Skip to main content
Top
Published in: Clinical Pharmacokinetics 8/2019

01-08-2019 | Pharmacokinetics | Review Article

Revisiting the Pharmacology of Unfractionated Heparin

Authors: Abdallah Derbalah, Stephen Duffull, Fiona Newall, Katie Moynihan, Hesham Al-Sallami

Published in: Clinical Pharmacokinetics | Issue 8/2019

Login to get access

Abstract

Unfractionated heparin (UFH) is a commonly used anticoagulant therapy for the acute treatment and prevention of thrombosis. Its short duration of action, reversibility of effect by protamine sulfate, and extensive clinical experience are some of the advantages that support its use. However, the choice of dose and dosing regimen of UFH remains challenging for several reasons. First, UFH has a narrow therapeutic window and wide variability in the dose–response relationship. Second, its pharmacodynamic (PD) properties are difficult to characterise owing to the complex multidimensional mechanisms of interaction with the haemostatic system. Third, the complex heterogeneous chemical composition of UFH precludes precise characterisation of its pharmacokinetic (PK) properties. This review provides a comprehensive mechanistic approach to the interaction of UFH with the haemostatic system. The effect of chemical structure on its PK and PD properties is quantitatively described, and a framework for characterisation of the dose–response relationship of UFH for the purpose of dose optimisation is proposed.
Literature
1.
go back to reference Jacqmin P, Snoeck E, van Schaick EA, Gieschke R, Pillai P, Steimer J-L, et al. Modelling response time profiles in the absence of drug concentrations: definition and performance evaluation of the K-PD model. J Pharmacokinet Pharmacodyn. 2007;34(1):57–85.CrossRefPubMed Jacqmin P, Snoeck E, van Schaick EA, Gieschke R, Pillai P, Steimer J-L, et al. Modelling response time profiles in the absence of drug concentrations: definition and performance evaluation of the K-PD model. J Pharmacokinet Pharmacodyn. 2007;34(1):57–85.CrossRefPubMed
2.
go back to reference Gabrielsson J, Jusko WJ, Alari L. Modeling of dose-response-time data: four examples of estimating the turnover parameters and generating kinetic functions from response profiles. Biopharm Drug Dispos. 2000;21(2):41–52.CrossRefPubMed Gabrielsson J, Jusko WJ, Alari L. Modeling of dose-response-time data: four examples of estimating the turnover parameters and generating kinetic functions from response profiles. Biopharm Drug Dispos. 2000;21(2):41–52.CrossRefPubMed
3.
4.
go back to reference Al-Sallami H, Newall F, Monagle P, Ignjatovic V, Cranswick N, Duffull S. Development of a population pharmacokinetic–pharmacodynamic model of a single bolus dose of unfractionated heparin in paediatric patients. Br J Clin Pharmacol. 2016;82(1):178–84.CrossRefPubMedPubMedCentral Al-Sallami H, Newall F, Monagle P, Ignjatovic V, Cranswick N, Duffull S. Development of a population pharmacokinetic–pharmacodynamic model of a single bolus dose of unfractionated heparin in paediatric patients. Br J Clin Pharmacol. 2016;82(1):178–84.CrossRefPubMedPubMedCentral
5.
go back to reference Jia Z, Tian G, Ren Y, Sun Z, Lu W, Hou X. Pharmacokinetic model of unfractionated heparin during and after cardiopulmonary bypass in cardiac surgery. J Transl Med. 2015;13(1):45.CrossRefPubMedPubMedCentral Jia Z, Tian G, Ren Y, Sun Z, Lu W, Hou X. Pharmacokinetic model of unfractionated heparin during and after cardiopulmonary bypass in cardiac surgery. J Transl Med. 2015;13(1):45.CrossRefPubMedPubMedCentral
6.
