Skip to main content
Top
Published in: Drugs & Aging 6/2015

01-06-2015 | Systematic Review

A Risk-Benefit Assessment of Dementia Medications: Systematic Review of the Evidence

Authors: Jacob S. Buckley, Shelley R. Salpeter

Published in: Drugs & Aging | Issue 6/2015

Login to get access

Abstract

Background

There is no cure for dementia, and no treatments exist to halt or reverse the course of the disease. Treatments are aimed at improving cognitive and functional outcomes.

Objective

Our objective was to review the basis of pharmacological treatments for dementia and to summarize the benefits and risks of dementia treatments.

Methods

We performed a systematic literature search of MEDLINE through November 2014, for English-language trials and observational studies on treatment of dementia and mild cognitive impairment. Additional references were identified by searching bibliographies of relevant publications. Whenever possible, pooled data from meta-analyses or systematic reviews were obtained. Studies were included for review if they were randomized trials or observational studies on dementia or mild cognitive impairment that evaluated efficacy outcomes or adverse outcomes associated with treatment. Studies were excluded if they evaluated non-FDA approved treatments, or if they evaluated treatment in disorders other than dementia and mild cognitive impairment.

Results

The literature search found 540 potentially relevant studies, of which 257 were included in the systematic review. In pooled trial data, cholinesterase inhibitors (ChEIs) produce small improvements in cognitive, functional, and global benefits in patients with mild to moderate Alzheimer’s and Lewy body dementia, but the clinical significance of these effects are unclear. There is no significant benefit seen for vascular dementia. The efficacy of ChEI treatment appears to wane over time, with minimal benefit seen after 1 year. There is no evidence for benefit for those with advanced disease or those aged over 85 years. Adverse effects are significantly increased with ChEIs, in a dose-dependent manner. A two- to fivefold increased risk for gastrointestinal, neurological, and cardiovascular side effects is related to cholinergic stimulation, the most serious being weight loss, debility, and syncope. Those aged over 85 years have double the risk of adverse events compared with younger patients. Memantine monotherapy may provide some cognitive benefit for patients with moderate to severe Alzheimer’s and vascular dementia, but the benefit is small and may wane over the course of several months. Memantine exhibits no significant benefit in mild dementia or Lewy body dementia or as an add-on treatment with ChEIs. Memantine has a relatively favorable side-effect profile, at least under controlled trial conditions.

