Skip to main content
Top
Published in: CNS Drugs 2/2015

01-02-2015 | Review Article

Taming Glutamate Excitotoxicity: Strategic Pathway Modulation for Neuroprotection

Authors: Ming Jia, Steve A. Noutong Njapo, Vaibhav Rastogi, Vishnumurthy Shushrutha Hedna

Published in: CNS Drugs | Issue 2/2015

Login to get access

Abstract

Much work has been carried out in recent years showing that elevated glutamate levels in the extracellular environment of the central nervous system play a pivotal role in neurodegeneration in acute CNS injuries. With the elucidation of the mechanism governing glutamate excitotoxicity, researchers are devising therapeutic strategies to target different parts of the pathway which begins with glutamate accumulation and ultimately results in neuronal cell death. In this article, we review some of the major classes of agents that are currently being investigated and highlight some of the key studies for each. Glutamate scavenging is a relatively new approach that directly decreases glutamate levels in the brain, thus preventing excitotoxicity. Nitric oxide inhibitors and free radical scavengers are more well-studied strategies that continue to yield promising results.
Literature
1.
go back to reference Teichberg V, Cohen-Kashi-Malina K, Cooper I, Zlotnik A. Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience. 2009;158(1):301–8.CrossRefPubMed Teichberg V, Cohen-Kashi-Malina K, Cooper I, Zlotnik A. Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience. 2009;158(1):301–8.CrossRefPubMed
2.
go back to reference Zauner A, Bullock R, Kuta AJ, Woodward J, Young HF. Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl. 1996;67:40–4.PubMed Zauner A, Bullock R, Kuta AJ, Woodward J, Young HF. Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl. 1996;67:40–4.PubMed
3.
go back to reference Shaw P, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration. 1995;4:209–16.CrossRefPubMed Shaw P, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration. 1995;4:209–16.CrossRefPubMed
4.
go back to reference Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, Hacke W. Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci. 1996;143:126–31.CrossRefPubMed Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, Hacke W. Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci. 1996;143:126–31.CrossRefPubMed
5.
go back to reference Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):101–5. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):101–5.
6.
go back to reference Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl). 2000;78(1):3–13.CrossRefPubMed Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl). 2000;78(1):3–13.CrossRefPubMed
7.
go back to reference Muir K. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol. 2006;6(1):53–60.CrossRefPubMed Muir K. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol. 2006;6(1):53–60.CrossRefPubMed
8.
go back to reference Benveniste H, Jørgensen MB, Diemer NH, Hansen AJ. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand. 1988;78(6):529–36.CrossRefPubMed Benveniste H, Jørgensen MB, Diemer NH, Hansen AJ. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand. 1988;78(6):529–36.CrossRefPubMed
9.
go back to reference Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol. 1989;36(1):106–12.PubMed Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol. 1989;36(1):106–12.PubMed
10.
go back to reference Castillo M, Babson J. Ca2-dependent mechanisms of cell injury in cultured cortical neurons. Neuroscience. 1998;86(4):1133–44.CrossRefPubMed Castillo M, Babson J. Ca2-dependent mechanisms of cell injury in cultured cortical neurons. Neuroscience. 1998;86(4):1133–44.CrossRefPubMed
11.
go back to reference Li S, Stys P. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse NA(+)-dependent transport in spinal cord white matter. Neuroscience. 2001;107(4):675–83.CrossRefPubMed Li S, Stys P. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse NA(+)-dependent transport in spinal cord white matter. Neuroscience. 2001;107(4):675–83.CrossRefPubMed
12.
go back to reference Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1(6):383–6.CrossRefPubMed Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1(6):383–6.CrossRefPubMed
14.
go back to reference Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron. 2003;40(2):401–13.CrossRefPubMed Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron. 2003;40(2):401–13.CrossRefPubMed
15.