go back to reference Delavenne X, Ollier E, Chollet S, Sandri F, Lanoiselée J, Hodin S, et al. Pharmacokinetic/pharmacodynamic model for unfractionated heparin dosing during cardiopulmonary bypass. Br J Anaesth. 2017;118(5):705–12.CrossRefPubMed Delavenne X, Ollier E, Chollet S, Sandri F, Lanoiselée J, Hodin S, et al. Pharmacokinetic/pharmacodynamic model for unfractionated heparin dosing during cardiopulmonary bypass. Br J Anaesth. 2017;118(5):705–12.CrossRefPubMed
7.
go back to reference Brunet P, Simon N, Opris A, Faure V, Lorec-Penet AM, Portugal H, et al. Pharmacodynamics of unfractionated heparin during and after a hemodialysis session. Am J Kidney Dis. 2008;51(5):789–95.CrossRefPubMed Brunet P, Simon N, Opris A, Faure V, Lorec-Penet AM, Portugal H, et al. Pharmacodynamics of unfractionated heparin during and after a hemodialysis session. Am J Kidney Dis. 2008;51(5):789–95.CrossRefPubMed
8.
go back to reference Bonate PL. The art of modeling. Pharmacokinetic–pharmacodynamic modeling and simulation. Boston: Springer US; 2011. p. 1–60.CrossRef Bonate PL. The art of modeling. Pharmacokinetic–pharmacodynamic modeling and simulation. Boston: Springer US; 2011. p. 1–60.CrossRef
9.
go back to reference Wajima T, Isbister GK, Duffull SB. A comprehensive model for the humoral coagulation network in humans. Clin Pharmacol Ther. 2009;86(3):290–8.CrossRefPubMed Wajima T, Isbister GK, Duffull SB. A comprehensive model for the humoral coagulation network in humans. Clin Pharmacol Ther. 2009;86(3):290–8.CrossRefPubMed
10.
go back to reference Hoffman MM, Monroe DM. Rethinking the coagulation cascade. Curr Hematol Rep. 2005;4(5):391–6.PubMed Hoffman MM, Monroe DM. Rethinking the coagulation cascade. Curr Hematol Rep. 2005;4(5):391–6.PubMed
11.
go back to reference Rosenberg RD. Role of heparin and heparinlike molecules in thrombosis and atherosclerosis. Fed Proc. 1985;44(2):404–9.PubMed Rosenberg RD. Role of heparin and heparinlike molecules in thrombosis and atherosclerosis. Fed Proc. 1985;44(2):404–9.PubMed
12.
go back to reference Morawitz P. Die Chemie der Blutgerinnung. Ergebnisse der Physiologie. 1905;4(1):307–422.CrossRef Morawitz P. Die Chemie der Blutgerinnung. Ergebnisse der Physiologie. 1905;4(1):307–422.CrossRef
13.
go back to reference Brinkhous KM, Smith HP, Warner ED, Seegers WH. The inhibition of blood clotting: an unidentified substance which acts in conjunction with heparin to prevent the conversion of prothrombin into thrombin. Am J Physiol Legacy Content. 1939;125(4):683–7.CrossRef Brinkhous KM, Smith HP, Warner ED, Seegers WH. The inhibition of blood clotting: an unidentified substance which acts in conjunction with heparin to prevent the conversion of prothrombin into thrombin. Am J Physiol Legacy Content. 1939;125(4):683–7.CrossRef
15.
go back to reference Gerendas M. Inactivation and stabilization of thrombin. Hung Acta Physiol. 1948;1(4–5):97–115.PubMed Gerendas M. Inactivation and stabilization of thrombin. Hung Acta Physiol. 1948;1(4–5):97–115.PubMed
16.
go back to reference Owen WG. Evidence for the formation of an ester between thrombin and heparin cofactor. Biochim Biophys Acta (BBA) Protein Struct. 1975;405(2):380–7.CrossRef Owen WG. Evidence for the formation of an ester between thrombin and heparin cofactor. Biochim Biophys Acta (BBA) Protein Struct. 1975;405(2):380–7.CrossRef
17.