Conclusions

ChEIs produce small, short-lived improvements in cognitive function in mild to moderate dementia, which may not translate into clinically meaningful effects. Marginal benefits are seen with severe disease, long-term treatment, and advanced age. Cholinergic side effects, including weight loss, debility, and syncope, are clinically significant and could be especially detrimental in the frail elderly population, in which the risks of treatment outweigh the benefits. Memantine monotherapy may have minimal benefits in moderate to severe dementia, balanced by minimal adverse effects.
Literature
1.
go back to reference Qaseem A, Snow V, Cross JT Jr, et al. Current pharmacologic treatment of dementia: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2008;148(5):370–8.PubMed Qaseem A, Snow V, Cross JT Jr, et al. Current pharmacologic treatment of dementia: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2008;148(5):370–8.PubMed
2.
go back to reference Evans JG, Wilcock G, Birks J. Evidence-based pharmacotherapy of Alzheimer’s disease. Int J Neuropsychopharmacol. 2004;7(3):351–69.PubMed Evans JG, Wilcock G, Birks J. Evidence-based pharmacotherapy of Alzheimer’s disease. Int J Neuropsychopharmacol. 2004;7(3):351–69.PubMed
3.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. 4th ed. Washington, DC; 2000. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. 4th ed. Washington, DC; 2000.
4.
go back to reference Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75.e2.PubMed Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75.e2.PubMed
5.
go back to reference Bachman DL, Wolf PA, Linn RT, et al. Incidence of dementia and probable Alzheimer’s disease in a general population: the Framingham Study. Neurology. 1993;43(3 Pt 1):515–9.PubMed Bachman DL, Wolf PA, Linn RT, et al. Incidence of dementia and probable Alzheimer’s disease in a general population: the Framingham Study. Neurology. 1993;43(3 Pt 1):515–9.PubMed
6.
go back to reference Wimo A, Jonsson L, Bond J, Prince M, Winblad B, Alzheimer Disease I. The worldwide economic impact of dementia 2010. Alzheimers Dement. 2013;9(1):1–11.e3.PubMed Wimo A, Jonsson L, Bond J, Prince M, Winblad B, Alzheimer Disease I. The worldwide economic impact of dementia 2010. Alzheimers Dement. 2013;9(1):1–11.e3.PubMed
7.
go back to reference Russ TC, Morling JR. Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst Rev. 2012;9:CD009132.PubMed Russ TC, Morling JR. Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst Rev. 2012;9:CD009132.PubMed
8.
go back to reference O’Brien JT, Burns A, BAP Dementia Consensus Group. Clinical practice with anti-dementia drugs: a revised (second) consensus statement from the British Association for Psychopharmacology. J Psychopharmacol. 2011;25(8):997–1019.PubMed O’Brien JT, Burns A, BAP Dementia Consensus Group. Clinical practice with anti-dementia drugs: a revised (second) consensus statement from the British Association for Psychopharmacology. J Psychopharmacol. 2011;25(8):997–1019.PubMed
9.
go back to reference Cummings JL. Challenges to demonstrating disease-modifying effects in Alzheimer’s disease clinical trials. Alzheimers Dement. 2006;2(4):263–71.PubMed Cummings JL. Challenges to demonstrating disease-modifying effects in Alzheimer’s disease clinical trials. Alzheimers Dement. 2006;2(4):263–71.PubMed
10.
go back to reference Drugs for cognitive loss and dementia. Treat Guidel Med Lett. 2013;11(134):95–100. Drugs for cognitive loss and dementia. Treat Guidel Med Lett. 2013;11(134):95–100.
11.
go back to reference Santaguida PS, Raina P, Booker L, et al. Pharmacological treatment of dementia. Evid Rep Technol Assess (Summ). 2004;97:1–16. Santaguida PS, Raina P, Booker L, et al. Pharmacological treatment of dementia. Evid Rep Technol Assess (Summ). 2004;97:1–16.
12.
go back to reference Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;(1):CD005593. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;(1):CD005593.
13.
go back to reference Bullain SS, Corrada MM. Dementia in the oldest old. Continuum (Minneap Minn). 2013;19(2 Dementia):457–69. Bullain SS, Corrada MM. Dementia in the oldest old. Continuum (Minneap Minn). 2013;19(2 Dementia):457–69.
14.
go back to reference Gill SS, Bronskill SE, Mamdani M, et al. Representation of patients with dementia in clinical trials of donepezil. Can J Clin Pharmacol. 2004;11(2):e274–85.PubMed Gill SS, Bronskill SE, Mamdani M, et al. Representation of patients with dementia in clinical trials of donepezil. Can J Clin Pharmacol. 2004;11(2):e274–85.PubMed
15.
go back to reference Schneider LS, Olin JT, Lyness SA, Chui HC. Eligibility of Alzheimer’s disease clinic patients for clinical trials. J Am Geriatr Soc. 1997;45(8):923–8.PubMed Schneider LS, Olin JT, Lyness SA, Chui HC. Eligibility of Alzheimer’s disease clinic patients for clinical trials. J Am Geriatr Soc. 1997;45(8):923–8.PubMed
16.
go back to reference Asahina Y, Sugano H, Sugiyama E, Uyama Y. Representation of older patients in clinical trials for drug approval in Japan. J Nutr Health Aging. 2014;18(5):520–3.PubMed Asahina Y, Sugano H, Sugiyama E, Uyama Y. Representation of older patients in clinical trials for drug approval in Japan. J Nutr Health Aging. 2014;18(5):520–3.PubMed
17.
go back to reference Killin LO, Russ TC, Starr JM, Abrahams S, Della Sala S. The effect of funding sources on donepezil randomised controlled trial outcome: a meta-analysis. BMJ Open. 2014;4(4):e004083.PubMedCentralPubMed Killin LO, Russ TC, Starr JM, Abrahams S, Della Sala S. The effect of funding sources on donepezil randomised controlled trial outcome: a meta-analysis. BMJ Open. 2014;4(4):e004083.PubMedCentralPubMed
18.
go back to reference Gilstad JR, Finucane TE. Results, rhetoric, and randomized trials: the case of donepezil. J Am Geriatr Soc. 2008;56(8):1556–62.PubMed Gilstad JR, Finucane TE. Results, rhetoric, and randomized trials: the case of donepezil. J Am Geriatr Soc. 2008;56(8):1556–62.PubMed
19.
go back to reference Rockwood K, MacKnight C. Assessing the clinical importance of statistically significant improvement in anti-dementia drug trials. Neuroepidemiology. 2001;20(2):51–6.PubMed Rockwood K, MacKnight C. Assessing the clinical importance of statistically significant improvement in anti-dementia drug trials. Neuroepidemiology. 2001;20(2):51–6.PubMed
20.
go back to reference Lanctot KL, Herrmann N, Yau KK, et al. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ. 2003;169(6):557–64.PubMedCentralPubMed Lanctot KL, Herrmann N, Yau KK, et al. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ. 2003;169(6):557–64.PubMedCentralPubMed
21.
go back to reference Chui HC, Mack W, Jackson JE, et al. Clinical criteria for the diagnosis of vascular dementia: a multicenter study of comparability and interrater reliability. Arch Neurol. 2000;57(2):191–6.PubMed Chui HC, Mack W, Jackson JE, et al. Clinical criteria for the diagnosis of vascular dementia: a multicenter study of comparability and interrater reliability. Arch Neurol. 2000;57(2):191–6.PubMed
22.
go back to reference Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11(2):111–28.PubMedCentralPubMed Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11(2):111–28.PubMedCentralPubMed
23.
go back to reference Hebert R, Brayne C. Epidemiology of vascular dementia. Neuroepidemiology. 1995;14(5):240–57.PubMed Hebert R, Brayne C. Epidemiology of vascular dementia. Neuroepidemiology. 1995;14(5):240–57.PubMed
24.
go back to reference Rocca WA, Kokmen E. Frequency and distribution of vascular dementia. Alzheimer Dis Assoc Disord. 1999;13(Suppl 3):S9–14.PubMed Rocca WA, Kokmen E. Frequency and distribution of vascular dementia. Alzheimer Dis Assoc Disord. 1999;13(Suppl 3):S9–14.PubMed
