Skip to main content
Top
Published in: Sports Medicine 1/2018

Open Access 01-03-2018 | Review Article

Assessing the Role of Muscle Protein Breakdown in Response to Nutrition and Exercise in Humans

Authors: Kevin D. Tipton, D. Lee Hamilton, Iain J. Gallagher

Published in: Sports Medicine | Special Issue 1/2018

Login to get access

Abstract

Muscle protein breakdown (MPB) is an important metabolic component of muscle remodeling, adaptation to training, and increasing muscle mass. Degradation of muscle proteins occurs via the integration of three main systems—autophagy and the calpain and ubiquitin-proteasome systems. These systems do not operate independently, and the regulation is complex. Complete degradation of a protein requires some combination of the systems. Determination of MPB in humans is technically challenging, leading to a relative dearth of information. Available information on the dynamic response of MPB primarily comes from stable isotopic methods with expression and activity measures providing complementary information. It seems clear that resistance exercise increases MPB, but not as much as the increase in muscle protein synthesis. Both hyperaminoacidemia and hyperinsulinemia inhibit the post-exercise response of MPB. Available data do not allow a comprehensive examination of the mechanisms behind these responses. Practical nutrition recommendations for interventions to suppress MPB following exercise are often made. However, it is likely that some degree of increased MPB following exercise is an important component for optimal remodeling. At this time, it is not possible to determine the impact of nutrition on any individual muscle protein. Thus, until we can develop and employ better methods to elucidate the role of MPB following exercise and the response to nutrition, recommendations to optimize post exercise nutrition should focus on the response of muscle protein synthesis. The aim of this review is to provide a comprehensive examination of the state of knowledge, including methodological considerations, of the response of MPB to exercise and nutrition in humans.
Literature
1.
go back to reference Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475–82.PubMed Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475–82.PubMed
2.
go back to reference Witard OC, Wardle SL, Macnaughton LS, et al. Protein considerations for optimising skeletal muscle mass in healthy young and older adults. Nutrients. 2016;8:181.CrossRefPubMedPubMedCentral Witard OC, Wardle SL, Macnaughton LS, et al. Protein considerations for optimising skeletal muscle mass in healthy young and older adults. Nutrients. 2016;8:181.CrossRefPubMedPubMedCentral
3.
go back to reference Tipton KD, Wolfe RR. Exercise-induced changes in protein metabolism. Acta Physiol Scand. 1998;162:377–87.CrossRefPubMed Tipton KD, Wolfe RR. Exercise-induced changes in protein metabolism. Acta Physiol Scand. 1998;162:377–87.CrossRefPubMed
5.
go back to reference Morton RW, McGlory C, Phillips SM. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front Physiol. 2015;6:245.CrossRefPubMedPubMedCentral Morton RW, McGlory C, Phillips SM. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front Physiol. 2015;6:245.CrossRefPubMedPubMedCentral
6.
go back to reference Pasiakos SM, Carbone JW. Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise. IUBMB Life. 2014;66:478–84.CrossRefPubMed Pasiakos SM, Carbone JW. Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise. IUBMB Life. 2014;66:478–84.CrossRefPubMed
7.
go back to reference Biolo G, Maggi SP, Williams BD, et al. Increased rates of muscle protein-turnover and amino-acid-transport after resistance exercise in humans. Am J Physiol. 1995;268:E514–20.PubMed Biolo G, Maggi SP, Williams BD, et al. Increased rates of muscle protein-turnover and amino-acid-transport after resistance exercise in humans. Am J Physiol. 1995;268:E514–20.PubMed
8.
go back to reference Biolo G, Tipton KD, Klein S, et al. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273:E122–9.PubMed Biolo G, Tipton KD, Klein S, et al. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273:E122–9.PubMed
9.
go back to reference Murton A, Constantin D, Greenhaff P. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta. 2008;1782:730–43.CrossRefPubMed Murton A, Constantin D, Greenhaff P. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta. 2008;1782:730–43.CrossRefPubMed
10.