go back to reference Carlson TH. Clearance of thrombin in vivo: significance of alternative pathways. Mol Cell Biochem. 1986;71(2):97–105.CrossRefPubMed Carlson TH. Clearance of thrombin in vivo: significance of alternative pathways. Mol Cell Biochem. 1986;71(2):97–105.CrossRefPubMed
18.
go back to reference Bock SC. Antithrombin and the Serpin Family. In: Marder VJA, Bennett WC, Schulman JS, White S, Gilbert C, editors. Hemostasis and thrombosis: basic principles and clinical practice. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 286–99. Bock SC. Antithrombin and the Serpin Family. In: Marder VJA, Bennett WC, Schulman JS, White S, Gilbert C, editors. Hemostasis and thrombosis: basic principles and clinical practice. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 286–99.
19.
go back to reference Jesty J. The kinetics of inhibition of thrombin by antithrombin in the presence of components of the hemostatic system. Blood. 1985;66(5):1189–95.PubMed Jesty J. The kinetics of inhibition of thrombin by antithrombin in the presence of components of the hemostatic system. Blood. 1985;66(5):1189–95.PubMed
20.
go back to reference Maaroufi RM, Jozefowicz M, Tapon-Bretaudière J, Fischer A-M. Mechanism of thrombin inhibition by antithrombin and heparin cofactor II in the presence of heparin. Biomaterials. 1997;18(3):203–11.CrossRefPubMed Maaroufi RM, Jozefowicz M, Tapon-Bretaudière J, Fischer A-M. Mechanism of thrombin inhibition by antithrombin and heparin cofactor II in the presence of heparin. Biomaterials. 1997;18(3):203–11.CrossRefPubMed
21.
go back to reference Downing MR, Bloom JW, Mann KG. Comparison of the inhibition of thrombin by three plasma protease inhibitors. Biochemistry. 1978;17(13):2649–53.CrossRefPubMed Downing MR, Bloom JW, Mann KG. Comparison of the inhibition of thrombin by three plasma protease inhibitors. Biochemistry. 1978;17(13):2649–53.CrossRefPubMed
22.
go back to reference Olson ST, Bjork I, Sheffer R, Craig PA, Shore JD, Choay J. Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem. 1992;267(18):12528–38.PubMed Olson ST, Bjork I, Sheffer R, Craig PA, Shore JD, Choay J. Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem. 1992;267(18):12528–38.PubMed
23.
go back to reference Jesty J. Measurement of the kinetics of inhibition of activated coagulation factor X in human plasma: The effect of plasma and inhibitor concentration. Anal Biochem. 1986;152(2):402–11.CrossRefPubMed Jesty J. Measurement of the kinetics of inhibition of activated coagulation factor X in human plasma: The effect of plasma and inhibitor concentration. Anal Biochem. 1986;152(2):402–11.CrossRefPubMed
24.
go back to reference Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem. 1980;255(21):10081–90.PubMed Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem. 1980;255(21):10081–90.PubMed
25.
go back to reference Scott CF, Schapira M, James HL, Cohen AB, Colman RW. Inactivation of factor XIa by plasma protease inhibitors: predominant role of alpha 1-protease inhibitor and protective effect of high molecular weight kininogen. J Clin Investig. 1982;69(4):844–52.CrossRefPubMed Scott CF, Schapira M, James HL, Cohen AB, Colman RW. Inactivation of factor XIa by plasma protease inhibitors: predominant role of alpha 1-protease inhibitor and protective effect of high molecular weight kininogen. J Clin Investig. 1982;69(4):844–52.CrossRefPubMed
26.
go back to reference Pixley R, Schapira M, Colman R. Effect of heparin on the inactivation rate of human activated factor XII by antithrombin III. Blood. 1985;66(1):198–203.PubMed Pixley R, Schapira M, Colman R. Effect of heparin on the inactivation rate of human activated factor XII by antithrombin III. Blood. 1985;66(1):198–203.PubMed
27.