25.
go back to reference Knopman DS, Parisi JE, Boeve BF, et al. Vascular dementia in a population-based autopsy study. Arch Neurol. 2003;60(4):569–75.PubMed Knopman DS, Parisi JE, Boeve BF, et al. Vascular dementia in a population-based autopsy study. Arch Neurol. 2003;60(4):569–75.PubMed
26.
go back to reference Skoog I, Nilsson L, Palmertz B, Andreasson LA, Svanborg A. A population-based study of dementia in 85-year-olds. N Engl J Med. 1993;328(3):153–8.PubMed Skoog I, Nilsson L, Palmertz B, Andreasson LA, Svanborg A. A population-based study of dementia in 85-year-olds. N Engl J Med. 1993;328(3):153–8.PubMed
27.
go back to reference Lobo A, Launer LJ, Fratiglioni L, et al. Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54(11 Suppl 5):S4–9.PubMed Lobo A, Launer LJ, Fratiglioni L, et al. Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54(11 Suppl 5):S4–9.PubMed
28.
go back to reference Fitzpatrick AL, Kuller LH, Ives DG, et al. Incidence and prevalence of dementia in the Cardiovascular Health Study. J Am Geriatr Soc. 2004;52(2):195–204.PubMed Fitzpatrick AL, Kuller LH, Ives DG, et al. Incidence and prevalence of dementia in the Cardiovascular Health Study. J Am Geriatr Soc. 2004;52(2):195–204.PubMed
29.
go back to reference Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–204.PubMed Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–204.PubMed
30.
go back to reference Wang HF, Yu JT, Tang SW, et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. J Neurol Neurosurg Psychiatry. 2015;86(2):135–43. doi:10.1136/jnnp-2014-307659.PubMed Wang HF, Yu JT, Tang SW, et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. J Neurol Neurosurg Psychiatry. 2015;86(2):135–43. doi:10.​1136/​jnnp-2014-307659.PubMed
31.
go back to reference Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord. 2005;20(10):1255–63.PubMed Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord. 2005;20(10):1255–63.PubMed
32.
go back to reference Mayeux R, Stern Y, Rosenstein R, et al. An estimate of the prevalence of dementia in idiopathic Parkinson’s disease. Arch Neurol. 1988;45(3):260–2.PubMed Mayeux R, Stern Y, Rosenstein R, et al. An estimate of the prevalence of dementia in idiopathic Parkinson’s disease. Arch Neurol. 1988;45(3):260–2.PubMed
33.
go back to reference Shergil S, Mullan E, D’ath P, Katona C. What is the clinical prevalence of Lewy body dementia? Int J Geriatr Psychiatry. 1994;9:907–12. Shergil S, Mullan E, D’ath P, Katona C. What is the clinical prevalence of Lewy body dementia? Int J Geriatr Psychiatry. 1994;9:907–12.
34.
go back to reference Vann Jones SA, O’Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014;44(4):673–83.PubMed Vann Jones SA, O’Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014;44(4):673–83.PubMed
35.
go back to reference Chertkow H, Massoud F, Nasreddine Z, et al. Diagnosis and treatment of dementia: 3. Mild cognitive impairment and cognitive impairment without dementia. CMAJ. 2008;178(10):1273–85.PubMedCentralPubMed Chertkow H, Massoud F, Nasreddine Z, et al. Diagnosis and treatment of dementia: 3. Mild cognitive impairment and cognitive impairment without dementia. CMAJ. 2008;178(10):1273–85.PubMedCentralPubMed
37.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMed Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMed
39.
go back to reference Tombaugh TN, Hubley AM, McDowell I, Kristjansson B. Mini-mental state examination (MMSE) and the modified MMSE (3MS): a psychometric comparison and normative data. Psychol Assess. 1996;8(1):48–59. Tombaugh TN, Hubley AM, McDowell I, Kristjansson B. Mini-mental state examination (MMSE) and the modified MMSE (3MS): a psychometric comparison and normative data. Psychol Assess. 1996;8(1):48–59.
40.
go back to reference Kahle-Wrobleski K, Corrada MM, Li B, Kawas CH. Sensitivity and specificity of the mini-mental state examination for identifying dementia in the oldest-old: the 90+ study. J Am Geriatr Soc. 2007;55(2):284–9.PubMedCentralPubMed Kahle-Wrobleski K, Corrada MM, Li B, Kawas CH. Sensitivity and specificity of the mini-mental state examination for identifying dementia in the oldest-old: the 90+ study. J Am Geriatr Soc. 2007;55(2):284–9.PubMedCentralPubMed
41.
go back to reference Galea M, Woodward M. Mini-mental state examination (MMSE). Aust J Physiother. 2005;51(3):198.PubMed Galea M, Woodward M. Mini-mental state examination (MMSE). Aust J Physiother. 2005;51(3):198.PubMed
42.
go back to reference Lourenco RA, Veras RP. Mini-mental state examination: psychometric characteristics in elderly outpatients. Rev Saude Publica. 2006;40(4):712–9.PubMed Lourenco RA, Veras RP. Mini-mental state examination: psychometric characteristics in elderly outpatients. Rev Saude Publica. 2006;40(4):712–9.PubMed
43.
go back to reference Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.PubMed Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.PubMed
44.
go back to reference Doraiswamy PM, Kaiser L, Bieber F, Garman RL. The Alzheimer’s Disease Assessment Scale: evaluation of psychometric properties and patterns of cognitive decline in multicenter clinical trials of mild to moderate Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2001;15(4):174–83.PubMed Doraiswamy PM, Kaiser L, Bieber F, Garman RL. The Alzheimer’s Disease Assessment Scale: evaluation of psychometric properties and patterns of cognitive decline in multicenter clinical trials of mild to moderate Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2001;15(4):174–83.PubMed
45.
go back to reference Skinner J, Carvalho JO, Potter GG, et al. The Alzheimer’s disease assessment scale-cognitive-plus (ADAS-Cog-Plus): an expansion of the ADAS-Cog to improve responsiveness in MCI. Brain Imaging Behav. 2012;6(4):489–501.PubMed Skinner J, Carvalho JO, Potter GG, et al. The Alzheimer’s disease assessment scale-cognitive-plus (ADAS-Cog-Plus): an expansion of the ADAS-Cog to improve responsiveness in MCI. Brain Imaging Behav. 2012;6(4):489–501.PubMed
46.
go back to reference Khan A, Yavorsky C, DiClemente G, et al. Reliability of the Alzheimer’s disease assessment scale (ADAS-Cog) in longitudinal studies. Curr Alzheimer Res. 2013;10(9):952–63.PubMed Khan A, Yavorsky C, DiClemente G, et al. Reliability of the Alzheimer’s disease assessment scale (ADAS-Cog) in longitudinal studies. Curr Alzheimer Res. 2013;10(9):952–63.PubMed
47.
go back to reference Weyer G, Erzigkeit H, Kanowski S, Ihl R, Hadler D. Alzheimer’s Disease Assessment Scale: reliability and validity in a multicenter clinical trial. Int Psychogeriatr. 1997;9(2):123–38.PubMed Weyer G, Erzigkeit H, Kanowski S, Ihl R, Hadler D. Alzheimer’s Disease Assessment Scale: reliability and validity in a multicenter clinical trial. Int Psychogeriatr. 1997;9(2):123–38.PubMed
48.
go back to reference Mohs RC, Knopman D, Petersen RC, et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11(Suppl 2):S13–21.PubMed Mohs RC, Knopman D, Petersen RC, et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11(Suppl 2):S13–21.PubMed
49.
go back to reference Panisset M, Roudier M, Saxton J, Boller F. Severe impairment battery. A neuropsychological test for severely demented patients. Arch Neurol. 1994;51(1):41–5.PubMed Panisset M, Roudier M, Saxton J, Boller F. Severe impairment battery. A neuropsychological test for severely demented patients. Arch Neurol. 1994;51(1):41–5.PubMed
50.
go back to reference Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.PubMed Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.PubMed
51.
