Skip to main content
Top
Published in: Sports Medicine 8/2015

01-08-2015 | Systematic Review

The Optimal Load for Maximal Power Production During Lower-Body Resistance Exercises: A Meta-Analysis

Authors: Marco A. Soriano, Pedro Jiménez-Reyes, Matthew R. Rhea, Pedro J. Marín

Published in: Sports Medicine | Issue 8/2015

Login to get access

Abstract

Background

The development of muscular power is often a key focus of sports performance enhancement programs.

Objective

The purpose of this meta-analysis was to examine the effect of load on peak power during the squat, jump squat, power clean, and hang power clean, thus integrating the findings of various studies to provide the strength and conditioning professional with more reliable evidence upon which to base their program design.

Methods

A search of electronic databases [MEDLINE (SPORTDiscus), PubMed, Google Scholar, and Web of Science] was conducted to identify all publications up to 30 June 2014. Hedges’ g (95 % confidence interval) was estimated using a weighted random-effect model. A total of 27 studies with 468 subjects and 5766 effect sizes met the inclusion criterion and were included in the statistical analyses. Load in each study was labeled as one of three intensity zones: Zone 1 represented an average intensity ranging from 0 to 30 % of one repetition maximum (1RM); Zone 2 between 30 and 70 % of 1RM; and Zone 3 ≥70 % of 1RM.

Results

These results showed different optimal loads for each exercise examined. Moderate loads (from >30 to <70 % of 1RM) appear to provide the optimal load for power production in the squat exercise. Lighter loads (≤30 % of 1RM) showed the highest peak power production in the jump squat. Heavier loads (≥70 % of 1RM) resulted in greater peak power production in the power clean and hang power clean.