go back to reference Conard J, Brosstad F, Lie Larsen M, Samama M, Abildgaard U. Molar antithrombin concentration in normal human plasma. Haemostasis. 1983;13(6):363–8.PubMed Conard J, Brosstad F, Lie Larsen M, Samama M, Abildgaard U. Molar antithrombin concentration in normal human plasma. Haemostasis. 1983;13(6):363–8.PubMed
28.
go back to reference Collen D, Schetz J, de Cock F, Holmer E, Verstraete M. Metabolism of antithrombin III (heparin cofactor) in man: effects of venous thrombosis and of heparin administration. Eur J Clin Investig. 1977;7(1):27–35.CrossRef Collen D, Schetz J, de Cock F, Holmer E, Verstraete M. Metabolism of antithrombin III (heparin cofactor) in man: effects of venous thrombosis and of heparin administration. Eur J Clin Investig. 1977;7(1):27–35.CrossRef
29.
go back to reference Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165–72.PubMed Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165–72.PubMed
30.
go back to reference Lu W, Mant T, Levy JH, Bailey JM. Pharmacokinetics of recombinant transgenic antithrombin in volunteers. Anesth Analg. 2000;90(3):531–4.CrossRefPubMed Lu W, Mant T, Levy JH, Bailey JM. Pharmacokinetics of recombinant transgenic antithrombin in volunteers. Anesth Analg. 2000;90(3):531–4.CrossRefPubMed
31.
go back to reference Moffett BS, Diaz R, Galati M, Mahoney D, Teruya J, Yee DL. Population pharmacokinetics of human antithrombin concentrate in paediatric patients. Br J Clin Pharmacol. 2017;83(11):2450–7.CrossRefPubMedPubMedCentral Moffett BS, Diaz R, Galati M, Mahoney D, Teruya J, Yee DL. Population pharmacokinetics of human antithrombin concentrate in paediatric patients. Br J Clin Pharmacol. 2017;83(11):2450–7.CrossRefPubMedPubMedCentral
32.
go back to reference DeJongh J, Frieling J, Lowry S, Drenth H-J. Pharmacokinetics of recombinant human antithrombin in delivery and surgery patients with hereditary antithrombin deficiency. Clin Appl Thromb Hemost. 2013;20(4):355–64.CrossRefPubMed DeJongh J, Frieling J, Lowry S, Drenth H-J. Pharmacokinetics of recombinant human antithrombin in delivery and surgery patients with hereditary antithrombin deficiency. Clin Appl Thromb Hemost. 2013;20(4):355–64.CrossRefPubMed
33.
go back to reference Lam LSL, Regoeczi E, Hatton MWC. In vivo behaviour of some antithrombin III–protease complexes. Br J Exp Pathol. 1979;60(2):151–60.PubMedPubMedCentral Lam LSL, Regoeczi E, Hatton MWC. In vivo behaviour of some antithrombin III–protease complexes. Br J Exp Pathol. 1979;60(2):151–60.PubMedPubMedCentral
34.
go back to reference Esposito RA, Culliford AT, Colvin SB, Thomas SJ, Lackner H, Spencer FC. Heparin resistance during cardiopulmonary bypass. The role of heparin pretreatment. J Thorac Cardiovasc Surg. 1983;85(3):346–53.PubMed Esposito RA, Culliford AT, Colvin SB, Thomas SJ, Lackner H, Spencer FC. Heparin resistance during cardiopulmonary bypass. The role of heparin pretreatment. J Thorac Cardiovasc Surg. 1983;85(3):346–53.PubMed
35.
go back to reference Porter P, Porter MC, Shanberge JN. Heparin cofactor and plasma antithrombin in relation to the mechanism of inactivation of thrombin by heparin. Clin Chim Acta. 1967;17(2):189–200.CrossRefPubMed Porter P, Porter MC, Shanberge JN. Heparin cofactor and plasma antithrombin in relation to the mechanism of inactivation of thrombin by heparin. Clin Chim Acta. 1967;17(2):189–200.CrossRefPubMed
36.