16.
go back to reference Castillo J, Davalos A, Naveiro J, Noya M. Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke. 1996;27(6):1060–5.CrossRefPubMed Castillo J, Davalos A, Naveiro J, Noya M. Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke. 1996;27(6):1060–5.CrossRefPubMed
17.
go back to reference Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology. 2012;116(1):73–83.CrossRefPubMed Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, et al. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology. 2012;116(1):73–83.CrossRefPubMed
18.
go back to reference Andreadou E, Kapaki E, Kokotis P, Paraskevas GP, Katsaros N, Libitaki G, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg. 2008;110(3):222–6.CrossRefPubMed Andreadou E, Kapaki E, Kokotis P, Paraskevas GP, Katsaros N, Libitaki G, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg. 2008;110(3):222–6.CrossRefPubMed
19.
go back to reference Stojanovic IR, Kostic M, Ljubisavljevic S. The role of glutamate and its receptors in multiple sclerosis. J Neural Transm. 2014;121(8):945–55.CrossRefPubMed Stojanovic IR, Kostic M, Ljubisavljevic S. The role of glutamate and its receptors in multiple sclerosis. J Neural Transm. 2014;121(8):945–55.CrossRefPubMed
20.
go back to reference Hawkins RA, Mokashi A, Dejoseph MR, Viña JR, Fernstrom JD. Glutamate permeability at the blood-brain barrier in insulinopenic and insulin-resistant rats. Metabolism. 2010;59(2):258–66.CrossRefPubMedCentralPubMed Hawkins RA, Mokashi A, Dejoseph MR, Viña JR, Fernstrom JD. Glutamate permeability at the blood-brain barrier in insulinopenic and insulin-resistant rats. Metabolism. 2010;59(2):258–66.CrossRefPubMedCentralPubMed
21.
go back to reference O’kane RL. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier: a mechanism for glutamate removal. J Biol Chem. 1999;274(45):31891–5.CrossRefPubMed O’kane RL. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier: a mechanism for glutamate removal. J Biol Chem. 1999;274(45):31891–5.CrossRefPubMed
22.
go back to reference Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;407(6767):316–21. Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;407(6767):316–21.
23.
go back to reference Caldeira MV, Salazar IL, Curcio M, Canzoniero LM, Duarte CB. Role of the ubiquitin–proteasome system in brain ischemia: friend or foe? Prog Neurobiol. 2014;112:50–69.CrossRefPubMed Caldeira MV, Salazar IL, Curcio M, Canzoniero LM, Duarte CB. Role of the ubiquitin–proteasome system in brain ischemia: friend or foe? Prog Neurobiol. 2014;112:50–69.CrossRefPubMed
24.
go back to reference Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron. 2014;82(2):279–93.CrossRefPubMed Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron. 2014;82(2):279–93.CrossRefPubMed
25.
go back to reference Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42.CrossRefPubMed Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42.CrossRefPubMed
26.
go back to reference Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, et al. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics. 2012;9(3):649–57.CrossRefPubMedCentralPubMed Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, et al. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics. 2012;9(3):649–57.CrossRefPubMedCentralPubMed
27.
go back to reference Campos F, Sobrino T, Perez-Mato M, Rodriguez-Osorio X, Leira R, Blanco M, et al. Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients. Cephalalgia. 2013;33(14):1148–54.CrossRefPubMed Campos F, Sobrino T, Perez-Mato M, Rodriguez-Osorio X, Leira R, Blanco M, et al. Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients. Cephalalgia. 2013;33(14):1148–54.CrossRefPubMed
28.
go back to reference Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Ruban AM, Leon A, et al. The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res. 2008;33(6):1044–50.CrossRefPubMed Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Ruban AM, Leon A, et al. The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res. 2008;33(6):1044–50.CrossRefPubMed
29.
go back to reference Van Den Tweel E, Van Bel F, Kavelaars A, Peeters-Scholte C, Haumann J, Nijboer CHA, et al. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J Cereb Blood Flow Metab. 2005;25(1):67–74.CrossRefPubMed Van Den Tweel E, Van Bel F, Kavelaars A, Peeters-Scholte C, Haumann J, Nijboer CHA, et al. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J Cereb Blood Flow Metab. 2005;25(1):67–74.CrossRefPubMed
30.