go back to reference Robert P, Ferris S, Gauthier S, Ihl R, Winblad B, Tennigkeit F. Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice? Alzheimers Res Ther. 2010;2(4):24.PubMedCentralPubMed Robert P, Ferris S, Gauthier S, Ihl R, Winblad B, Tennigkeit F. Review of Alzheimer’s disease scales: is there a need for a new multi-domain scale for therapy evaluation in medical practice? Alzheimers Res Ther. 2010;2(4):24.PubMedCentralPubMed
52.
go back to reference Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44(12):2308–14.PubMed Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44(12):2308–14.PubMed
53.
go back to reference Reisberg B. Global measures: utility in defining and measuring treatment response in dementia. Int Psychogeriatr. 2007;19(3):421–56.PubMed Reisberg B. Global measures: utility in defining and measuring treatment response in dementia. Int Psychogeriatr. 2007;19(3):421–56.PubMed
54.
go back to reference Kim DH, Brown RT, Ding EL, Kiel DP, Berry SD. Dementia medications and risk of falls, syncope, and related adverse events: meta-analysis of randomized controlled trials. J Am Geriatr Soc. 2011;59(6):1019–31.PubMedCentralPubMed Kim DH, Brown RT, Ding EL, Kiel DP, Berry SD. Dementia medications and risk of falls, syncope, and related adverse events: meta-analysis of randomized controlled trials. J Am Geriatr Soc. 2011;59(6):1019–31.PubMedCentralPubMed
55.
go back to reference Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60(8):1119–22.PubMed Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60(8):1119–22.PubMed
56.
go back to reference National Institute for Health and Care Excellence. Donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease. NICE technology appraisal guidance 217. NICE; London; 2011. National Institute for Health and Care Excellence. Donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease. NICE technology appraisal guidance 217. NICE; London; 2011.
57.
go back to reference Anthony JC, LeResche L, Niaz U, von Korff MR, Folstein MF. Limits of the ‘Mini-Mental State’ as a screening test for dementia and delirium among hospital patients. Psychol Med. 1982;12(2):397–408.PubMed Anthony JC, LeResche L, Niaz U, von Korff MR, Folstein MF. Limits of the ‘Mini-Mental State’ as a screening test for dementia and delirium among hospital patients. Psychol Med. 1982;12(2):397–408.PubMed
58.
go back to reference O’Bryant SE, Humphreys JD, Smith GE, et al. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol. 2008;65(7):963–7.PubMedCentralPubMed O’Bryant SE, Humphreys JD, Smith GE, et al. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol. 2008;65(7):963–7.PubMedCentralPubMed
59.
go back to reference Schmitt FA, Wichems CH. A systematic review of assessment and treatment of moderate to severe Alzheimer’s disease. Prim Care Companion J Clin Psychiatry. 2006;8(3):158–9.PubMedCentralPubMed Schmitt FA, Wichems CH. A systematic review of assessment and treatment of moderate to severe Alzheimer’s disease. Prim Care Companion J Clin Psychiatry. 2006;8(3):158–9.PubMedCentralPubMed
60.
go back to reference Benson AD, Slavin MJ, Tran TT, Petrella JR, Doraiswamy PM. Screening for early Alzheimer’s disease: is there still a role for the mini-mental state examination? Prim Care Companion J Clin Psychiatry. 2005;7(2):62–9.PubMedCentralPubMed Benson AD, Slavin MJ, Tran TT, Petrella JR, Doraiswamy PM. Screening for early Alzheimer’s disease: is there still a role for the mini-mental state examination? Prim Care Companion J Clin Psychiatry. 2005;7(2):62–9.PubMedCentralPubMed
61.
go back to reference Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.PubMed Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.PubMed
62.
go back to reference Pozueta A, Rodriguez-Rodriguez E, Vazquez-Higuera JL, et al. Detection of early Alzheimer’s disease in MCI patients by the combination of MMSE and an episodic memory test. BMC Neurol. 2011;11:78.PubMedCentralPubMed Pozueta A, Rodriguez-Rodriguez E, Vazquez-Higuera JL, et al. Detection of early Alzheimer’s disease in MCI patients by the combination of MMSE and an episodic memory test. BMC Neurol. 2011;11:78.PubMedCentralPubMed
63.
go back to reference Voisin T, Vellas B. Diagnosis and treatment of patients with severe Alzheimer’s disease. Drugs Aging. 2009;26(2):135–44.PubMed Voisin T, Vellas B. Diagnosis and treatment of patients with severe Alzheimer’s disease. Drugs Aging. 2009;26(2):135–44.PubMed
64.
go back to reference Reisberg B, Jamil IA, Khan S, et al. Staging dementia. In: Abou-Saleh MT, Katona CLE, Kumar A, editors. Principles and practice of geriatric psychiatry. 3rd ed. Chichester, Hoboken: Wiley; 2011. p. 162–169. Reisberg B, Jamil IA, Khan S, et al. Staging dementia. In: Abou-Saleh MT, Katona CLE, Kumar A, editors. Principles and practice of geriatric psychiatry. 3rd ed. Chichester, Hoboken: Wiley; 2011. p. 162–169.
65.
go back to reference Frolich L. The cholinergic pathology in Alzheimer’s disease: discrepancies between clinical experience and pathophysiological findings. J Neural Transm. 2002;109(7–8):1003–13.PubMed Frolich L. The cholinergic pathology in Alzheimer’s disease: discrepancies between clinical experience and pathophysiological findings. J Neural Transm. 2002;109(7–8):1003–13.PubMed
66.
go back to reference Francis PT, Perry EK. Cholinergic and other neurotransmitter mechanisms in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Mov Disord. 2007;22(Suppl 17):S351–7.PubMed Francis PT, Perry EK. Cholinergic and other neurotransmitter mechanisms in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Mov Disord. 2007;22(Suppl 17):S351–7.PubMed
67.
go back to reference Grantham C, Geerts H. The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J Neurol Sci. 2002;203–204:131–6.PubMed Grantham C, Geerts H. The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J Neurol Sci. 2002;203–204:131–6.PubMed
68.
go back to reference Molinuevo JL, Llado A, Rami L. Memantine: targeting glutamate excitotoxicity in Alzheimer’s disease and other dementias. Am J Alzheimers Dis Other Demen. 2005;20(2):77–85.PubMed Molinuevo JL, Llado A, Rami L. Memantine: targeting glutamate excitotoxicity in Alzheimer’s disease and other dementias. Am J Alzheimers Dis Other Demen. 2005;20(2):77–85.PubMed
69.
go back to reference Ahmed I, Bose SK, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain. 2011;134(Pt 4):979–86.PubMed Ahmed I, Bose SK, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain. 2011;134(Pt 4):979–86.PubMed
70.
go back to reference Sabbagh MN, Hake AM, Ahmed S, Farlow MR. The use of memantine in dementia with Lewy bodies. J Alzheimers Dis. 2005;7(4):285–9.PubMed Sabbagh MN, Hake AM, Ahmed S, Farlow MR. The use of memantine in dementia with Lewy bodies. J Alzheimers Dis. 2005;7(4):285–9.PubMed
71.
go back to reference Mobius HJ. Pharmacologic rationale for memantine in chronic cerebral hypoperfusion, especially vascular dementia. Alzheimer Dis Assoc Disord. 1999;13(Suppl 3):S172–8.PubMed Mobius HJ. Pharmacologic rationale for memantine in chronic cerebral hypoperfusion, especially vascular dementia. Alzheimer Dis Assoc Disord. 1999;13(Suppl 3):S172–8.PubMed
72.
go back to reference Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368(9533):387–403.PubMed Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368(9533):387–403.PubMed
73.
go back to reference Nyakas C, Granic I, Halmy LG, Banerjee P, Luiten PG. The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-beta42 with memantine. Behav Brain Res. 2011;221(2):594–603.PubMed Nyakas C, Granic I, Halmy LG, Banerjee P, Luiten PG. The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-beta42 with memantine. Behav Brain Res. 2011;221(2):594–603.PubMed
74.