go back to reference Sie P, Dupouy D, Pichon J, Boneu B. Constitutional heparin co-factor II deficiency associated with recurrent thrombosis. Lancet. 1985;2(8452):414–6.CrossRefPubMed Sie P, Dupouy D, Pichon J, Boneu B. Constitutional heparin co-factor II deficiency associated with recurrent thrombosis. Lancet. 1985;2(8452):414–6.CrossRefPubMed
37.
go back to reference Tran TH, Duckert F. Heparin cofactor II determination–levels in normals and patients with hereditary antithrombin III deficiency and disseminated intravascular coagulation. Thromb Haemost. 1984;52(2):112–6.PubMed Tran TH, Duckert F. Heparin cofactor II determination–levels in normals and patients with hereditary antithrombin III deficiency and disseminated intravascular coagulation. Thromb Haemost. 1984;52(2):112–6.PubMed
38.
go back to reference Baglin TP, Carrell RW, Church FC, Esmon CT, Huntington JA. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci. 2002;99(17):11079–84.CrossRefPubMed Baglin TP, Carrell RW, Church FC, Esmon CT, Huntington JA. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci. 2002;99(17):11079–84.CrossRefPubMed
39.
go back to reference Tovar AMF, de Mattos DA, Stelling MP, Sarcinelli-Luz BSL, Nazareth RA, Mourão PAS. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: Implications for a possible physiological function of heparin cofactor II. Biochim Biophys Acta (BBA) Mol Basis Dis. 2005;1740(1):45–53.CrossRef Tovar AMF, de Mattos DA, Stelling MP, Sarcinelli-Luz BSL, Nazareth RA, Mourão PAS. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: Implications for a possible physiological function of heparin cofactor II. Biochim Biophys Acta (BBA) Mol Basis Dis. 2005;1740(1):45–53.CrossRef
40.
go back to reference Vinazzer H. Heparin cofactor II: structure, function, and clinical importance. In: Sas G, editor. The biology of antithrombins. Boca Raton: CRC Press; 1990. p. 141–55. Vinazzer H. Heparin cofactor II: structure, function, and clinical importance. In: Sas G, editor. The biology of antithrombins. Boca Raton: CRC Press; 1990. p. 141–55.
41.
go back to reference O’Keeffe D, Olson ST, Gasiunas N, Gallagher J, Baglin TP, Huntington JA. The heparin binding properties of heparin cofactor II suggest an antithrombin-like activation mechanism. J Biol Chem. 2004;279(48):50267–73.CrossRefPubMed O’Keeffe D, Olson ST, Gasiunas N, Gallagher J, Baglin TP, Huntington JA. The heparin binding properties of heparin cofactor II suggest an antithrombin-like activation mechanism. J Biol Chem. 2004;279(48):50267–73.CrossRefPubMed
42.
go back to reference Sie P, Dupouy D, Pichon J, Boneu B. Turnover study of heparin cofactor II in healthy man. Thromb Haemost. 1985;54(3):635–8.CrossRefPubMed Sie P, Dupouy D, Pichon J, Boneu B. Turnover study of heparin cofactor II in healthy man. Thromb Haemost. 1985;54(3):635–8.CrossRefPubMed
44.
go back to reference Oduah EI, Linhardt RJ, Sharfstein ST. Heparin: past, present, and future. Pharmaceuticals (Basel). 2016;9(3):38.CrossRef Oduah EI, Linhardt RJ, Sharfstein ST. Heparin: past, present, and future. Pharmaceuticals (Basel). 2016;9(3):38.CrossRef
45.
go back to reference Nader HB, Chavante SF, dos-Santos EA, Oliveira TW, de-Paiva JF, Jeronimo SM, et al. Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Braz J Med Biol Res. 1999;32(5):529–38.CrossRefPubMed Nader HB, Chavante SF, dos-Santos EA, Oliveira TW, de-Paiva JF, Jeronimo SM, et al. Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Braz J Med Biol Res. 1999;32(5):529–38.CrossRefPubMed
46.
go back to reference Rodén L, Ananth S, Campbell P, Curenton T, Ekborg G, Manzella S, et al. Heparin—an introduction. In: Lane DA, Björk I, Lindahl U, editors. Heparin and related polysaccharides. Boston: Springer US; 1992. p. 1–20. Rodén L, Ananth S, Campbell P, Curenton T, Ekborg G, Manzella S, et al. Heparin—an introduction. In: Lane DA, Björk I, Lindahl U, editors. Heparin and related polysaccharides. Boston: Springer US; 1992. p. 1–20.