go back to reference Tokgoz Z, Bohnsack RN, Haas AL. Pleiotropic effects of ATP·Mg2+ binding in the catalytic cycle of ubiquitin-activating enzyme. J Biol Chem. 2006;281:14729–37.CrossRefPubMed Tokgoz Z, Bohnsack RN, Haas AL. Pleiotropic effects of ATP·Mg2+ binding in the catalytic cycle of ubiquitin-activating enzyme. J Biol Chem. 2006;281:14729–37.CrossRefPubMed
11.
go back to reference Lee I, Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell. 2008;134:268–78.CrossRefPubMed Lee I, Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell. 2008;134:268–78.CrossRefPubMed
12.
go back to reference Kravtsova-Ivantsiv Y, Ciechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci. 2012;125:539–48.CrossRefPubMed Kravtsova-Ivantsiv Y, Ciechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci. 2012;125:539–48.CrossRefPubMed
13.
go back to reference Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–8.CrossRefPubMed Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–8.CrossRefPubMed
14.
go back to reference Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18:39–51.CrossRefPubMed Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18:39–51.CrossRefPubMed
15.
go back to reference Solomon V, Goldberg AL. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem. 1996;271:26690–7.CrossRefPubMed Solomon V, Goldberg AL. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem. 1996;271:26690–7.CrossRefPubMed
16.
go back to reference Du J, Wang X, Miereles C, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest. 2004;113:115–23.CrossRefPubMedPubMedCentral Du J, Wang X, Miereles C, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest. 2004;113:115–23.CrossRefPubMedPubMedCentral
17.
go back to reference Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol. 2004;287:C834–43.CrossRef Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol. 2004;287:C834–43.CrossRef
18.
go back to reference Tanida I, Waguri S. Measurement of autophagy in cells and tissues. Methods Mol Biol. 2010;648:193–214.CrossRefPubMed Tanida I, Waguri S. Measurement of autophagy in cells and tissues. Methods Mol Biol. 2010;648:193–214.CrossRefPubMed
19.
go back to reference Mayer RJ. The meteoric rise of regulated intracellular proteolysis. Nat Rev Mol Cell Biol. 2000;1:145–8.CrossRefPubMed Mayer RJ. The meteoric rise of regulated intracellular proteolysis. Nat Rev Mol Cell Biol. 2000;1:145–8.CrossRefPubMed
20.
go back to reference Sorimachi H, Imajoh-Ohmi S, Emori Y, et al. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem. 1989;264:20106–11.PubMed Sorimachi H, Imajoh-Ohmi S, Emori Y, et al. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem. 1989;264:20106–11.PubMed
21.
22.
go back to reference Dargelos E, Poussard S, Brule C, et al. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Biochimie. 2008;90:359–68.CrossRefPubMed Dargelos E, Poussard S, Brule C, et al. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Biochimie. 2008;90:359–68.CrossRefPubMed
23.
go back to reference Murphy RM, Lamb GD. Endogenous calpain-3 activation is primarily governed by small increases in resting cytoplasmic [Ca2+] and is not dependent on stretch. J Biol Chem. 2009;284:7811–9.CrossRefPubMedPubMedCentral Murphy RM, Lamb GD. Endogenous calpain-3 activation is primarily governed by small increases in resting cytoplasmic [Ca2+] and is not dependent on stretch. J Biol Chem. 2009;284:7811–9.CrossRefPubMedPubMedCentral
24.
go back to reference Saenz A, Leturcq F, Cobo AM, et al. LGMD2A: genotype-phenotype correlations based on a large mutational survey on the calpain 3 gene. Brain. 2005;128:732–42.CrossRefPubMed Saenz A, Leturcq F, Cobo AM, et al. LGMD2A: genotype-phenotype correlations based on a large mutational survey on the calpain 3 gene. Brain. 2005;128:732–42.CrossRefPubMed
25.
go back to reference Wolfe RR, Chinkes DL, Wolfe RR. Isotope tracers in metabolic research: principles and practice of kinetic analysis. 2nd ed. Hoboken: Wiley-Liss; 2005. Wolfe RR, Chinkes DL, Wolfe RR. Isotope tracers in metabolic research: principles and practice of kinetic analysis. 2nd ed. Hoboken: Wiley-Liss; 2005.