go back to reference Danysz W, Parsons CG. Alzheimer’s disease, beta-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. Br J Pharmacol. 2012;167(2):324–52.PubMedCentralPubMed Danysz W, Parsons CG. Alzheimer’s disease, beta-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. Br J Pharmacol. 2012;167(2):324–52.PubMedCentralPubMed
75.
go back to reference Iemolo F, Duro G, Rizzo C, Castiglia L, Hachinski V, Caruso C. Pathophysiology of vascular dementia. Immun Ageing. 2009;6:13.PubMedCentralPubMed Iemolo F, Duro G, Rizzo C, Castiglia L, Hachinski V, Caruso C. Pathophysiology of vascular dementia. Immun Ageing. 2009;6:13.PubMedCentralPubMed
76.
go back to reference Ni JW, Matsumoto K, Li HB, Murakami Y, Watanabe H. Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat. Brain Res. 1995;673(2):290–6.PubMed Ni JW, Matsumoto K, Li HB, Murakami Y, Watanabe H. Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat. Brain Res. 1995;673(2):290–6.PubMed
77.
go back to reference Tsuboi Y, Uchikado H, Dickson DW. Neuropathology of Parkinson’s disease dementia and dementia with Lewy bodies with reference to striatal pathology. Parkinsonism Relat Disord. 2007;13(Suppl 3):S221–4.PubMed Tsuboi Y, Uchikado H, Dickson DW. Neuropathology of Parkinson’s disease dementia and dementia with Lewy bodies with reference to striatal pathology. Parkinsonism Relat Disord. 2007;13(Suppl 3):S221–4.PubMed
79.
go back to reference Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol. 2014;261(10):1939–48.PubMed Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol. 2014;261(10):1939–48.PubMed
80.
go back to reference Dalfo E, Albasanz JL, Martin M, Ferrer I. Abnormal metabotropic glutamate receptor expression and signaling in the cerebral cortex in diffuse Lewy body disease is associated with irregular alpha-synuclein/phospholipase C (PLCbeta1) interactions. Brain Pathol. 2004;14(4):388–98.PubMed Dalfo E, Albasanz JL, Martin M, Ferrer I. Abnormal metabotropic glutamate receptor expression and signaling in the cerebral cortex in diffuse Lewy body disease is associated with irregular alpha-synuclein/phospholipase C (PLCbeta1) interactions. Brain Pathol. 2004;14(4):388–98.PubMed
81.
go back to reference Starr MS. Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse. 1995;19(4):264–93.PubMed Starr MS. Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse. 1995;19(4):264–93.PubMed
82.
go back to reference Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23):2379–88.PubMed Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23):2379–88.PubMed
83.
go back to reference Lu PH, Edland SD, Teng E, et al. Donepezil delays progression to AD in MCI subjects with depressive symptoms. Neurology. 2009;72(24):2115–21.PubMedCentralPubMed Lu PH, Edland SD, Teng E, et al. Donepezil delays progression to AD in MCI subjects with depressive symptoms. Neurology. 2009;72(24):2115–21.PubMedCentralPubMed
84.
go back to reference Winblad B, Gauthier S, Scinto L, et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology. 2008;70(22):2024–35.PubMed Winblad B, Gauthier S, Scinto L, et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology. 2008;70(22):2024–35.PubMed
85.
go back to reference Tricco AC, Soobiah C, Berliner S, et al. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ. 2013;185(16):1393–401.PubMedCentralPubMed Tricco AC, Soobiah C, Berliner S, et al. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ. 2013;185(16):1393–401.PubMedCentralPubMed
86.
go back to reference Cooper C, Li R, Lyketsos C, Livingston G. Treatment for mild cognitive impairment: systematic review. Br J Psychiatry. 2013;203(3):255–64.PubMedCentralPubMed Cooper C, Li R, Lyketsos C, Livingston G. Treatment for mild cognitive impairment: systematic review. Br J Psychiatry. 2013;203(3):255–64.PubMedCentralPubMed
87.
go back to reference Doody RS, Ferris S, Salloway S, et al. Safety and tolerability of donepezil in mild cognitive impairment: open-label extension study. Am J Alzheimers Dis Other Demen. 2010;25(2):155–9.PubMed Doody RS, Ferris S, Salloway S, et al. Safety and tolerability of donepezil in mild cognitive impairment: open-label extension study. Am J Alzheimers Dis Other Demen. 2010;25(2):155–9.PubMed
88.
go back to reference Feldman HH, Ferris S, Winblad B, et al. Effect of rivastigmine on delay to diagnosis of Alzheimer’s disease from mild cognitive impairment: the InDDEx study. Lancet Neurol. 2007;6(6):501–12.PubMed Feldman HH, Ferris S, Winblad B, et al. Effect of rivastigmine on delay to diagnosis of Alzheimer’s disease from mild cognitive impairment: the InDDEx study. Lancet Neurol. 2007;6(6):501–12.PubMed
89.
go back to reference Russ TC. Cholinesterase inhibitors should not be prescribed for mild cognitive impairment. Evid Based Med. 2014;19(3):101.PubMed Russ TC. Cholinesterase inhibitors should not be prescribed for mild cognitive impairment. Evid Based Med. 2014;19(3):101.PubMed
90.
go back to reference Gauthier S, Touchon J. Mild cognitive impairment is not a clinical entity and should not be treated. Arch Neurol. 2005;62(7):1164–6 (discussion 1167).PubMed Gauthier S, Touchon J. Mild cognitive impairment is not a clinical entity and should not be treated. Arch Neurol. 2005;62(7):1164–6 (discussion 1167).PubMed
91.
go back to reference Trinh NH, Hoblyn J, Mohanty S, Yaffe K. Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease: a meta-analysis. JAMA. 2003;289(2):210–6.PubMed Trinh NH, Hoblyn J, Mohanty S, Yaffe K. Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease: a meta-analysis. JAMA. 2003;289(2):210–6.PubMed
92.
go back to reference Takeda A, Loveman E, Clegg A, et al. A systematic review of the clinical effectiveness of donepezil, rivastigmine and galantamine on cognition, quality of life and adverse events in Alzheimer’s disease. Int J Geriatr Psychiatry. 2006;21(1):17–28.PubMed Takeda A, Loveman E, Clegg A, et al. A systematic review of the clinical effectiveness of donepezil, rivastigmine and galantamine on cognition, quality of life and adverse events in Alzheimer’s disease. Int J Geriatr Psychiatry. 2006;21(1):17–28.PubMed
93.
go back to reference Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148(5):379–97.PubMed Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148(5):379–97.PubMed
94.
go back to reference Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol. 2007;6(9):782–92.PubMed Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol. 2007;6(9):782–92.PubMed
95.
go back to reference McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006;(2):CD003154. McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006;(2):CD003154.
96.
go back to reference Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging. 2008;3(2):211–25.PubMedCentralPubMed Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging. 2008;3(2):211–25.PubMedCentralPubMed
97.
go back to reference Ellis JM. Cholinesterase inhibitors in the treatment of dementia. J Am Osteopath Assoc. 2005;105(3):145–58.PubMed Ellis JM. Cholinesterase inhibitors in the treatment of dementia. J Am Osteopath Assoc. 2005;105(3):145–58.PubMed
98.
go back to reference Hogan DB, Goldlist B, Naglie G, Patterson C. Comparison studies of cholinesterase inhibitors for Alzheimer’s disease. Lancet Neurol. 2004;3(10):622–6.PubMed Hogan DB, Goldlist B, Naglie G, Patterson C. Comparison studies of cholinesterase inhibitors for Alzheimer’s disease. Lancet Neurol. 2004;3(10):622–6.PubMed
99.
go back to reference Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf. 1998;19(6):465–80.PubMed Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf. 1998;19(6):465–80.PubMed
100.