Conclusion

Our meta-analysis of results from the published literature provides evidence for exercise-specific optimal loads for power production.
Literature
1.
go back to reference Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19(2):349–57.PubMed Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19(2):349–57.PubMed
2.
go back to reference Loturco I, Artioli GG, Kobal R, et al. Predicting punching acceleration from selected strength and power variables in elite karate athletes: a multiple regression analysis. J Strength Cond Res. 2014;28(7):1826–32.PubMedCrossRef Loturco I, Artioli GG, Kobal R, et al. Predicting punching acceleration from selected strength and power variables in elite karate athletes: a multiple regression analysis. J Strength Cond Res. 2014;28(7):1826–32.PubMedCrossRef
3.
go back to reference Wilson GJ, Newton RU, Murphy AJ, et al. The optimal training load for the development of dynamic athletic performance. Med Sci Sports Exerc. 1993;25(11):1279–86.PubMedCrossRef Wilson GJ, Newton RU, Murphy AJ, et al. The optimal training load for the development of dynamic athletic performance. Med Sci Sports Exerc. 1993;25(11):1279–86.PubMedCrossRef
4.
go back to reference Hoffman JR, Ratamess NA, Cooper JJ, et al. Comparison of loaded and unloaded jump squat training on strength/power performance in college football players. J Strength Cond Res. 2005;19(4):810–5.PubMed Hoffman JR, Ratamess NA, Cooper JJ, et al. Comparison of loaded and unloaded jump squat training on strength/power performance in college football players. J Strength Cond Res. 2005;19(4):810–5.PubMed
5.
go back to reference McBride JM, Triplett-McBride T, Davie A, et al. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16(1):75–82.PubMed McBride JM, Triplett-McBride T, Davie A, et al. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16(1):75–82.PubMed
6.
go back to reference Toji H, Kaneko M. Effect of multiple-load training on the force–velocity relationship. J Strength Cond Res. 2004;18(4):792–5.PubMed Toji H, Kaneko M. Effect of multiple-load training on the force–velocity relationship. J Strength Cond Res. 2004;18(4):792–5.PubMed
7.
go back to reference Cormie P, McCaulley GO, McBride JM. Power versus strength–power jump squat training: influence on the load–power relationship. Med Sci Sports Exerc. 2007;39(6):996–1003.PubMedCrossRef Cormie P, McCaulley GO, McBride JM. Power versus strength–power jump squat training: influence on the load–power relationship. Med Sci Sports Exerc. 2007;39(6):996–1003.PubMedCrossRef
8.
go back to reference Cormie P, McCaulley GO, Triplett NT, et al. Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc. 2007;39(2):340–9.PubMedCrossRef Cormie P, McCaulley GO, Triplett NT, et al. Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc. 2007;39(2):340–9.PubMedCrossRef
9.
go back to reference Izquierdo M, Hakkinen K, Gonzalez-Badillo JJ, et al. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol. 2002;87(3):264–71.PubMedCrossRef Izquierdo M, Hakkinen K, Gonzalez-Badillo JJ, et al. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol. 2002;87(3):264–71.PubMedCrossRef
10.
go back to reference Dugan EL, Doyle TL, Humphries B, et al. Determining the optimal load for jump squats: a review of methods and calculations. J Strength Cond Res. 2004;18(3):668–74.PubMed Dugan EL, Doyle TL, Humphries B, et al. Determining the optimal load for jump squats: a review of methods and calculations. J Strength Cond Res. 2004;18(3):668–74.PubMed
11.
go back to reference McBride JM, Haines TL, Kirby TJ. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J Sports Sci. 2011;29(11):1215–21.PubMedCrossRef McBride JM, Haines TL, Kirby TJ. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J Sports Sci. 2011;29(11):1215–21.PubMedCrossRef
12.
go back to reference Alcaraz PE, Romero-Arenas S, Vila H, et al. Power–load curve in trained sprinters. J Strength Cond Res. 2011;25(11):3045–50.PubMedCrossRef Alcaraz PE, Romero-Arenas S, Vila H, et al. Power–load curve in trained sprinters. J Strength Cond Res. 2011;25(11):3045–50.PubMedCrossRef
13.
go back to reference Winchester JB, Erickson TM, Blaak JB, et al. Changes in bar-path kinematics and kinetics after power-clean training. J Strength Cond Res. 2005;19(1):177–83.PubMed Winchester JB, Erickson TM, Blaak JB, et al. Changes in bar-path kinematics and kinetics after power-clean training. J Strength Cond Res. 2005;19(1):177–83.PubMed
14.