26.
go back to reference Thompson GN, Pacy PJ, Merritt H, et al. Rapid measurement of whole body and forearm protein turnover using a [2H5]phenylalanine model. Am J Physiol. 1989;256:E631–9.PubMed Thompson GN, Pacy PJ, Merritt H, et al. Rapid measurement of whole body and forearm protein turnover using a [2H5]phenylalanine model. Am J Physiol. 1989;256:E631–9.PubMed
27.
go back to reference Thompson GN, Pacy PJ, Ford GC, et al. Practical considerations in the use of stable isotope labelled compounds as tracers in clinical studies. Biomed Environ Mass Spectrom. 1989;18:321–7.CrossRefPubMed Thompson GN, Pacy PJ, Ford GC, et al. Practical considerations in the use of stable isotope labelled compounds as tracers in clinical studies. Biomed Environ Mass Spectrom. 1989;18:321–7.CrossRefPubMed
28.
go back to reference Biolo G, Chinkes D, Zhang XJ, et al. A new model to determine in vivo the relationship between amino acid transmembrane transport and protein kinetics in muscle. J Parenter Enteral Nutr. 1992;16:305–15.CrossRef Biolo G, Chinkes D, Zhang XJ, et al. A new model to determine in vivo the relationship between amino acid transmembrane transport and protein kinetics in muscle. J Parenter Enteral Nutr. 1992;16:305–15.CrossRef
29.
go back to reference Biolo G, Gastaldelli A, Zhang XJ, et al. Protein synthesis and breakdown in skin and muscle: a leg model of amino acid kinetics. Am J Physiol. 1994;267:E467–74.PubMed Biolo G, Gastaldelli A, Zhang XJ, et al. Protein synthesis and breakdown in skin and muscle: a leg model of amino acid kinetics. Am J Physiol. 1994;267:E467–74.PubMed
30.
go back to reference Katsanos CS, Chinkes DL, Sheffield-Moore M, et al. Method for the determination of the arteriovenous muscle protein balance during non-steady state blood and muscle amino acid concentrations. Am J Physiol. 2005;289:E1064–70. Katsanos CS, Chinkes DL, Sheffield-Moore M, et al. Method for the determination of the arteriovenous muscle protein balance during non-steady state blood and muscle amino acid concentrations. Am J Physiol. 2005;289:E1064–70.
31.
go back to reference Tipton KD, Rasmussen BB, Miller SL, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol. 2001;281:E197–206. Tipton KD, Rasmussen BB, Miller SL, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol. 2001;281:E197–206.
32.
go back to reference Zhang XJ, Chinkes DL, Sakurai Y, et al. An isotopic method for measurement of muscle protein fractional breakdown rate in vivo. Am J Physiol. 1996;270:E759–67.CrossRefPubMed Zhang XJ, Chinkes DL, Sakurai Y, et al. An isotopic method for measurement of muscle protein fractional breakdown rate in vivo. Am J Physiol. 1996;270:E759–67.CrossRefPubMed
33.
go back to reference Chinkes DL. Methods for measuring tissue protein breakdown rate in vivo. Curr Opin Clin Nutr Metab Care. 2005;8:534–7.CrossRefPubMed Chinkes DL. Methods for measuring tissue protein breakdown rate in vivo. Curr Opin Clin Nutr Metab Care. 2005;8:534–7.CrossRefPubMed
34.
go back to reference Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273:E99–107.PubMed Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273:E99–107.PubMed
35.
go back to reference Phillips SM, Tipton KD, Ferrando AA, et al. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol. 1999;276:E118–24.PubMed Phillips SM, Tipton KD, Ferrando AA, et al. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol. 1999;276:E118–24.PubMed
36.