go back to reference Aarts M. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002;298(5594):846–50.CrossRefPubMed Aarts M. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002;298(5594):846–50.CrossRefPubMed
31.
go back to reference Jones N. Stroke: disruption of the NNOS–PSD-95 complex is neuroprotective in models of cerebral ischemia. Nat Rev Neurol. 2011;7(2):61.CrossRefPubMed Jones N. Stroke: disruption of the NNOS–PSD-95 complex is neuroprotective in models of cerebral ischemia. Nat Rev Neurol. 2011;7(2):61.CrossRefPubMed
32.
go back to reference Zhou L, Li F, Xu H-B, Luo C-X, Wu H-Y, Zhu M-M, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of NNOS with PSD-95. Nat Med. 2010;16(12):1439–43.CrossRefPubMed Zhou L, Li F, Xu H-B, Luo C-X, Wu H-Y, Zhu M-M, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of NNOS with PSD-95. Nat Med. 2010;16(12):1439–43.CrossRefPubMed
33.
go back to reference Boyko M, Gruenbaum SE, Gruenbaum BR, Shipira Y, Zlotnik A. Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm. 2014;121(8):971–9.CrossRefPubMed Boyko M, Gruenbaum SE, Gruenbaum BR, Shipira Y, Zlotnik A. Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm. 2014;121(8):971–9.CrossRefPubMed
34.
go back to reference Lee J-M, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature. 1999;399:A7–14.CrossRefPubMed Lee J-M, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature. 1999;399:A7–14.CrossRefPubMed
35.
go back to reference Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and NA+: implications for neurodegeneration. J Neurochem. 1994;63(2):584–91.CrossRefPubMed Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and NA+: implications for neurodegeneration. J Neurochem. 1994;63(2):584–91.CrossRefPubMed
38.
go back to reference Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 2004;1(1):101–10.CrossRefPubMedCentralPubMed Lipton SA. Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 2004;1(1):101–10.CrossRefPubMedCentralPubMed
39.
go back to reference Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, et al. N-methyl-d-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem. 2010;115(6):1520–9.CrossRefPubMed Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, et al. N-methyl-d-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem. 2010;115(6):1520–9.CrossRefPubMed
40.
go back to reference De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007;282(15):11590–601.CrossRefPubMed De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007;282(15):11590–601.CrossRefPubMed
41.
go back to reference Gottlieb M, Wang Y, Teichberg VI. Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem. 2003;87(1):119–26.CrossRefPubMed Gottlieb M, Wang Y, Teichberg VI. Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem. 2003;87(1):119–26.CrossRefPubMed
42.
go back to reference Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI. Brain neuroprotection by scavenging blood glutamate. Exp Neurol. 2007;203(1):213–20.CrossRefPubMed Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI. Brain neuroprotection by scavenging blood glutamate. Exp Neurol. 2007;203(1):213–20.CrossRefPubMed
43.
go back to reference Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, et al. The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity. J Neurosurg Anesthesiol. 2009;21(3):235–41.CrossRefPubMed Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, et al. The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity. J Neurosurg Anesthesiol. 2009;21(3):235–41.CrossRefPubMed
44.
go back to reference Baker AJ, Moulton RJ, Macmillan VH, Shedden PM. Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg. 1993;79(3):369–72.CrossRefPubMed Baker AJ, Moulton RJ, Macmillan VH, Shedden PM. Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg. 1993;79(3):369–72.CrossRefPubMed
45.
go back to reference Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, Dekosky ST. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem. 1993;61(6):2015–24.CrossRefPubMed Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, Dekosky ST. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem. 1993;61(6):2015–24.CrossRefPubMed
46.
go back to reference Castillo J, Dávalos A, Noya M. Progression of ischaemic stroke and excitotoxic aminoacids. Lancet. 1997;349(9045):79–83.CrossRefPubMed Castillo J, Dávalos A, Noya M. Progression of ischaemic stroke and excitotoxic aminoacids. Lancet. 1997;349(9045):79–83.CrossRefPubMed
47.
