Skip to main content
Top
Published in: Clinical Pharmacokinetics 9/2020

01-09-2020 | Prostate Cancer | Original Research Article

Pharmacokinetic Drug–Drug Interaction of Apalutamide, Part 1: Clinical Studies in Healthy Men and Patients with Castration-Resistant Prostate Cancer

Authors: Ignacio Duran, Joan Carles, Iurie Bulat, Peter Hellemans, Anna Mitselos, Peter Ward, James Jiao, Danielle Armas, Caly Chien

Published in: Clinical Pharmacokinetics | Issue 9/2020

Login to get access

Abstract

Background and Objectives

Two phase I studies assessed the drug–drug interaction potential of apalutamide as a substrate and perpetrator.

Methods

Study A randomized 45 healthy men to single-dose apalutamide 240 mg alone or with strong inhibitors of cytochrome P450 (CYP)3A4 (itraconazole) or CYP2C8 (gemfibrozil). In study B, 23 patients with castration-resistant prostate cancer received probes for CYP3A4 (midazolam), CYP2C9 (warfarin), CYP2C19 (omeprazole), and CYP2C8 (pioglitazone), and transporter substrates for P-glycoprotein (P-gp) (fexofenadine) and breast cancer resistance protein (BCRP)/organic anion transporting polypeptide (OATP) 1B1 (rosuvastatin) at baseline and after repeat once-daily administration of apalutamide 240 mg to steady state.

Results

Systemic exposure (area under the plasma concentration–time curve) to single-dose apalutamide increased 68% with gemfibrozil but was relatively unchanged with itraconazole (study A). Apalutamide reduced systemic exposure to midazolam ↓92%, omeprazole ↓85%, S-warfarin ↓46%, fexofenadine ↓30%, rosuvastatin ↓41%, and pioglitazone ↓18% (study B). After a single dose, apalutamide is predominantly metabolized by CYP2C8, and less by CYP3A4.