go back to reference Comfort P, Fletcher C, McMahon JJ. Determination of optimal loading during the power clean, in collegiate athletes. J Strength Cond Res. 2012;26(11):2970–4.PubMedCrossRef Comfort P, Fletcher C, McMahon JJ. Determination of optimal loading during the power clean, in collegiate athletes. J Strength Cond Res. 2012;26(11):2970–4.PubMedCrossRef
15.
go back to reference Nuzzo JL, Cormie P, McBride JM. Advances in strength and conditioning research. In: Duncan M, Lyons M, editors. Power in resistance exercise. New York: Nova Science Publishers Inc.; 2009. p. 123–45. Nuzzo JL, Cormie P, McBride JM. Advances in strength and conditioning research. In: Duncan M, Lyons M, editors. Power in resistance exercise. New York: Nova Science Publishers Inc.; 2009. p. 123–45.
16.
go back to reference Kawamori N, Haff GG. The optimal training load for the development of muscular power. J Strength Cond Res. 2004;18(3):675–84.PubMed Kawamori N, Haff GG. The optimal training load for the development of muscular power. J Strength Cond Res. 2004;18(3):675–84.PubMed
17.
go back to reference Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35(3):213–34.PubMedCrossRef Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35(3):213–34.PubMedCrossRef
18.
go back to reference Kilduff LP, Bevan H, Owen N, et al. Optimal loading for peak power output during the hang power clean in professional rugby players. Int J Sports Physiol Perform. 2007;2(3):260–9.PubMed Kilduff LP, Bevan H, Owen N, et al. Optimal loading for peak power output during the hang power clean in professional rugby players. Int J Sports Physiol Perform. 2007;2(3):260–9.PubMed
19.
go back to reference Turner AP, Unholz CN, Potts N, et al. Peak power, force, and velocity during jump squats in professional rugby players. J Strength Cond Res. 2012;26(6):1594–600.PubMed Turner AP, Unholz CN, Potts N, et al. Peak power, force, and velocity during jump squats in professional rugby players. J Strength Cond Res. 2012;26(6):1594–600.PubMed
20.
go back to reference Rhea MR. Synthesizing strength and conditioning research: the meta-analysis. J Strength Cond Res. 2004;18(4):921–3.PubMed Rhea MR. Synthesizing strength and conditioning research: the meta-analysis. J Strength Cond Res. 2004;18(4):921–3.PubMed
21.
go back to reference Harman EA, Rosenstein MT, Frykman PN, et al. The effects of arms and countermovement on vertical jumping. Med Sci Sports Exerc. 1990;22(6):825–33.PubMedCrossRef Harman EA, Rosenstein MT, Frykman PN, et al. The effects of arms and countermovement on vertical jumping. Med Sci Sports Exerc. 1990;22(6):825–33.PubMedCrossRef
22.
go back to reference Hori N, Newton RU, Andrews WA, et al. Does performance of hang power clean differentiate performance of jumping, sprinting, and changing of direction? J Strength Cond Res. 2008;22(2):412–8.PubMedCrossRef Hori N, Newton RU, Andrews WA, et al. Does performance of hang power clean differentiate performance of jumping, sprinting, and changing of direction? J Strength Cond Res. 2008;22(2):412–8.PubMedCrossRef
23.
go back to reference Harris NK, Cronin J, Taylor K-L, et al. Understanding position transducer technology for strength and conditioning practitioners. Strength Cond J. 2010;34:66–79.CrossRef Harris NK, Cronin J, Taylor K-L, et al. Understanding position transducer technology for strength and conditioning practitioners. Strength Cond J. 2010;34:66–79.CrossRef
26.
go back to reference Bax L, Yu LM, Ikeda N, et al. Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol. 2006;6:50.PubMedCentralPubMedCrossRef Bax L, Yu LM, Ikeda N, et al. Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol. 2006;6:50.PubMedCentralPubMedCrossRef
27.
go back to reference Cormie P, McBride JM, McCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103–18.PubMed Cormie P, McBride JM, McCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103–18.PubMed
28.
go back to reference McBride JM, Skinner JW, Schafer PC, et al. Comparison of kinetic variables and muscle activity during a squat vs. a box squat. J Strength Cond Res. 2010;24(12):3195–9.PubMedCrossRef McBride JM, Skinner JW, Schafer PC, et al. Comparison of kinetic variables and muscle activity during a squat vs. a box squat. J Strength Cond Res. 2010;24(12):3195–9.PubMedCrossRef
29.
go back to reference Caia J, Doyle TL, Benson AC. A cross-sectional lower-body power profile of elite and subelite Australian football players. J Strength Cond Res. 2013;27(10):2836–41.PubMedCrossRef Caia J, Doyle TL, Benson AC. A cross-sectional lower-body power profile of elite and subelite Australian football players. J Strength Cond Res. 2013;27(10):2836–41.PubMedCrossRef