go back to reference Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Pérez-Mato M, et al. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab. 2011;31(6):1378–86.CrossRefPubMedCentralPubMed Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Pérez-Mato M, et al. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab. 2011;31(6):1378–86.CrossRefPubMedCentralPubMed
48.
go back to reference Nagy D, Marosi M, Kis Z, Farkas T, Rakos G, Vecsei L, et al. Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex. Cell Mol Neurobiol. 2009;26(6):827–35.CrossRef Nagy D, Marosi M, Kis Z, Farkas T, Rakos G, Vecsei L, et al. Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex. Cell Mol Neurobiol. 2009;26(6):827–35.CrossRef
49.
go back to reference Pérez-Mato M, Ramos-Cabrer P, Sobrino T, Blanco M, Ruban A, Mirelman D, et al. Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia. Cell Death Dis. 2014;5(1):e992.CrossRefPubMedCentralPubMed Pérez-Mato M, Ramos-Cabrer P, Sobrino T, Blanco M, Ruban A, Mirelman D, et al. Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia. Cell Death Dis. 2014;5(1):e992.CrossRefPubMedCentralPubMed
50.
go back to reference Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Kuts R, et al. Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci. 2011;34(9):1432–41.CrossRefPubMed Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Kuts R, et al. Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci. 2011;34(9):1432–41.CrossRefPubMed
51.
go back to reference Knapp L, Gellért L, Kocsis K, Kis Z, Farkas T, Vécsei L, et al. Neuroprotective effect of oxaloacetate in a focal brain ischemic model in the rat. Cell Mol Neurobiol (Epub 8 May 2014). Knapp L, Gellért L, Kocsis K, Kis Z, Farkas T, Vécsei L, et al. Neuroprotective effect of oxaloacetate in a focal brain ischemic model in the rat. Cell Mol Neurobiol (Epub 8 May 2014).
52.
go back to reference Carvalho A, Rodrigues S, Torres LB, Persike DS, Fernandes MJS, Amado D, et al. Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats. Neurochem Int. 2011;58(3):385–90.CrossRefPubMed Carvalho A, Rodrigues S, Torres LB, Persike DS, Fernandes MJS, Amado D, et al. Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats. Neurochem Int. 2011;58(3):385–90.CrossRefPubMed
53.
go back to reference Tattersall J. Seizure activity post organophosphate exposure. Front Biosci (Landmark Ed). 2009;14:3688–711.CrossRefPubMed Tattersall J. Seizure activity post organophosphate exposure. Front Biosci (Landmark Ed). 2009;14:3688–711.CrossRefPubMed
54.
go back to reference Ruban A, Mohar B, Jona G, Teichberg VI. Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication. J Cereb Blood Flow Metab. 2014;34(2):221–7.CrossRefPubMedCentralPubMed Ruban A, Mohar B, Jona G, Teichberg VI. Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication. J Cereb Blood Flow Metab. 2014;34(2):221–7.CrossRefPubMedCentralPubMed
55.
go back to reference Rogachev B, Tsesis S, Gruenbaum BF, Gruenbaum SE, Boyko M, Klein M, et al. The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol. 2013;25(3):262–6.CrossRefPubMed Rogachev B, Tsesis S, Gruenbaum BF, Gruenbaum SE, Boyko M, Klein M, et al. The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol. 2013;25(3):262–6.CrossRefPubMed
56.
go back to reference Godino MeC, Romera VG, Sánchez-Tomero JA, Pacheco J, Canals S, Lerma J, et al. Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest. 2013;123(10):4359–63. Godino MeC, Romera VG, Sánchez-Tomero JA, Pacheco J, Canals S, Lerma J, et al. Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest. 2013;123(10):4359–63.