go back to reference Zhang XJ, Chinkes DL, Wolfe RR. Measurement of muscle protein fractional synthesis and breakdown rates from a pulse tracer injection. Am J Physiol. 2002;283:E753–64.CrossRef Zhang XJ, Chinkes DL, Wolfe RR. Measurement of muscle protein fractional synthesis and breakdown rates from a pulse tracer injection. Am J Physiol. 2002;283:E753–64.CrossRef
37.
go back to reference Tuvdendorj D, Chinkes DL, Herndon DN, et al. A novel stable isotope tracer method to measure muscle protein fractional breakdown rate during a physiological non-steady state condition. Am J Physiol. 2013;304:E623–30. Tuvdendorj D, Chinkes DL, Herndon DN, et al. A novel stable isotope tracer method to measure muscle protein fractional breakdown rate during a physiological non-steady state condition. Am J Physiol. 2013;304:E623–30.
38.
go back to reference McGlory C, Devries MC, Phillips SM. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodelling. J Appl Physiol. 2016;122:541–8.CrossRefPubMed McGlory C, Devries MC, Phillips SM. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodelling. J Appl Physiol. 2016;122:541–8.CrossRefPubMed
39.
go back to reference Witard OC, Jackman SR, Breen L, et al. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99:86–95.CrossRefPubMed Witard OC, Jackman SR, Breen L, et al. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99:86–95.CrossRefPubMed
40.
go back to reference Vesali RF, Klaude M, Thunblad L, et al. Contractile protein breakdown in human leg skeletal muscle as estimated by [2H3]-3-methylhistidine: a new method. Metabolism. 2004;53:1076–80.CrossRefPubMed Vesali RF, Klaude M, Thunblad L, et al. Contractile protein breakdown in human leg skeletal muscle as estimated by [2H3]-3-methylhistidine: a new method. Metabolism. 2004;53:1076–80.CrossRefPubMed
41.
go back to reference Trappe T, Williams R, Carrithers J, et al. Influence of age and resistance exercise on human skeletal muscle proteolysis: a microdialysis approach. J Physiol. 2004;554:803–13.CrossRefPubMed Trappe T, Williams R, Carrithers J, et al. Influence of age and resistance exercise on human skeletal muscle proteolysis: a microdialysis approach. J Physiol. 2004;554:803–13.CrossRefPubMed
42.
go back to reference Haus JM, Miller BF, Carroll CC, et al. The effect of strenuous aerobic exercise on skeletal muscle myofibrillar proteolysis in humans. Scand J Med Sci Sports. 2007;17:260–6.PubMed Haus JM, Miller BF, Carroll CC, et al. The effect of strenuous aerobic exercise on skeletal muscle myofibrillar proteolysis in humans. Scand J Med Sci Sports. 2007;17:260–6.PubMed
43.
go back to reference Hansen M, Trappe T, Crameri RM, et al. Myofibrillar proteolysis in response to voluntary or electrically stimulated muscle contractions in humans. Scand J Med Sci Sports. 2009;19:75–82.CrossRefPubMed Hansen M, Trappe T, Crameri RM, et al. Myofibrillar proteolysis in response to voluntary or electrically stimulated muscle contractions in humans. Scand J Med Sci Sports. 2009;19:75–82.CrossRefPubMed
44.
go back to reference Rennie MJ, Phillips S, Smith K. Reliability of results and interpretation of measures of 3-methylhistidine in muscle interstitium as marker of muscle proteolysis. J Appl Physiol. 2008;105:1380–1 (author reply 2–3).CrossRefPubMed Rennie MJ, Phillips S, Smith K. Reliability of results and interpretation of measures of 3-methylhistidine in muscle interstitium as marker of muscle proteolysis. J Appl Physiol. 2008;105:1380–1 (author reply 2–3).CrossRefPubMed
45.