go back to reference Courtney C, Farrell D, Gray R, et al. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet. 2004;363(9427):2105–15.PubMed Courtney C, Farrell D, Gray R, et al. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet. 2004;363(9427):2105–15.PubMed
101.
go back to reference Schneider LS, Sano M. Current Alzheimer’s disease clinical trials: methods and placebo outcomes. Alzheimers Dement. 2009;5(5):388–97.PubMedCentralPubMed Schneider LS, Sano M. Current Alzheimer’s disease clinical trials: methods and placebo outcomes. Alzheimers Dement. 2009;5(5):388–97.PubMedCentralPubMed
102.
go back to reference Lee PE, Fischer HD, Rochon PA, et al. Published randomized controlled trials of drug therapy for dementia often lack complete data on harm. J Clin Epidemiol. 2008;61(11):1152–60.PubMed Lee PE, Fischer HD, Rochon PA, et al. Published randomized controlled trials of drug therapy for dementia often lack complete data on harm. J Clin Epidemiol. 2008;61(11):1152–60.PubMed
103.
go back to reference Rolinski M, Fox C, Maidment I, McShane R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst Rev. 2012;(3):CD006504. Rolinski M, Fox C, Maidment I, McShane R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst Rev. 2012;(3):CD006504.
104.
go back to reference Schneider LS. Assessing outcomes in Alzheimer disease. Alzheimer Dis Assoc Disord. 2001;15(Suppl 1):S8–18.PubMed Schneider LS. Assessing outcomes in Alzheimer disease. Alzheimer Dis Assoc Disord. 2001;15(Suppl 1):S8–18.PubMed
105.
go back to reference Winblad B, Kilander L, Eriksson S, et al. Donepezil in patients with severe Alzheimer’s disease: double-blind, parallel-group, placebo-controlled study. Lancet. 2006;367(9516):1057–65.PubMed Winblad B, Kilander L, Eriksson S, et al. Donepezil in patients with severe Alzheimer’s disease: double-blind, parallel-group, placebo-controlled study. Lancet. 2006;367(9516):1057–65.PubMed
106.
go back to reference Black SE, Doody R, Li H, et al. Donepezil preserves cognition and global function in patients with severe Alzheimer disease. Neurology. 2007;69(5):459–69.PubMed Black SE, Doody R, Li H, et al. Donepezil preserves cognition and global function in patients with severe Alzheimer disease. Neurology. 2007;69(5):459–69.PubMed
107.
go back to reference Homma A, Imai Y, Tago H, et al. Donepezil treatment of patients with severe Alzheimer’s disease in a Japanese population: results from a 24-week, double-blind, placebo-controlled, randomized trial. Dement Geriatr Cogn Disord. 2008;25(5):399–407.PubMed Homma A, Imai Y, Tago H, et al. Donepezil treatment of patients with severe Alzheimer’s disease in a Japanese population: results from a 24-week, double-blind, placebo-controlled, randomized trial. Dement Geriatr Cogn Disord. 2008;25(5):399–407.PubMed
108.
go back to reference Burns A, Bernabei R, Bullock R, et al. Safety and efficacy of galantamine (Reminyl) in severe Alzheimer’s disease (the SERAD study): a randomised, placebo-controlled, double-blind trial. Lancet Neurol. 2009;8(1):39–47.PubMed Burns A, Bernabei R, Bullock R, et al. Safety and efficacy of galantamine (Reminyl) in severe Alzheimer’s disease (the SERAD study): a randomised, placebo-controlled, double-blind trial. Lancet Neurol. 2009;8(1):39–47.PubMed
109.
go back to reference Feldman H, Gauthier S, Hecker J, et al. Efficacy and safety of donepezil in patients with more severe Alzheimer’s disease: a subgroup analysis from a randomized, placebo-controlled trial. Int J Geriatr Psychiatry. 2005;20(6):559–69.PubMed Feldman H, Gauthier S, Hecker J, et al. Efficacy and safety of donepezil in patients with more severe Alzheimer’s disease: a subgroup analysis from a randomized, placebo-controlled trial. Int J Geriatr Psychiatry. 2005;20(6):559–69.PubMed
110.
go back to reference Ballard C, Margallo-Lana M, Juszczak E, et al. Quetiapine and rivastigmine and cognitive decline in Alzheimer’s disease: randomised double blind placebo controlled trial. BMJ. 2005;330(7496):874.PubMedCentralPubMed Ballard C, Margallo-Lana M, Juszczak E, et al. Quetiapine and rivastigmine and cognitive decline in Alzheimer’s disease: randomised double blind placebo controlled trial. BMJ. 2005;330(7496):874.PubMedCentralPubMed
111.
go back to reference Cummings J, Jones R, Wilkinson D, et al. Effect of donepezil on cognition in severe Alzheimer’s disease: a pooled data analysis. J Alzheimers Dis. 2010;21(3):843–51.PubMed Cummings J, Jones R, Wilkinson D, et al. Effect of donepezil on cognition in severe Alzheimer’s disease: a pooled data analysis. J Alzheimers Dis. 2010;21(3):843–51.PubMed
112.
go back to reference Froelich L, Andreasen N, Tsolaki M, et al. Long-term treatment of patients with Alzheimer’s disease in primary and secondary care: results from an international survey. Curr Med Res Opin. 2009;25(12):3059–68.PubMed Froelich L, Andreasen N, Tsolaki M, et al. Long-term treatment of patients with Alzheimer’s disease in primary and secondary care: results from an international survey. Curr Med Res Opin. 2009;25(12):3059–68.PubMed
113.
go back to reference Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 2001;57(3):489–95.PubMed Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 2001;57(3):489–95.PubMed
114.
go back to reference Mohs RC, Doody RS, Morris JC, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology. 2001;57(3):481–8.PubMed Mohs RC, Doody RS, Morris JC, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology. 2001;57(3):481–8.PubMed
115.
go back to reference Hager K, Baseman AS, Nye JS, et al. Effects of galantamine in a 2-year, randomized, placebo-controlled study in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2014;10:391–401.PubMedCentralPubMed Hager K, Baseman AS, Nye JS, et al. Effects of galantamine in a 2-year, randomized, placebo-controlled study in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2014;10:391–401.PubMedCentralPubMed
116.
go back to reference Birks J, McGuinness B, Craig D. Rivastigmine for vascular cognitive impairment. Cochrane Database Syst Rev. 2013;5:CD004744.PubMed Birks J, McGuinness B, Craig D. Rivastigmine for vascular cognitive impairment. Cochrane Database Syst Rev. 2013;5:CD004744.PubMed
117.
go back to reference Pagano G, Rengo G, Pasqualetti G, et al. Cholinesterase inhibitors for Parkinson’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014. Pagano G, Rengo G, Pasqualetti G, et al. Cholinesterase inhibitors for Parkinson’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014.
118.
go back to reference Tariot PN, Cummings JL, Katz IR, et al. A randomized, double-blind, placebo-controlled study of the efficacy and safety of donepezil in patients with Alzheimer’s disease in the nursing home setting. J Am Geriatr Soc. 2001;49(12):1590–9.PubMed Tariot PN, Cummings JL, Katz IR, et al. A randomized, double-blind, placebo-controlled study of the efficacy and safety of donepezil in patients with Alzheimer’s disease in the nursing home setting. J Am Geriatr Soc. 2001;49(12):1590–9.PubMed
119.
go back to reference Thompson S, Lanctot KL, Herrmann N. The benefits and risks associated with cholinesterase inhibitor therapy in Alzheimer’s disease. Expert Opin Drug Saf. 2004;3(5):425–40.PubMed Thompson S, Lanctot KL, Herrmann N. The benefits and risks associated with cholinesterase inhibitor therapy in Alzheimer’s disease. Expert Opin Drug Saf. 2004;3(5):425–40.PubMed
120.
go back to reference Inglis F. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int J Clin Pract Suppl. 2002;127:45–63.PubMed Inglis F. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int J Clin Pract Suppl. 2002;127:45–63.PubMed
121.
go back to reference Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging. 2004;21(7):453–78.PubMed Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging. 2004;21(7):453–78.PubMed