Conclusions

Co-administration of apalutamide with CYP3A4, CYP2C19, CYP2C9, P-gp, BCRP or OATP1B1 substrates may cause loss of activity for these medications. Therefore, appropriate mitigation strategies are recommended.
Appendix
Available only for authorised users
Literature
1.
go back to reference Erleada (apalutamide) [prescribing information]. Horsham (PA): Janssen Pharmaceutical Companies; 2019. Erleada (apalutamide) [prescribing information]. Horsham (PA): Janssen Pharmaceutical Companies; 2019.
3.
go back to reference Smith MR, Saad F, Chowdhury S, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med. 2018;378(15):1408–18.CrossRef Smith MR, Saad F, Chowdhury S, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med. 2018;378(15):1408–18.CrossRef
4.
go back to reference Chi KN, Agarwal N, Bjartell A, et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 2019;381(1):13–24.CrossRef Chi KN, Agarwal N, Bjartell A, et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 2019;381(1):13–24.CrossRef
5.
go back to reference De Vries R, Jacobs F, Mannens G, Snoeys J, Cuyckens F, Chien C, Ward P. Apalutamide absorption, metabolism, and excretion in healthy men, and enzyme reaction in human hepatocytes. Drug Metab Dispos. 2019;47(5):453–64.CrossRef De Vries R, Jacobs F, Mannens G, Snoeys J, Cuyckens F, Chien C, Ward P. Apalutamide absorption, metabolism, and excretion in healthy men, and enzyme reaction in human hepatocytes. Drug Metab Dispos. 2019;47(5):453–64.CrossRef
6.
go back to reference Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics. 2009;10(9):1489–510.CrossRef Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics. 2009;10(9):1489–510.CrossRef
7.
go back to reference Tian D, Hu Z. CYP3A4-mediated pharmacokinetic interactions in cancer therapy. Curr Drug Metab. 2014;15(8):808–17.CrossRef Tian D, Hu Z. CYP3A4-mediated pharmacokinetic interactions in cancer therapy. Curr Drug Metab. 2014;15(8):808–17.CrossRef
9.
go back to reference MacLeod AK, McLaughlin LA, Henderson CJ, Wolf CR. Activation status of the pregnane X receptor (PXR) influences vemurafenib availability in humanized mouse models. Cancer Res. 2015;75(21):4573–81.CrossRef MacLeod AK, McLaughlin LA, Henderson CJ, Wolf CR. Activation status of the pregnane X receptor (PXR) influences vemurafenib availability in humanized mouse models. Cancer Res. 2015;75(21):4573–81.CrossRef
10.
go back to reference Juurlink D. Revisiting the drug interaction between tamoxifen and SSRI antidepressants. BMJ. 2016;354:i5309.CrossRef Juurlink D. Revisiting the drug interaction between tamoxifen and SSRI antidepressants. BMJ. 2016;354:i5309.CrossRef
11.
go back to reference Honkalammi J, Niemi M, Neuvonen PJ, Backman JT. Gemfibrozil is a strong inactivator of CYP2C8 in very small multiple doses. Clin Pharmacol Ther. 2012;91(5):846–55.CrossRef Honkalammi J, Niemi M, Neuvonen PJ, Backman JT. Gemfibrozil is a strong inactivator of CYP2C8 in very small multiple doses. Clin Pharmacol Ther. 2012;91(5):846–55.CrossRef
12.
go back to reference Shimizu M, Uno T, Sugawara K, Tateishi T. Effects of single and multiple doses of itraconazole on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol. 2006;62(3):372–6.CrossRef Shimizu M, Uno T, Sugawara K, Tateishi T. Effects of single and multiple doses of itraconazole on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol. 2006;62(3):372–6.CrossRef
13.
go back to reference Belderbos BPSI, de Wit R, Chien C, et al. An open-label, multicenter, phase Ib study investigating the effect of apalutamide on ventricular repolarization in men with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 2018;82(3):457–68.CrossRef Belderbos BPSI, de Wit R, Chien C, et al. An open-label, multicenter, phase Ib study investigating the effect of apalutamide on ventricular repolarization in men with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 2018;82(3):457–68.CrossRef
14.
go back to reference Smith MR, Rathkopf DE, Mulders PF, et al. Efficacy and safety of abiraterone acetate in elderly (75 years or older) chemotherapy naïve patients with metastatic castration resistant prostate cancer. J Urol. 2015;194(5):1277–84.CrossRef Smith MR, Rathkopf DE, Mulders PF, et al. Efficacy and safety of abiraterone acetate in elderly (75 years or older) chemotherapy naïve patients with metastatic castration resistant prostate cancer. J Urol. 2015;194(5):1277–84.CrossRef
15.
go back to reference Bonnet C, Boudou-Rouquette P, Azoulay-Rutman E, et al. Potential drug-drug interactions with abiraterone in metastatic castration-resistant prostate cancer patients: a prevalence study in France. Cancer Chemother Pharmacol. 2017;79(5):1051–5.CrossRef Bonnet C, Boudou-Rouquette P, Azoulay-Rutman E, et al. Potential drug-drug interactions with abiraterone in metastatic castration-resistant prostate cancer patients: a prevalence study in France. Cancer Chemother Pharmacol. 2017;79(5):1051–5.CrossRef
16.
go back to reference Jamani R, Lee EK, Berry SR, et al. High prevalence of potential drug–drug interactions in patients with castration-resistant prostate cancer treated with abiraterone acetate. Eur J Clin Pharmacol. 2016;72(11):1391–9.CrossRef Jamani R, Lee EK, Berry SR, et al. High prevalence of potential drug–drug interactions in patients with castration-resistant prostate cancer treated with abiraterone acetate. Eur J Clin Pharmacol. 2016;72(11):1391–9.CrossRef
17.
go back to reference Hyland R, Osborne T, Payne A, et al. In vitro and in vivo glucuronidation of midazolam in humans. Br J Clin Pharmacol. 2009;67(4):445–54.CrossRef Hyland R, Osborne T, Payne A, et al. In vitro and in vivo glucuronidation of midazolam in humans. Br J Clin Pharmacol. 2009;67(4):445–54.CrossRef
18.