go back to reference Holm L, O’Rourke B, Ebenstein D, et al. Determination of steady state protein breakdown rate in vivo by the disappearance of protein-bound tracer-labeled amino acids: a method applicable in humans. Am J Physiol. 2013;304:E895–907.CrossRef Holm L, O’Rourke B, Ebenstein D, et al. Determination of steady state protein breakdown rate in vivo by the disappearance of protein-bound tracer-labeled amino acids: a method applicable in humans. Am J Physiol. 2013;304:E895–907.CrossRef
47.
go back to reference Wilkinson DJ, Atherton PJ, Phillips BE, et al. Application of deuterium oxide (D2O) to metabolic research: just D2O it? Depends just how you D2O it! Am J Physiol. 2015;308:E847. Wilkinson DJ, Atherton PJ, Phillips BE, et al. Application of deuterium oxide (D2O) to metabolic research: just D2O it? Depends just how you D2O it! Am J Physiol. 2015;308:E847.
48.
go back to reference Wilkinson DJ, Cegielski J, Phillips BE, et al. Internal comparison between deuterium oxide (D2O) and L-[ring-13C6] phenylalanine for acute measurement of muscle protein synthesis in humans. Physiol Rep. 2015;3:e12433.CrossRefPubMedPubMedCentral Wilkinson DJ, Cegielski J, Phillips BE, et al. Internal comparison between deuterium oxide (D2O) and L-[ring-13C6] phenylalanine for acute measurement of muscle protein synthesis in humans. Physiol Rep. 2015;3:e12433.CrossRefPubMedPubMedCentral
49.
go back to reference Doherty MK, Brownridge P, Owen MA, et al. A proteomics strategy for determining the synthesis and degradation rates of individual proteins in fish. J Proteom. 2012;75:4471–7.CrossRef Doherty MK, Brownridge P, Owen MA, et al. A proteomics strategy for determining the synthesis and degradation rates of individual proteins in fish. J Proteom. 2012;75:4471–7.CrossRef
50.
go back to reference Camera DM, Burniston JG, Pogson MA, et al. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. FASEB J. 2017. (E-pub ahead of print. PMID: 28855275). Camera DM, Burniston JG, Pogson MA, et al. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. FASEB J. 2017. (E-pub ahead of print. PMID: 28855275).
51.
go back to reference VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44:619–26.CrossRefPubMed VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44:619–26.CrossRefPubMed
52.
53.
54.
go back to reference Atherton PJ, Greenhaff PL, Phillips SM, et al. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. Am J Physiol. 2016;311:e594–604. Atherton PJ, Greenhaff PL, Phillips SM, et al. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. Am J Physiol. 2016;311:e594–604.
55.
go back to reference Reitelseder S, Agergaard J, Doessing S, et al. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation. Eur J Nutr. 2014;53:321–33.CrossRefPubMed Reitelseder S, Agergaard J, Doessing S, et al. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation. Eur J Nutr. 2014;53:321–33.CrossRefPubMed
56.
go back to reference Feasson L, Stockholm D, Freyssenet D, et al. Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol. 2002;543:297–306.CrossRefPubMedPubMedCentral Feasson L, Stockholm D, Freyssenet D, et al. Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol. 2002;543:297–306.CrossRefPubMedPubMedCentral
57.
go back to reference Murphy RM, Goodman CA, McKenna MJ, et al. Calpain-3 is autolyzed and hence activated in human skeletal muscle 24 h following a single bout of eccentric exercise. J Appl Physiol. 2007;103:926–31.CrossRefPubMed Murphy RM, Goodman CA, McKenna MJ, et al. Calpain-3 is autolyzed and hence activated in human skeletal muscle 24 h following a single bout of eccentric exercise. J Appl Physiol. 2007;103:926–31.CrossRefPubMed
58.
go back to reference Areta JL, Burke LM, Ross ML, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591:2319–31.CrossRefPubMedPubMedCentral Areta JL, Burke LM, Ross ML, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591:2319–31.CrossRefPubMedPubMedCentral
59.
go back to reference Coffey VG, Shield A, Canny BJ, et al. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol. 2006;290:E849–55. Coffey VG, Shield A, Canny BJ, et al. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol. 2006;290:E849–55.