30.
go back to reference Cormie P, McBride JM, McCaulley GO. Power–time, force–time, and velocity–time curve analysis during the jump squat: impact of load. J Appl Biomech. 2008;24(2):112–20.PubMed Cormie P, McBride JM, McCaulley GO. Power–time, force–time, and velocity–time curve analysis during the jump squat: impact of load. J Appl Biomech. 2008;24(2):112–20.PubMed
31.
go back to reference Cormie P, McBride JM, McCaulley GO. The influence of body mass on calculation of power during lower-body resistance exercises. J Strength Cond Res. 2007;21(4):1042–9.PubMed Cormie P, McBride JM, McCaulley GO. The influence of body mass on calculation of power during lower-body resistance exercises. J Strength Cond Res. 2007;21(4):1042–9.PubMed
32.
go back to reference Crewther BT, McGuigan MR, Gill ND. The ratio and allometric scaling of speed, power, and strength in elite male rugby union players. J Strength Cond Res. 2011;25(7):1968–75.PubMedCrossRef Crewther BT, McGuigan MR, Gill ND. The ratio and allometric scaling of speed, power, and strength in elite male rugby union players. J Strength Cond Res. 2011;25(7):1968–75.PubMedCrossRef
33.
go back to reference Dayne AM, McBride JM, Nuzzo JL, et al. Power output in the jump squat in adolescent male athletes. J Strength Cond Res. 2011;25(3):585–9.PubMedCrossRef Dayne AM, McBride JM, Nuzzo JL, et al. Power output in the jump squat in adolescent male athletes. J Strength Cond Res. 2011;25(3):585–9.PubMedCrossRef
34.
go back to reference Hansen KT, Cronin JB, Pickering SL, et al. Does cluster loading enhance lower body power development in preseason preparation of elite rugby union players? J Strength Cond Res. 2011;25(8):2118–26.PubMedCrossRef Hansen KT, Cronin JB, Pickering SL, et al. Does cluster loading enhance lower body power development in preseason preparation of elite rugby union players? J Strength Cond Res. 2011;25(8):2118–26.PubMedCrossRef
35.
go back to reference Comfort P, Udall R, Jones PA. The effect of loading on kinematic and kinetic variables during the mid-thigh clean pull. J Strength Cond Res. 2012;26(5):1208–14.PubMedCrossRef Comfort P, Udall R, Jones PA. The effect of loading on kinematic and kinetic variables during the mid-thigh clean pull. J Strength Cond Res. 2012;26(5):1208–14.PubMedCrossRef
36.
go back to reference Jones K, Bishop P, Hunter G, et al. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations. J Strength Cond Res. 2001;15(3):349–56.PubMed Jones K, Bishop P, Hunter G, et al. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations. J Strength Cond Res. 2001;15(3):349–56.PubMed
37.
go back to reference McBride JM, Triplett-McBride T, Davie A, et al. A comparison of strength and power characteristics between power lifters, olympic lifters, and sprinters. J Strength Cond Res. 1999;13(1):58–66. McBride JM, Triplett-McBride T, Davie A, et al. A comparison of strength and power characteristics between power lifters, olympic lifters, and sprinters. J Strength Cond Res. 1999;13(1):58–66.
38.
go back to reference McBride JM, Kirby TJ, Haines TL, et al. Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads. Int J Sports Physiol Perform. 2010;5(4):484–96.PubMed McBride JM, Kirby TJ, Haines TL, et al. Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads. Int J Sports Physiol Perform. 2010;5(4):484–96.PubMed
39.
go back to reference Nuzzo JL, McBride JM. The effect of loading and unloading on muscle activity during the jump squat. J Strength Cond Res. 2013;27(7):1758–64.PubMedCrossRef Nuzzo JL, McBride JM. The effect of loading and unloading on muscle activity during the jump squat. J Strength Cond Res. 2013;27(7):1758–64.PubMedCrossRef
40.
go back to reference Swinton PA, Stewart AD, Lloyd R, et al. Effect of load positioning on the kinematics and kinetics of weighted vertical jumps. J Strength Cond Res. 2012;26(4):906–13.PubMedCrossRef Swinton PA, Stewart AD, Lloyd R, et al. Effect of load positioning on the kinematics and kinetics of weighted vertical jumps. J Strength Cond Res. 2012;26(4):906–13.PubMedCrossRef
41.
go back to reference Nibali ML, Chapman DW, Robergs RA, et al. Influence of rest interval duration on muscular power production in the lower-body power profile. J Strength Cond Res. 2013;27(10):2723–9.PubMedCrossRef Nibali ML, Chapman DW, Robergs RA, et al. Influence of rest interval duration on muscular power production in the lower-body power profile. J Strength Cond Res. 2013;27(10):2723–9.PubMedCrossRef
42.