57.
go back to reference Srinivasan K, Sharma SS. 3-Bromo-7-nitroindazole attenuates brain ischemic injury in diabetic stroke via inhibition of endoplasmic reticulum stress pathway involving CHOP. Life Sci. 2012;90(3):154–60.CrossRefPubMed Srinivasan K, Sharma SS. 3-Bromo-7-nitroindazole attenuates brain ischemic injury in diabetic stroke via inhibition of endoplasmic reticulum stress pathway involving CHOP. Life Sci. 2012;90(3):154–60.CrossRefPubMed
58.
go back to reference Yin X-H, Yan J-Z, Hou X-Y, Wu S-L, Zhang G-Y. Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience. 2013;248:290–8.CrossRefPubMed Yin X-H, Yan J-Z, Hou X-Y, Wu S-L, Zhang G-Y. Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience. 2013;248:290–8.CrossRefPubMed
59.
go back to reference Lu A, Wagner KR, Broderick JP, Clark JF. Administration of S-methyl-l-thiocitrulline protects against brain injuries after intracerebral hemorrhage. Neuroscience. 2014;270:40–7.CrossRefPubMed Lu A, Wagner KR, Broderick JP, Clark JF. Administration of S-methyl-l-thiocitrulline protects against brain injuries after intracerebral hemorrhage. Neuroscience. 2014;270:40–7.CrossRefPubMed
60.
go back to reference Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483(7388):213–7.CrossRefPubMed Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483(7388):213–7.CrossRefPubMed
61.
go back to reference Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–88.CrossRefPubMed Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–88.CrossRefPubMed
62.
go back to reference Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C. Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci. 2012;13(12):11753–72.CrossRefPubMedCentralPubMed Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C. Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci. 2012;13(12):11753–72.CrossRefPubMedCentralPubMed
63.
go back to reference Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother. 2010;11(10):1753–63.CrossRefPubMedCentralPubMed Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother. 2010;11(10):1753–63.CrossRefPubMedCentralPubMed
64.
go back to reference Fan J, Long H, Li Y, Liu Y, Zhou W, Li Q, et al. Edaravone protects against glutamate-induced PERK/EIF2α/ATF4 integrated stress response and activation of caspase-12. Brain Res. 2013;1519:1–8.CrossRefPubMed Fan J, Long H, Li Y, Liu Y, Zhou W, Li Q, et al. Edaravone protects against glutamate-induced PERK/EIF2α/ATF4 integrated stress response and activation of caspase-12. Brain Res. 2013;1519:1–8.CrossRefPubMed
65.
go back to reference Feng S, Yang Q, Liu M, Li W, Yuan W, Zhang S, et al. Edaravone for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;(12):CD007230. Feng S, Yang Q, Liu M, Li W, Yuan W, Zhang S, et al. Edaravone for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;(12):CD007230.
66.
go back to reference Yang J, Liu M, Zhou J, Zhang S, Lin S, Zhao H. Edaravone for acute intracerebral haemorrhage. Cochrane Database Syst Rev. 2011;(2):CD007755. Yang J, Liu M, Zhou J, Zhang S, Lin S, Zhao H. Edaravone for acute intracerebral haemorrhage. Cochrane Database Syst Rev. 2011;(2):CD007755.
67.
go back to reference Otomo E. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 2003;15(3):222–9.CrossRef Otomo E. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 2003;15(3):222–9.CrossRef
68.
go back to reference Inatomi Y, Takita T, Yonehara T, Fujioka S, Hashimoto Y, Hirano T, et al. Efficacy of edaravone in cardioembolic stroke. Int Med. 2006;45(5):253–7.CrossRef Inatomi Y, Takita T, Yonehara T, Fujioka S, Hashimoto Y, Hirano T, et al. Efficacy of edaravone in cardioembolic stroke. Int Med. 2006;45(5):253–7.CrossRef
69.