60.
go back to reference Nedergaard A, Vissing K, Overgaard K, et al. Expression patterns of atrogenic and ubiquitin proteasome component genes with exercise: effect of different loading patterns and repeated exercise bouts. J Appl Physiol. 2007;103:1513–22.CrossRefPubMed Nedergaard A, Vissing K, Overgaard K, et al. Expression patterns of atrogenic and ubiquitin proteasome component genes with exercise: effect of different loading patterns and repeated exercise bouts. J Appl Physiol. 2007;103:1513–22.CrossRefPubMed
61.
go back to reference Huggett J, Dheda K, Bustin S, et al. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6:279–84.CrossRefPubMed Huggett J, Dheda K, Bustin S, et al. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6:279–84.CrossRefPubMed
62.
go back to reference Chapman JR, Waldenstrom J. With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS One. 2015;10:e0141853.CrossRefPubMedPubMedCentral Chapman JR, Waldenstrom J. With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS One. 2015;10:e0141853.CrossRefPubMedPubMedCentral
63.
go back to reference Thomas KC, Zheng XF, Garces Suarez F, et al. Evidence based selection of commonly used RT-qPCR reference genes for the analysis of mouse skeletal muscle. PLoS One. 2014;9:e88653.CrossRefPubMedPubMedCentral Thomas KC, Zheng XF, Garces Suarez F, et al. Evidence based selection of commonly used RT-qPCR reference genes for the analysis of mouse skeletal muscle. PLoS One. 2014;9:e88653.CrossRefPubMedPubMedCentral
64.
go back to reference Hruz T, Wyss M, Docquier M, et al. RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics. 2011;12:156.CrossRefPubMedPubMedCentral Hruz T, Wyss M, Docquier M, et al. RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics. 2011;12:156.CrossRefPubMedPubMedCentral
65.
go back to reference Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.CrossRefPubMed Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.CrossRefPubMed
66.
go back to reference Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15.CrossRefPubMed Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15.CrossRefPubMed
67.
go back to reference Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;18:3. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;18:3.
68.
go back to reference Sunderland KL, Roberts MD, Dalbo VJ, et al. Aging and sequential resistance exercise bout effects on housekeeping gene messenger RNA expression in human skeletal muscle. J Strength Cond Res. 2013;27:1–7.CrossRefPubMed Sunderland KL, Roberts MD, Dalbo VJ, et al. Aging and sequential resistance exercise bout effects on housekeeping gene messenger RNA expression in human skeletal muscle. J Strength Cond Res. 2013;27:1–7.CrossRefPubMed
69.
go back to reference Curtis RK, Oresic M, Vidal-Puig A. Pathways to the analysis of microarray data. Trends Biotechnol. 2005;23:429–35.CrossRefPubMed Curtis RK, Oresic M, Vidal-Puig A. Pathways to the analysis of microarray data. Trends Biotechnol. 2005;23:429–35.CrossRefPubMed
70.
go back to reference Subramanian A, Kuehn H, Gould J, et al. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics. 2007;23:3251–3.CrossRefPubMed Subramanian A, Kuehn H, Gould J, et al. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics. 2007;23:3251–3.CrossRefPubMed
71.
72.
go back to reference Croft D, O’Kelly G, Wu G, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.CrossRefPubMed Croft D, O’Kelly G, Wu G, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.CrossRefPubMed
74.
go back to reference Hector AJ, McGlory C, Damas F, et al. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. FASEB J. 2017. (E-pub ahead of print. PMID: 28899879). Hector AJ, McGlory C, Damas F, et al. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. FASEB J. 2017. (E-pub ahead of print. PMID: 28899879).
75.
go back to reference Borgenvik M, Apro W, Blomstrand E. Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. Am J Physiol. 2012;302:E510–21. Borgenvik M, Apro W, Blomstrand E. Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. Am J Physiol. 2012;302:E510–21.