47.
go back to reference Bianchini P, Liverani L, Mascellani G, Parma B. Heterogeneity of unfractionated heparins studied in connection with species, source, and production processes. Semin Thromb Hemost. 1997;23(1):3–10.CrossRefPubMed Bianchini P, Liverani L, Mascellani G, Parma B. Heterogeneity of unfractionated heparins studied in connection with species, source, and production processes. Semin Thromb Hemost. 1997;23(1):3–10.CrossRefPubMed
48.
go back to reference Mulloy B, Hogwood J, Gray E. Assays and reference materials for current and future applications of heparins. Biologicals. 2010;38(4):459–66.CrossRefPubMed Mulloy B, Hogwood J, Gray E. Assays and reference materials for current and future applications of heparins. Biologicals. 2010;38(4):459–66.CrossRefPubMed
49.
go back to reference Tovar AM, Santos GR, Capille NV, Piquet AA, Glauser BF, Pereira MS, et al. Structural and haemostatic features of pharmaceutical heparins from different animal sources: challenges to define thresholds separating distinct drugs. Sci Rep. 2016;6:35619.CrossRefPubMedPubMedCentral Tovar AM, Santos GR, Capille NV, Piquet AA, Glauser BF, Pereira MS, et al. Structural and haemostatic features of pharmaceutical heparins from different animal sources: challenges to define thresholds separating distinct drugs. Sci Rep. 2016;6:35619.CrossRefPubMedPubMedCentral
50.
go back to reference Rohatgi A. WebPlotDigitizer. 4.1 ed., Austin; 2018. Rohatgi A. WebPlotDigitizer. 4.1 ed., Austin; 2018.
51.
go back to reference Hogwood J, Mulloy B, Gray E. Precipitation and neutralization of heparin from different sources by protamine sulfate. Pharmaceuticals (Basel). 2017;10(3):E59.CrossRef Hogwood J, Mulloy B, Gray E. Precipitation and neutralization of heparin from different sources by protamine sulfate. Pharmaceuticals (Basel). 2017;10(3):E59.CrossRef
52.
go back to reference Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun. 1976;69(2):570–7.CrossRefPubMed Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun. 1976;69(2):570–7.CrossRefPubMed
53.
go back to reference Hook M, Bjork I, Hopwood J, Lindahl U. Anticoagulant activity of heparin: separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin. FEBS Lett. 1976;66(1):90–3.CrossRefPubMed Hook M, Bjork I, Hopwood J, Lindahl U. Anticoagulant activity of heparin: separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin. FEBS Lett. 1976;66(1):90–3.CrossRefPubMed
54.
go back to reference Andersson LO, Barrowcliffe TW, Holmer E, Johnson EA, Sims GE. Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin iii and by gel filtration. Thromb Res. 1976;9(6):575–83.CrossRefPubMed Andersson LO, Barrowcliffe TW, Holmer E, Johnson EA, Sims GE. Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin iii and by gel filtration. Thromb Res. 1976;9(6):575–83.CrossRefPubMed
55.
go back to reference Olson ST, Srinivasan KR, Bjork I, Shore JD. Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction. J Biol Chem. 1981;256(21):11073–9.PubMed Olson ST, Srinivasan KR, Bjork I, Shore JD. Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction. J Biol Chem. 1981;256(21):11073–9.PubMed
56.