go back to reference Eap CB, Buclin T, Cucchia G, et al. Oral administration of a low dose of midazolam (75 μg) as an in vivo probe for CYP3A activity. Eur J Clin Pharmacol. 2004;60(4):237–46.PubMed Eap CB, Buclin T, Cucchia G, et al. Oral administration of a low dose of midazolam (75 μg) as an in vivo probe for CYP3A activity. Eur J Clin Pharmacol. 2004;60(4):237–46.PubMed
19.
go back to reference Link B, Haschke M, Grignaschi N, et al. Pharmacokinetics of intravenous and oral midazolam in plasma and saliva in humans: usefulness of saliva as matrix for CYP3A phenotyping. Br J Clin Pharmacol. 2008;66(4):473–84.CrossRef Link B, Haschke M, Grignaschi N, et al. Pharmacokinetics of intravenous and oral midazolam in plasma and saliva in humans: usefulness of saliva as matrix for CYP3A phenotyping. Br J Clin Pharmacol. 2008;66(4):473–84.CrossRef
20.
go back to reference Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto KT. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet. 2003;42(9):819–50.CrossRef Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto KT. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet. 2003;42(9):819–50.CrossRef
21.
go back to reference Andersson T. Pharmacokinetics, metabolism and interactions of acid pump inhibitors. Focus on omeprazole, lansoprazole and pantoprazole. Clin Pharmacokinet. 1996;31(1):9–28.CrossRef Andersson T. Pharmacokinetics, metabolism and interactions of acid pump inhibitors. Focus on omeprazole, lansoprazole and pantoprazole. Clin Pharmacokinet. 1996;31(1):9–28.CrossRef
22.
go back to reference Andersson T, Miners JO, Veronese ME, Birkett DJ. Identification of human liver cytochrome P450 isoforms mediating secondary omeprazole metabolism. Br J Clin Pharmacol. 1994;37(6):597–604.CrossRef Andersson T, Miners JO, Veronese ME, Birkett DJ. Identification of human liver cytochrome P450 isoforms mediating secondary omeprazole metabolism. Br J Clin Pharmacol. 1994;37(6):597–604.CrossRef
23.
go back to reference Park GJ, Bae SH, Park WS, et al. Drug-drug interaction of microdose and regular-dose omeprazole with a CYP2C19 inhibitor and inducer. Drug Des Dev Ther. 2017;11:1043–53.CrossRef Park GJ, Bae SH, Park WS, et al. Drug-drug interaction of microdose and regular-dose omeprazole with a CYP2C19 inhibitor and inducer. Drug Des Dev Ther. 2017;11:1043–53.CrossRef
24.
go back to reference Coumadin [prescribing information]. Princeton: Bristol-Myers Squibb Company; 2016. Coumadin [prescribing information]. Princeton: Bristol-Myers Squibb Company; 2016.
25.
go back to reference Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67–74.CrossRef Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67–74.CrossRef
26.
go back to reference Yamazaki H, Shimada T. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem Pharmacol. 1997;54(11):1195–203.CrossRef Yamazaki H, Shimada T. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem Pharmacol. 1997;54(11):1195–203.CrossRef
27.
go back to reference Heimark LD, Gibaldi M, Trager WF, O’Reilly RA, Goulart DA. The mechanism of the warfarin-rifampin drug interaction in humans. Clin Pharmacol Ther. 1987;42(4):388–94.CrossRef Heimark LD, Gibaldi M, Trager WF, O’Reilly RA, Goulart DA. The mechanism of the warfarin-rifampin drug interaction in humans. Clin Pharmacol Ther. 1987;42(4):388–94.CrossRef
28.
go back to reference Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–71.PubMed Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–71.PubMed
29.
go back to reference Allegra [prescribing information]. Bridgewater: Sanofi-Aventis U.S. LLC; 2007. Allegra [prescribing information]. Bridgewater: Sanofi-Aventis U.S. LLC; 2007.
30.
go back to reference Hamman MA, Bruce MA, Haehner-Daniels BD, Hall SD. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther. 2001;69(3):114–21.CrossRef Hamman MA, Bruce MA, Haehner-Daniels BD, Hall SD. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther. 2001;69(3):114–21.CrossRef
31.
go back to reference Jaakkola T, Laitila J, Neuvonen PJ, Backman JT. Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: potential for interactions with CYP2C8 inhibitors. Basic Clin Pharmacol Toxicol. 2006;99(1):44–51.CrossRef Jaakkola T, Laitila J, Neuvonen PJ, Backman JT. Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: potential for interactions with CYP2C8 inhibitors. Basic Clin Pharmacol Toxicol. 2006;99(1):44–51.CrossRef
32.
go back to reference Jaakkola T, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ. Effect of rifampicin on the pharmacokinetics of pioglitazone. Br J Clin Pharmacol. 2006;61(1):70–8.CrossRef Jaakkola T, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ. Effect of rifampicin on the pharmacokinetics of pioglitazone. Br J Clin Pharmacol. 2006;61(1):70–8.CrossRef
33.
go back to reference Zhang W, Deng S, Chen XP, et al. Pharmacokinetics of rosuvastatin when coadministered with rifampicin in healthy males: a randomized, single-blind, placebo-controlled, crossover study. Clin Ther. 2008;30(7):1283–9.CrossRef Zhang W, Deng S, Chen XP, et al. Pharmacokinetics of rosuvastatin when coadministered with rifampicin in healthy males: a randomized, single-blind, placebo-controlled, crossover study. Clin Ther. 2008;30(7):1283–9.CrossRef
Metadata
Title
Pharmacokinetic Drug–Drug Interaction of Apalutamide, Part 1: Clinical Studies in Healthy Men and Patients with Castration-Resistant Prostate Cancer
Authors
Ignacio Duran
Joan Carles
Iurie Bulat
Peter Hellemans
Anna Mitselos
Peter Ward
James Jiao
Danielle Armas
Caly Chien
Publication date
01-09-2020
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 9/2020
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-020-00882-2

Other articles of this Issue 9/2020

Clinical Pharmacokinetics 9/2020 Go to the issue