76.
go back to reference Louis E, Raue U, Yang Y, et al. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol. 2007;103:1744–51.CrossRefPubMed Louis E, Raue U, Yang Y, et al. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol. 2007;103:1744–51.CrossRefPubMed
77.
go back to reference Yang Y, Jemiolo B, Trappe S. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol. 2006;101:1442–50.CrossRefPubMed Yang Y, Jemiolo B, Trappe S. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol. 2006;101:1442–50.CrossRefPubMed
78.
go back to reference Stefanetti RJ, Lamon S, Rahbek SK, et al. Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3A in human skeletal muscle. J Appl Physiol. 2014;116:1491–502.CrossRefPubMed Stefanetti RJ, Lamon S, Rahbek SK, et al. Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3A in human skeletal muscle. J Appl Physiol. 2014;116:1491–502.CrossRefPubMed
79.
go back to reference Mascher H, Tannerstedt J, Brink-Elfegoun T, et al. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol. 2008;294:E43–51. Mascher H, Tannerstedt J, Brink-Elfegoun T, et al. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol. 2008;294:E43–51.
80.
go back to reference Stefanetti RJ, Lamon S, Wallace M, et al. Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch. 2015;467:1523–37.CrossRefPubMed Stefanetti RJ, Lamon S, Wallace M, et al. Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch. 2015;467:1523–37.CrossRefPubMed
81.
go back to reference Dalbo VJ, Roberts MD, Hassell S, et al. Effects of pre-exercise feeding on serum hormone concentrations and biomarkers of myostatin and ubiquitin proteasome pathway activity. Eur J Nutr. 2013;52:477–87.CrossRefPubMed Dalbo VJ, Roberts MD, Hassell S, et al. Effects of pre-exercise feeding on serum hormone concentrations and biomarkers of myostatin and ubiquitin proteasome pathway activity. Eur J Nutr. 2013;52:477–87.CrossRefPubMed
82.
go back to reference Phillips SM, Parise G, Roy BD, et al. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol. 2002;80:1045–53.CrossRefPubMed Phillips SM, Parise G, Roy BD, et al. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol. 2002;80:1045–53.CrossRefPubMed
83.
go back to reference Trappe TA, Raue U, Tesch PA. Human soleus muscle protein synthesis following resistance exercise. Acta Physiol Scand. 2004;182:189–96.CrossRefPubMed Trappe TA, Raue U, Tesch PA. Human soleus muscle protein synthesis following resistance exercise. Acta Physiol Scand. 2004;182:189–96.CrossRefPubMed
84.
go back to reference Carraro F, Stuart CA, Hartl WH, et al. Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol. 1990;259:E470–6.PubMed Carraro F, Stuart CA, Hartl WH, et al. Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol. 1990;259:E470–6.PubMed
85.
go back to reference Sheffield-Moore M, Yeckel CW, Volpi E, et al. Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol. 2004;287:E513–22. Sheffield-Moore M, Yeckel CW, Volpi E, et al. Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol. 2004;287:E513–22.
86.
go back to reference Carbone JW, Pasiakos SM, Vislocky LM, et al. Effects of short-term energy deficit on muscle protein breakdown and intramuscular proteolysis in normal-weight young adults. Appl Physiol Nutr Metab. 2014;39:960–8.CrossRefPubMed Carbone JW, Pasiakos SM, Vislocky LM, et al. Effects of short-term energy deficit on muscle protein breakdown and intramuscular proteolysis in normal-weight young adults. Appl Physiol Nutr Metab. 2014;39:960–8.CrossRefPubMed
87.
go back to reference Kim HJ, Jamart C, Deldicque L, et al. Endoplasmic reticulum stress markers and ubiquitin-proteasome pathway activity in response to a 200-km run. Med Sci Sports Exerc. 2011;43:18–25.CrossRefPubMed Kim HJ, Jamart C, Deldicque L, et al. Endoplasmic reticulum stress markers and ubiquitin-proteasome pathway activity in response to a 200-km run. Med Sci Sports Exerc. 2011;43:18–25.CrossRefPubMed
88.