go back to reference Rosenberg RD, Jordan RE, Favreau LV, Lam LH. Highly active heparin species with multiple binding sites for antithrombin. Biochem Biophys Res Commun. 1979;86(4):1319–24.CrossRefPubMed Rosenberg RD, Jordan RE, Favreau LV, Lam LH. Highly active heparin species with multiple binding sites for antithrombin. Biochem Biophys Res Commun. 1979;86(4):1319–24.CrossRefPubMed
57.
go back to reference Olson ST, Shore JD. Demonstration of a two-step reaction mechanism for inhibition of alpha-thrombin by antithrombin III and identification of the step affected by heparin. J Biol Chem. 1982;257(24):14891–5.PubMed Olson ST, Shore JD. Demonstration of a two-step reaction mechanism for inhibition of alpha-thrombin by antithrombin III and identification of the step affected by heparin. J Biol Chem. 1982;257(24):14891–5.PubMed
58.
go back to reference Craig PA, Olson ST, Shore JD. Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Characterization of assembly, product formation, and heparin dissociation steps in the factor Xa reaction. J Biol Chem. 1989;264(10):5452–61.PubMed Craig PA, Olson ST, Shore JD. Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Characterization of assembly, product formation, and heparin dissociation steps in the factor Xa reaction. J Biol Chem. 1989;264(10):5452–61.PubMed
59.
go back to reference Scott C, Colman R. Factors influencing the acceleration of human factor XIa inactivation by antithrombin III. Blood. 1989;73(7):1873–9.PubMed Scott C, Colman R. Factors influencing the acceleration of human factor XIa inactivation by antithrombin III. Blood. 1989;73(7):1873–9.PubMed
60.
go back to reference Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA. 1997;94(26):14683–8.CrossRefPubMed Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA. 1997;94(26):14683–8.CrossRefPubMed
61.
go back to reference Olson ST, Bjork I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin–thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991;266(10):6353–64.PubMed Olson ST, Bjork I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin–thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991;266(10):6353–64.PubMed
62.
go back to reference Holmer E, Lindahl U, Bäckström G, Thunberg L, Sandberg H, Söderström G, et al. Anticoagulant activities and effects on platelets of a heparin fragment with high affinity for antithrombin. Thromb Res. 1980;18(6):861–9.CrossRefPubMed Holmer E, Lindahl U, Bäckström G, Thunberg L, Sandberg H, Söderström G, et al. Anticoagulant activities and effects on platelets of a heparin fragment with high affinity for antithrombin. Thromb Res. 1980;18(6):861–9.CrossRefPubMed
63.
go back to reference Holmer E, Kurachi K, Soderstrom G. The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, factor Xa, factor IXa, factor XIa, factor XIIa and kallikrein by antithrombin. Biochem J. 1981;193(2):395–400.CrossRefPubMedPubMedCentral Holmer E, Kurachi K, Soderstrom G. The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, factor Xa, factor IXa, factor XIa, factor XIIa and kallikrein by antithrombin. Biochem J. 1981;193(2):395–400.CrossRefPubMedPubMedCentral
64.
65.
go back to reference Hoylaerts M, Owen WG, Collen D. Involvement of heparin chain length in the heparin-catalyzed inhibition of thrombin by antithrombin III. J Biol Chem. 1984;259(9):5670–7.PubMed Hoylaerts M, Owen WG, Collen D. Involvement of heparin chain length in the heparin-catalyzed inhibition of thrombin by antithrombin III. J Biol Chem. 1984;259(9):5670–7.PubMed
66.
go back to reference Scully MF, Ellis V, Kakkar VV. Comparison of the molecular mass dependency of heparin stimulation of heparin cofactor II:thrombin interaction to antithrombin III:thrombin interaction. Thromb Res. 1987;46(3):491–502.CrossRefPubMed Scully MF, Ellis V, Kakkar VV. Comparison of the molecular mass dependency of heparin stimulation of heparin cofactor II:thrombin interaction to antithrombin III:thrombin interaction. Thromb Res. 1987;46(3):491–502.CrossRefPubMed
67.