122.
go back to reference Gauthier S. Cholinergic adverse effects of cholinesterase inhibitors in Alzheimer’s disease: epidemiology and management. Drugs Aging. 2001;18(11):853–62.PubMed Gauthier S. Cholinergic adverse effects of cholinesterase inhibitors in Alzheimer’s disease: epidemiology and management. Drugs Aging. 2001;18(11):853–62.PubMed
123.
go back to reference Corey-Bloom J, Anand R, Veach J. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild-to-moderately severe Alzheimer’s disease. Int J Geriatr Psychopharmacol. 1998;1:55–65. Corey-Bloom J, Anand R, Veach J. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild-to-moderately severe Alzheimer’s disease. Int J Geriatr Psychopharmacol. 1998;1:55–65.
124.
go back to reference Rosler M, Anand R, Cicin-Sain A, et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ. 1999;318(7184):633–8.PubMedCentralPubMed Rosler M, Anand R, Cicin-Sain A, et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ. 1999;318(7184):633–8.PubMedCentralPubMed
125.
go back to reference Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C. A, 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology. 2000;54(12):2269–76.PubMed Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C. A, 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology. 2000;54(12):2269–76.PubMed
126.
go back to reference White H, Pieper C, Schmader K. The association of weight change in Alzheimer’s disease with severity of disease and mortality: a longitudinal analysis. J Am Geriatr Soc. 1998;46(10):1223–7.PubMed White H, Pieper C, Schmader K. The association of weight change in Alzheimer’s disease with severity of disease and mortality: a longitudinal analysis. J Am Geriatr Soc. 1998;46(10):1223–7.PubMed
127.
go back to reference Keller HH, Ostbye T, Goy R. Nutritional risk predicts quality of life in elderly community-living Canadians. J Gerontol A Biol Sci Med Sci. 2004;59(1):68–74.PubMed Keller HH, Ostbye T, Goy R. Nutritional risk predicts quality of life in elderly community-living Canadians. J Gerontol A Biol Sci Med Sci. 2004;59(1):68–74.PubMed
128.
go back to reference Crogan NL, Pasvogel A. The influence of protein-calorie malnutrition on quality of life in nursing homes. J Gerontol A Biol Sci Med Sci. 2003;58(2):159–64.PubMed Crogan NL, Pasvogel A. The influence of protein-calorie malnutrition on quality of life in nursing homes. J Gerontol A Biol Sci Med Sci. 2003;58(2):159–64.PubMed
129.
go back to reference Payette H, Coulombe C, Boutier V, Gray-Donald K. Nutrition risk factors for institutionalization in a free-living functionally dependent elderly population. J Clin Epidemiol. 2000;53(6):579–87.PubMed Payette H, Coulombe C, Boutier V, Gray-Donald K. Nutrition risk factors for institutionalization in a free-living functionally dependent elderly population. J Clin Epidemiol. 2000;53(6):579–87.PubMed
130.
go back to reference Sullivan DH, Morley JE, Johnson LE, et al. The GAIN (Geriatric Anorexia Nutrition) registry: the impact of appetite and weight on mortality in a long-term care population. J Nutr Health Aging. 2002;6(4):275–81.PubMed Sullivan DH, Morley JE, Johnson LE, et al. The GAIN (Geriatric Anorexia Nutrition) registry: the impact of appetite and weight on mortality in a long-term care population. J Nutr Health Aging. 2002;6(4):275–81.PubMed
131.
go back to reference Stewart JT, Gorelik AR. Involuntary weight loss associated with cholinesterase inhibitors in dementia. J Am Geriatr Soc. 2006;54(6):1013–4.PubMed Stewart JT, Gorelik AR. Involuntary weight loss associated with cholinesterase inhibitors in dementia. J Am Geriatr Soc. 2006;54(6):1013–4.PubMed
132.
go back to reference Gallini A, Sommet A, Salandini AM, Veyssiere P, Montastruc JL, Montastruc JL. Weight-loss associated with anti-dementia drugs in a patient with Parkinson’s disease. Mov Disord. 2007;22(13):1980–1.PubMed Gallini A, Sommet A, Salandini AM, Veyssiere P, Montastruc JL, Montastruc JL. Weight-loss associated with anti-dementia drugs in a patient with Parkinson’s disease. Mov Disord. 2007;22(13):1980–1.PubMed
133.
go back to reference Dunn NR, Pearce GL, Shakir SA. Adverse effects associated with the use of donepezil in general practice in England. J Psychopharmacol. 2000;14(4):406–8.PubMed Dunn NR, Pearce GL, Shakir SA. Adverse effects associated with the use of donepezil in general practice in England. J Psychopharmacol. 2000;14(4):406–8.PubMed
134.
go back to reference Hernandez RK, Farwell W, Cantor MD, Lawler EV. Cholinesterase inhibitors and incidence of bradycardia in patients with dementia in the veterans affairs New England healthcare system. J Am Geriatr Soc. 2009;57(11):1997–2003.PubMed Hernandez RK, Farwell W, Cantor MD, Lawler EV. Cholinesterase inhibitors and incidence of bradycardia in patients with dementia in the veterans affairs New England healthcare system. J Am Geriatr Soc. 2009;57(11):1997–2003.PubMed
135.
go back to reference Park-Wyllie LY, Mamdani MM, Li P, Gill SS, Laupacis A, Juurlink DN. Cholinesterase inhibitors and hospitalization for bradycardia: a population-based study. PLoS Med. 2009;6(9):e1000157.PubMedCentralPubMed Park-Wyllie LY, Mamdani MM, Li P, Gill SS, Laupacis A, Juurlink DN. Cholinesterase inhibitors and hospitalization for bradycardia: a population-based study. PLoS Med. 2009;6(9):e1000157.PubMedCentralPubMed
136.
go back to reference Gill SS, Anderson GM, Fischer HD, et al. Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: a population-based cohort study. Arch Intern Med. 2009;169(9):867–73.PubMed Gill SS, Anderson GM, Fischer HD, et al. Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: a population-based cohort study. Arch Intern Med. 2009;169(9):867–73.PubMed
137.
go back to reference Pariente A, Sanctussy DJ, Miremont-Salame G, et al. Factors associated with serious adverse reactions to cholinesterase inhibitors: a study of spontaneous reporting. CNS Drugs. 2010;24(1):55–63.PubMed Pariente A, Sanctussy DJ, Miremont-Salame G, et al. Factors associated with serious adverse reactions to cholinesterase inhibitors: a study of spontaneous reporting. CNS Drugs. 2010;24(1):55–63.PubMed
138.
go back to reference Brignole M. Distinguishing syncopal from non-syncopal causes of fall in older people. Age Ageing. 2006;35(Suppl 2):ii46–50.PubMed Brignole M. Distinguishing syncopal from non-syncopal causes of fall in older people. Age Ageing. 2006;35(Suppl 2):ii46–50.PubMed
139.
go back to reference McIntosh S, Da Costa D, Kenny RA. Outcome of an integrated approach to the investigation of dizziness, falls and syncope in elderly patients referred to a ‘syncope’ clinic. Age Ageing. 1993;22(1):53–8.PubMed McIntosh S, Da Costa D, Kenny RA. Outcome of an integrated approach to the investigation of dizziness, falls and syncope in elderly patients referred to a ‘syncope’ clinic. Age Ageing. 1993;22(1):53–8.PubMed
140.
141.
go back to reference French DD, Campbell R, Spehar A, Cunningham F, Bulat T, Luther SL. Drugs and falls in community-dwelling older people: a national veterans study. Clin Ther. 2006;28(4):619–30.PubMed French DD, Campbell R, Spehar A, Cunningham F, Bulat T, Luther SL. Drugs and falls in community-dwelling older people: a national veterans study. Clin Ther. 2006;28(4):619–30.PubMed
142.
go back to reference Tamimi I, Ojea T, Sanchez-Siles JM, et al. Acetylcholinesterase inhibitors and the risk of hip fracture in Alzheimer’s disease patients: a case-control study. J Bone Miner Res. 2012;27(7):1518–27.PubMed Tamimi I, Ojea T, Sanchez-Siles JM, et al. Acetylcholinesterase inhibitors and the risk of hip fracture in Alzheimer’s disease patients: a case-control study. J Bone Miner Res. 2012;27(7):1518–27.PubMed