go back to reference Pasiakos SM, McClung HL, McClung JP, et al. Molecular responses to moderate endurance exercise in skeletal muscle. Int J Sport Nutr Exerc Metab. 2010;20:282–90.CrossRefPubMed Pasiakos SM, McClung HL, McClung JP, et al. Molecular responses to moderate endurance exercise in skeletal muscle. Int J Sport Nutr Exerc Metab. 2010;20:282–90.CrossRefPubMed
89.
go back to reference Jamart C, Francaux M, Millet GY, et al. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. J Appl Physiol. 2012;112:1529–37.CrossRefPubMed Jamart C, Francaux M, Millet GY, et al. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. J Appl Physiol. 2012;112:1529–37.CrossRefPubMed
90.
go back to reference Deutz NE, Wolfe RR. Is there a maximal anabolic response to protein intake with a meal? Clin Nutr. 2013;32:309–13.CrossRefPubMed Deutz NE, Wolfe RR. Is there a maximal anabolic response to protein intake with a meal? Clin Nutr. 2013;32:309–13.CrossRefPubMed
91.
go back to reference Glynn EL, Fry CS, Drummond MJ, et al. Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol. 2010;299:R533–40. Glynn EL, Fry CS, Drummond MJ, et al. Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol. 2010;299:R533–40.
92.
go back to reference Dickinson JM, Reidy PT, Gundermann DM, et al. The impact of post exercise essential amino acid ingestion on the ubiquitin proteasome and autophagosomal-lysosomal systems in skeletal muscle of older men. J Appl Physiol. 2017;122:620–30.CrossRefPubMed Dickinson JM, Reidy PT, Gundermann DM, et al. The impact of post exercise essential amino acid ingestion on the ubiquitin proteasome and autophagosomal-lysosomal systems in skeletal muscle of older men. J Appl Physiol. 2017;122:620–30.CrossRefPubMed
93.
go back to reference Biolo G, Williams BD, Fleming RY, et al. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999;48:949–57.CrossRefPubMed Biolo G, Williams BD, Fleming RY, et al. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999;48:949–57.CrossRefPubMed
94.
go back to reference Koopman R, Beelen M, Stellingwerff T, et al. Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis. Am J Physiol. 2007;293:E833–42.CrossRef Koopman R, Beelen M, Stellingwerff T, et al. Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis. Am J Physiol. 2007;293:E833–42.CrossRef
95.
go back to reference Staples AW, Burd NA, West DW, et al. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43:1154–61.CrossRefPubMed Staples AW, Burd NA, West DW, et al. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43:1154–61.CrossRefPubMed
96.
go back to reference Abdulla H, Smith K, Atherton PJ, et al. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia. 2016;59:44–55.CrossRefPubMed Abdulla H, Smith K, Atherton PJ, et al. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia. 2016;59:44–55.CrossRefPubMed
97.
go back to reference McGlory C, Phillips SM. Assessing the regulation of skeletal muscle plasticity in response to protein ingestion and resistance exercise: recent developments. Curr Opin Clin Nutr Metab Care. 2014;17:412–7.CrossRefPubMed McGlory C, Phillips SM. Assessing the regulation of skeletal muscle plasticity in response to protein ingestion and resistance exercise: recent developments. Curr Opin Clin Nutr Metab Care. 2014;17:412–7.CrossRefPubMed
Metadata
Title
Assessing the Role of Muscle Protein Breakdown in Response to Nutrition and Exercise in Humans
Authors
Kevin D. Tipton
D. Lee Hamilton
Iain J. Gallagher
Publication date
01-03-2018
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue Special Issue 1/2018
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-017-0845-5

Other articles of this Special Issue 1/2018

Sports Medicine 1/2018 Go to the issue