled trial. J Int Soc Sports Nutr. 2014;11:44–50.CrossRefPubMedPubMedCentral Kammerer M, Jaramillo JA, Garcia A, et al. Effects of energy drink major bioactive compounds on the performance of young adults in fitness and cognitive tests: a randomized controlled trial. J Int Soc Sports Nutr. 2014;11:44–50.CrossRefPubMedPubMedCentral
59.
go back to reference Galloway SDR, Talanian JL, Shoveler AK, et al. Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. J Appl Physiol. 2008;105:643–51.CrossRefPubMed Galloway SDR, Talanian JL, Shoveler AK, et al. Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. J Appl Physiol. 2008;105:643–51.CrossRefPubMed
60.
go back to reference Eckerson JM, Bull AJ, Baechle TR, et al. Acute ingestion of sugar-free Red Bull energy drink has no effect on upper body strength and muscular endurance in resistance trained men. J Strength Cond Res. 2013;27:2248–54.CrossRefPubMed Eckerson JM, Bull AJ, Baechle TR, et al. Acute ingestion of sugar-free Red Bull energy drink has no effect on upper body strength and muscular endurance in resistance trained men. J Strength Cond Res. 2013;27:2248–54.CrossRefPubMed
61.
go back to reference Jogani V, Jinturkar K, Vyas T, et al. Recent patents review on intranasal administration for CNS drug delivery. Recent Pat Drug Deliv Formul. 2008;2:25–40.CrossRefPubMed Jogani V, Jinturkar K, Vyas T, et al. Recent patents review on intranasal administration for CNS drug delivery. Recent Pat Drug Deliv Formul. 2008;2:25–40.CrossRefPubMed
62.
go back to reference De Pauw K, Roelands B, Van Cutsem J, et al. Electro-physiological changes in the brain induced by caffeine or glucose nasal spray. Psychopharmacology. 2017;234:53–62.CrossRefPubMed De Pauw K, Roelands B, Van Cutsem J, et al. Electro-physiological changes in the brain induced by caffeine or glucose nasal spray. Psychopharmacology. 2017;234:53–62.CrossRefPubMed
63.
go back to reference Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013;10:957–72.CrossRefPubMed Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013;10:957–72.CrossRefPubMed
64.
go back to reference Finger TE, Böttger B, Hansen A, et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA. 2003;100:8981–6.CrossRefPubMedPubMedCentral Finger TE, Böttger B, Hansen A, et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA. 2003;100:8981–6.CrossRefPubMedPubMedCentral
65.
go back to reference Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643–62.CrossRef Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643–62.CrossRef
66.
go back to reference De Pauw K, Roelands B, Van Cutsem J, et al. Do glucose and caffeine nasal sprays influence exercise and/or cognitive performance? Int J Sports Physiol Perform. 2017;12:1186–91.CrossRefPubMed De Pauw K, Roelands B, Van Cutsem J, et al. Do glucose and caffeine nasal sprays influence exercise and/or cognitive performance? Int J Sports Physiol Perform. 2017;12:1186–91.CrossRefPubMed
Metadata
Title
Administration of Caffeine in Alternate Forms
Authors
Kate A. Wickham
Lawrence L. Spriet
Publication date
01-03-2018
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue Special Issue 1/2018
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-017-0848-2

Other articles of this Special Issue 1/2018

Sports Medicine 1/2018 Go to the issue