143.
go back to reference Chung KA, Lobb BM, Nutt JG, Horak FB. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology. 2010;75(14):1263–9.PubMedCentralPubMed Chung KA, Lobb BM, Nutt JG, Horak FB. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology. 2010;75(14):1263–9.PubMedCentralPubMed
144.
go back to reference Kallin K, Gustafson Y, Sandman PO, Karlsson S. Drugs and falls in older people in geriatric care settings. Aging Clin Exp Res. 2004;16(4):270–6.PubMed Kallin K, Gustafson Y, Sandman PO, Karlsson S. Drugs and falls in older people in geriatric care settings. Aging Clin Exp Res. 2004;16(4):270–6.PubMed
145.
go back to reference Tavassoli N, Sommet A, Lapeyre-Mestre M, Bagheri H, Montrastruc JL. Drug interactions with cholinesterase inhibitors: an analysis of the French pharmacovigilance database and a comparison of two national drug formularies (Vidal, British National Formulary). Drug Saf. 2007;30(11):1063–71.PubMed Tavassoli N, Sommet A, Lapeyre-Mestre M, Bagheri H, Montrastruc JL. Drug interactions with cholinesterase inhibitors: an analysis of the French pharmacovigilance database and a comparison of two national drug formularies (Vidal, British National Formulary). Drug Saf. 2007;30(11):1063–71.PubMed
146.
go back to reference Bentue-Ferrer D, Tribut O, Polard E, Allain H. Clinically significant drug interactions with cholinesterase inhibitors: a guide for neurologists. CNS Drugs. 2003;17(13):947–63.PubMed Bentue-Ferrer D, Tribut O, Polard E, Allain H. Clinically significant drug interactions with cholinesterase inhibitors: a guide for neurologists. CNS Drugs. 2003;17(13):947–63.PubMed
147.
go back to reference Seritan AL. Prevent drug-drug interactions with cholinesterase inhibitors: avoid adverse events when prescribing medications for patients with dementia. Curr Psychiatry. 2008;7(2):57–67. Seritan AL. Prevent drug-drug interactions with cholinesterase inhibitors: avoid adverse events when prescribing medications for patients with dementia. Curr Psychiatry. 2008;7(2):57–67.
148.
go back to reference Carnahan RM, Lund BC, Perry PJ, Chrischilles EA. The concurrent use of anticholinergics and cholinesterase inhibitors: rare event or common practice? J Am Geriatr Soc. 2004;52(12):2082–7.PubMed Carnahan RM, Lund BC, Perry PJ, Chrischilles EA. The concurrent use of anticholinergics and cholinesterase inhibitors: rare event or common practice? J Am Geriatr Soc. 2004;52(12):2082–7.PubMed
149.
go back to reference Roe CM, Anderson MJ, Spivack B. Use of anticholinergic medications by older adults with dementia. J Am Geriatr Soc. 2002;50(5):836–42.PubMed Roe CM, Anderson MJ, Spivack B. Use of anticholinergic medications by older adults with dementia. J Am Geriatr Soc. 2002;50(5):836–42.PubMed
150.
go back to reference Paulison B, Leos CL. Potential cardiotoxic reaction involving rivastigmine and beta-blockers: a case report and review of the literature. Cardiovasc Toxicol. 2010;10(4):306–10.PubMed Paulison B, Leos CL. Potential cardiotoxic reaction involving rivastigmine and beta-blockers: a case report and review of the literature. Cardiovasc Toxicol. 2010;10(4):306–10.PubMed
152.
go back to reference FDA approves memantine drug for treating AD. Am J Alzheimers Dis Other Demen. 2003;18(6):329–30. FDA approves memantine drug for treating AD. Am J Alzheimers Dis Other Demen. 2003;18(6):329–30.
153.
go back to reference Schneider LS, Dagerman KS, Higgins JP, McShane R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch Neurol. 2011;68(8):991–8.PubMed Schneider LS, Dagerman KS, Higgins JP, McShane R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch Neurol. 2011;68(8):991–8.PubMed
154.
go back to reference Wilcock G, Mobius HJ, Stoffler A, Group MMM. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17(6):297–305.PubMed Wilcock G, Mobius HJ, Stoffler A, Group MMM. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17(6):297–305.PubMed
155.
go back to reference Orgogozo JM, Rigaud AS, Stoffler A, Mobius HJ, Forette F. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke. 2002;33(7):1834–9.PubMed Orgogozo JM, Rigaud AS, Stoffler A, Mobius HJ, Forette F. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke. 2002;33(7):1834–9.PubMed
156.
go back to reference Emre M, Tsolaki M, Bonuccelli U, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(10):969–77.PubMed Emre M, Tsolaki M, Bonuccelli U, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(10):969–77.PubMed
157.
go back to reference Leroi I, Overshott R, Byrne EJ, Daniel E, Burns A. Randomized controlled trial of memantine in dementia associated with Parkinson’s disease. Mov Disord. 2009;24(8):1217–21.PubMed Leroi I, Overshott R, Byrne EJ, Daniel E, Burns A. Randomized controlled trial of memantine in dementia associated with Parkinson’s disease. Mov Disord. 2009;24(8):1217–21.PubMed
158.
go back to reference Aarsland D, Ballard C, Walker Z, et al. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8(7):613–8.PubMed Aarsland D, Ballard C, Walker Z, et al. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8(7):613–8.PubMed
159.
go back to reference Jones RW. A review comparing the safety and tolerability of memantine with the acetylcholinesterase inhibitors. Int J Geriatr Psychiatry. 2010;25(6):547–53.PubMed Jones RW. A review comparing the safety and tolerability of memantine with the acetylcholinesterase inhibitors. Int J Geriatr Psychiatry. 2010;25(6):547–53.PubMed
160.
go back to reference Mimica N, Presecki P. Side effects of approved antidementives. Psychiatr Danub. 2009;21(1):108–13.PubMed Mimica N, Presecki P. Side effects of approved antidementives. Psychiatr Danub. 2009;21(1):108–13.PubMed
161.
go back to reference Stahl SM. Essential psychopharmacology: the prescriber’s guide. Cambridge: Cambridge University Press; 2005. Stahl SM. Essential psychopharmacology: the prescriber’s guide. Cambridge: Cambridge University Press; 2005.
162.
go back to reference Lindsay J. Patterns of caring for people with dementia in Canada. The Canadian study of health and aging. Can J Aging. 1994;13:470–87. Lindsay J. Patterns of caring for people with dementia in Canada. The Canadian study of health and aging. Can J Aging. 1994;13:470–87.
163.
go back to reference Molino I, Colucci L, Fasanaro AM, Traini E, Amenta F. Efficacy of memantine, donepezil, or their association in moderate-severe Alzheimer’s disease: a review of clinical trials. ScientificWorldJournal. 2013;2013:925702.PubMedCentralPubMed Molino I, Colucci L, Fasanaro AM, Traini E, Amenta F. Efficacy of memantine, donepezil, or their association in moderate-severe Alzheimer’s disease: a review of clinical trials. ScientificWorldJournal. 2013;2013:925702.PubMedCentralPubMed
164.
go back to reference Shega JW, Ellner L, Lau DT, Maxwell TL. Cholinesterase inhibitor and N-methyl-d-aspartic acid receptor antagonist use in older adults with end-stage dementia: a survey of hospice medical directors. J Palliat Med. 2009;12(9):779–83.PubMedCentralPubMed Shega JW, Ellner L, Lau DT, Maxwell TL. Cholinesterase inhibitor and N-methyl-d-aspartic acid receptor antagonist use in older adults with end-stage dementia: a survey of hospice medical directors. J Palliat Med. 2009;12(9):779–83.PubMedCentralPubMed
Metadata
Title
A Risk-Benefit Assessment of Dementia Medications: Systematic Review of the Evidence
Authors
Jacob S. Buckley
Shelley R. Salpeter
Publication date
01-06-2015
Publisher
Springer International Publishing
Published in
Drugs & Aging / Issue 6/2015
Print ISSN: 1170-229X
Electronic ISSN: 1179-1969
DOI
https://doi.org/10.1007/s40266-015-0266-9

Other articles of this Issue 6/2015

Drugs & Aging 6/2015 Go to the issue