go back to reference Mishina M, Komaba Y, Kobayashi S, Tanaka N, Kominami S, Fukuchi T, et al. Efficacy of edaravone, a free radical scavenger, for the treatment of acute lacunar infarction. Neurol Med Chir. 2005;45(7):344–8.CrossRef Mishina M, Komaba Y, Kobayashi S, Tanaka N, Kominami S, Fukuchi T, et al. Efficacy of edaravone, a free radical scavenger, for the treatment of acute lacunar infarction. Neurol Med Chir. 2005;45(7):344–8.CrossRef
70.
go back to reference Ohta Y, Takamatsu K, Fukushima T, Ikegami S, Takeda I, Ota T, et al. Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Int Med. 2009;48(8):593–6.CrossRef Ohta Y, Takamatsu K, Fukushima T, Ikegami S, Takeda I, Ota T, et al. Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Int Med. 2009;48(8):593–6.CrossRef
71.
go back to reference Abe M, Kaizu K, Matsumoto K. A case report of acute renal failure and fulminant hepatitis associated with edaravone administration in a cerebral infarction patient. Ther Apher Dial. 2007;11(3):235–40.CrossRefPubMed Abe M, Kaizu K, Matsumoto K. A case report of acute renal failure and fulminant hepatitis associated with edaravone administration in a cerebral infarction patient. Ther Apher Dial. 2007;11(3):235–40.CrossRefPubMed
72.
go back to reference Hishida A. Clinical analysis of 207 patients who developed renal disorders during or after treatment with edaravone reported during post-marketing surveillance. Clin Exper Nephrol. 2007;11(4):292–6.CrossRef Hishida A. Clinical analysis of 207 patients who developed renal disorders during or after treatment with edaravone reported during post-marketing surveillance. Clin Exper Nephrol. 2007;11(4):292–6.CrossRef
73.
go back to reference Kano T, Harada T, Hirayama T, Katayama Y. Combination therapy using TPA and edaravone improves the neurotoxic effect of TPA. Interv Neuroradiol. 2007;13:106–8.PubMedCentralPubMed Kano T, Harada T, Hirayama T, Katayama Y. Combination therapy using TPA and edaravone improves the neurotoxic effect of TPA. Interv Neuroradiol. 2007;13:106–8.PubMedCentralPubMed
74.
go back to reference Parnham MJ, Sies H. The early research and development of ebselen. Biochem Pharmacol. 2013;86(9):1248–53.CrossRefPubMed Parnham MJ, Sies H. The early research and development of ebselen. Biochem Pharmacol. 2013;86(9):1248–53.CrossRefPubMed
75.
go back to reference Seo JY, Lee CH, Cho JH, Choi JH, Yoo K-Y, Kim DW, et al. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J Neurol Sci. 2009;285(1):88–94.CrossRefPubMed Seo JY, Lee CH, Cho JH, Choi JH, Yoo K-Y, Kim DW, et al. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J Neurol Sci. 2009;285(1):88–94.CrossRefPubMed
76.
go back to reference Kalayci M, Coskun O, Cagavi F, Kanter M, Armutcu F, Gul S, et al. Neuroprotective effects of ebselen on experimental spinal cord injury in rats. Neurochem Res. 2005;30(3):403–10.CrossRefPubMed Kalayci M, Coskun O, Cagavi F, Kanter M, Armutcu F, Gul S, et al. Neuroprotective effects of ebselen on experimental spinal cord injury in rats. Neurochem Res. 2005;30(3):403–10.CrossRefPubMed
77.
go back to reference Koizumi H, Fujisawa H, Suehiro E, Shirao S, Suzuki M. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide. Neurol Med Chir. 2011;51(5):337–43.CrossRef Koizumi H, Fujisawa H, Suehiro E, Shirao S, Suzuki M. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide. Neurol Med Chir. 2011;51(5):337–43.CrossRef
78.
go back to reference Mazzanti CM, Spanevello R, Ahmed M, Pereira LB, Gonçalves JF, Corrêa M, et al. Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int J Dev Neurosci. 2009;27(1):73–80.CrossRefPubMed Mazzanti CM, Spanevello R, Ahmed M, Pereira LB, Gonçalves JF, Corrêa M, et al. Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int J Dev Neurosci. 2009;27(1):73–80.CrossRefPubMed
79.