go back to reference Cormie P, Deane R, McBride JM. Methodological concerns for determining power output in the jump squat. J Strength Cond Res. 2007;21(2):424–30.PubMed Cormie P, Deane R, McBride JM. Methodological concerns for determining power output in the jump squat. J Strength Cond Res. 2007;21(2):424–30.PubMed
43.
go back to reference Kawamori N, Crum AJ, Blumert PA, et al. Influence of different relative intensities on power output during the hang power clean: identification of the optimal load. J Strength Cond Res. 2005;19(3):698–708.PubMed Kawamori N, Crum AJ, Blumert PA, et al. Influence of different relative intensities on power output during the hang power clean: identification of the optimal load. J Strength Cond Res. 2005;19(3):698–708.PubMed
44.
go back to reference Suchomel TJ, Beckham GK, Wright GA. The impact of load on lower body performance variables during the hang power clean. Sports Biomech. 2014;13(1):87–95.PubMedCrossRef Suchomel TJ, Beckham GK, Wright GA. The impact of load on lower body performance variables during the hang power clean. Sports Biomech. 2014;13(1):87–95.PubMedCrossRef
45.
go back to reference Suchomel TJ, Wright GA, Kernozek TW, et al. Kinetic comparison of the power development between power clean variations. J Strength Cond Res. 2014;28(2):350–60.PubMedCrossRef Suchomel TJ, Wright GA, Kernozek TW, et al. Kinetic comparison of the power development between power clean variations. J Strength Cond Res. 2014;28(2):350–60.PubMedCrossRef
46.
go back to reference Duchateau J, Hainaut K. Electrical and mechanical failures during sustained and intermittent contractions in humans. J Appl Physiol (1985). 1985;58(3):942–7. Duchateau J, Hainaut K. Electrical and mechanical failures during sustained and intermittent contractions in humans. J Appl Physiol (1985). 1985;58(3):942–7.
47.
go back to reference Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513(Pt 1):295–305.PubMedCentralPubMedCrossRef Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513(Pt 1):295–305.PubMedCentralPubMedCrossRef
48.
go back to reference de Oliveira FB, Rizatto GF, Denadai BS. Are early and late rate of force development differently influenced by fast-velocity resistance training? Clin Physiol Funct Imaging. 2013;33(4):282–7.PubMedCrossRef de Oliveira FB, Rizatto GF, Denadai BS. Are early and late rate of force development differently influenced by fast-velocity resistance training? Clin Physiol Funct Imaging. 2013;33(4):282–7.PubMedCrossRef
49.
go back to reference Haff GG, Whitley A, Potteiger JA. A brief review: explosive exercises and sports performance. Strength Cond J. 2001;23(3):13–20. Haff GG, Whitley A, Potteiger JA. A brief review: explosive exercises and sports performance. Strength Cond J. 2001;23(3):13–20.
50.
go back to reference Schoenfeld BJ. Squatting kinematics and kinetics and their application to exercise performance. J Strength Cond Res. 2010;24(12):3497–506.PubMedCrossRef Schoenfeld BJ. Squatting kinematics and kinetics and their application to exercise performance. J Strength Cond Res. 2010;24(12):3497–506.PubMedCrossRef
51.
go back to reference Rhea MR, Kenn JG, Dermody BM. Alterations in speed of squat movement and the use of accommodated resistance among college athletes training for power. J Strength Cond Res. 2009;23(9):2645–50.PubMedCrossRef Rhea MR, Kenn JG, Dermody BM. Alterations in speed of squat movement and the use of accommodated resistance among college athletes training for power. J Strength Cond Res. 2009;23(9):2645–50.PubMedCrossRef
52.
go back to reference Kawamori N, Rossi SJ, Justice BD, et al. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J Strength Cond Res. 2006;20(3):483–91.PubMed Kawamori N, Rossi SJ, Justice BD, et al. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J Strength Cond Res. 2006;20(3):483–91.PubMed
53.
go back to reference Nuzzo JL, McBride JM, Dayne AM, et al. Testing of the maximal dynamic output hypothesis in trained and untrained subjects. J Strength Cond Res. 2010;24(5):1269–76.PubMedCrossRef Nuzzo JL, McBride JM, Dayne AM, et al. Testing of the maximal dynamic output hypothesis in trained and untrained subjects. J Strength Cond Res. 2010;24(5):1269–76.PubMedCrossRef
Metadata
Title
The Optimal Load for Maximal Power Production During Lower-Body Resistance Exercises: A Meta-Analysis
Authors
Marco A. Soriano
Pedro Jiménez-Reyes
Matthew R. Rhea
Pedro J. Marín
Publication date
01-08-2015
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 8/2015
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-015-0341-8

Other articles of this Issue 8/2015

Sports Medicine 8/2015 Go to the issue