go back to reference Porciúncula LO, Rocha JBT, Boeck CR, Vendite D, Souza DO. Ebselen prevents excitotoxicity provoked by glutamate in rat cerebellar granule neurons. Neurosci Lett. 2001;299(3):217–20.CrossRefPubMed Porciúncula LO, Rocha JBT, Boeck CR, Vendite D, Souza DO. Ebselen prevents excitotoxicity provoked by glutamate in rat cerebellar granule neurons. Neurosci Lett. 2001;299(3):217–20.CrossRefPubMed
80.
go back to reference Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, et al. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Stroke. 1998;29(1):12–7.CrossRefPubMed Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, et al. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Stroke. 1998;29(1):12–7.CrossRefPubMed
81.
go back to reference Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, et al. Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis. 1999;9(2):112–8.CrossRefPubMed Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, et al. Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis. 1999;9(2):112–8.CrossRefPubMed
82.
go back to reference Mason RP, Casu M, Butler N, Breda C, Campesan S, Clapp J, et al. Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat Genet. 2013;45(10):1249–54.CrossRefPubMedCentralPubMed Mason RP, Casu M, Butler N, Breda C, Campesan S, Clapp J, et al. Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat Genet. 2013;45(10):1249–54.CrossRefPubMedCentralPubMed
83.
go back to reference Wei L, Zhang Y, Yang C, Wang Q, Zhuang Z, Sun Z. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and P38 mitogen-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol. 2014;41(2):134–8.CrossRefPubMed Wei L, Zhang Y, Yang C, Wang Q, Zhuang Z, Sun Z. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and P38 mitogen-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol. 2014;41(2):134–8.CrossRefPubMed
84.
go back to reference Wu J, Li Q, Wang X, Yu S, Li L, Wu X, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One. 2013;8(3):e59843.CrossRefPubMedCentralPubMed Wu J, Li Q, Wang X, Yu S, Li L, Wu X, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One. 2013;8(3):e59843.CrossRefPubMedCentralPubMed
85.
go back to reference Kuo C-P, Lu C-H, Wen L-L, Cherng C-H, Wong C-S, Borel CO, et al. Neuroprotective effect of curcumin in an experimental rat model of subarachnoid hemorrhage. Anesthesiology. 2011;115(6):1229–38.PubMed Kuo C-P, Lu C-H, Wen L-L, Cherng C-H, Wong C-S, Borel CO, et al. Neuroprotective effect of curcumin in an experimental rat model of subarachnoid hemorrhage. Anesthesiology. 2011;115(6):1229–38.PubMed
86.
go back to reference Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, et al. Curcumin inhibits TLR2/4-NF-κB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation. 2014;37(5):1544–51.CrossRefPubMed Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, et al. Curcumin inhibits TLR2/4-NF-κB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation. 2014;37(5):1544–51.CrossRefPubMed
87.
88.
go back to reference Ballaz S, Morales I, Rodríguez M, Obeso JA. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res. 2013;91(12):1609–17.CrossRefPubMed Ballaz S, Morales I, Rodríguez M, Obeso JA. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res. 2013;91(12):1609–17.CrossRefPubMed
89.
go back to reference Katnik C, Cuevas J. Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox. Int J Mol Sci. 2014;15(3):3596–611.CrossRefPubMedCentralPubMed Katnik C, Cuevas J. Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox. Int J Mol Sci. 2014;15(3):3596–611.CrossRefPubMedCentralPubMed
Metadata
Title
Taming Glutamate Excitotoxicity: Strategic Pathway Modulation for Neuroprotection
Authors
Ming Jia
Steve A. Noutong Njapo
Vaibhav Rastogi
Vishnumurthy Shushrutha Hedna
Publication date
01-02-2015
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 2/2015
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-015-0225-3

Other articles of this Issue 2/2015

CNS Drugs 2/2015 Go to the issue