go back to reference Griffith MJ. Kinetics of the heparin-enhanced antithrombin III/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J Biol Chem. 1982;257(13):7360–5.PubMed Griffith MJ. Kinetics of the heparin-enhanced antithrombin III/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J Biol Chem. 1982;257(13):7360–5.PubMed
68.
go back to reference Machovich R. Mechanism of action of heparin through thrombin on blood coagulation. Biochim Biophys Acta. 1975;412(1):13–7.CrossRefPubMed Machovich R. Mechanism of action of heparin through thrombin on blood coagulation. Biochim Biophys Acta. 1975;412(1):13–7.CrossRefPubMed
69.
go back to reference Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The binding of low molecular weight heparin to hemostatic enzymes. J Biol Chem. 1980;255(21):10073–80.PubMed Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The binding of low molecular weight heparin to hemostatic enzymes. J Biol Chem. 1980;255(21):10073–80.PubMed
70.
go back to reference Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem. 1980;255(21):10081–90.PubMed Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem. 1980;255(21):10081–90.PubMed
71.
go back to reference Sie P, Petitou M, Lormeau JC, Dupouy D, Boneu B, Choay J. Studies on the structural requirements of heparin for the catalysis of thrombin inhibition by heparin cofactor II. Biochim Biophys Acta. 1988;966(2):188–95.CrossRefPubMed Sie P, Petitou M, Lormeau JC, Dupouy D, Boneu B, Choay J. Studies on the structural requirements of heparin for the catalysis of thrombin inhibition by heparin cofactor II. Biochim Biophys Acta. 1988;966(2):188–95.CrossRefPubMed
72.
go back to reference Petitou M, Lormeau JC, Perly B, Berthault P, Bossennec V, Sie P, et al. Is there a unique sequence in heparin for interaction with heparin cofactor II? Structural and biological studies of heparin-derived oligosaccharides. J Biol Chem. 1988;263(18):8685–90.PubMed Petitou M, Lormeau JC, Perly B, Berthault P, Bossennec V, Sie P, et al. Is there a unique sequence in heparin for interaction with heparin cofactor II? Structural and biological studies of heparin-derived oligosaccharides. J Biol Chem. 1988;263(18):8685–90.PubMed
73.
go back to reference Sheehan JP, Tollefsen DM, Sadler JE. Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans. J Biol Chem. 1994;269(52):32747–51.PubMed Sheehan JP, Tollefsen DM, Sadler JE. Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans. J Biol Chem. 1994;269(52):32747–51.PubMed
74.
go back to reference Baglin TP, Carrell RW, Church FC, Esmon CT, Huntington JA. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci USA. 2002;99(17):11079–84.CrossRefPubMed Baglin TP, Carrell RW, Church FC, Esmon CT, Huntington JA. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci USA. 2002;99(17):11079–84.CrossRefPubMed
75.
go back to reference Tollefsen DM, Majerus DW, Blank MK. Heparin cofactor II. Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma. J Biol Chem. 1982;257(5):2162–9.PubMed Tollefsen DM, Majerus DW, Blank MK. Heparin cofactor II. Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma. J Biol Chem. 1982;257(5):2162–9.PubMed
76.
go back to reference Monagle P, Berry L, O’Brodovich H, Andrew M, Chan A. Covalent heparin cofactor II-heparin and heparin cofactor II-dermatan sulfate complexes. Characterization of novel anticoagulants. J Biol Chem. 1998;273(50):33566–71.CrossRefPubMed Monagle P, Berry L, O’Brodovich H, Andrew M, Chan A. Covalent heparin cofactor II-heparin and heparin cofactor II-dermatan sulfate complexes. Characterization of novel anticoagulants. J Biol Chem. 1998;273(50):33566–71.CrossRefPubMed
77.
go back to reference Abildgaard U, Lindahl AK, Sandset PM. Heparin requires both antithrombin and extrinsic pathway inhibitor for its anticoagulant effect in human blood. Haemostasis. 1991;21(4):254–7.PubMed Abildgaard U, Lindahl AK, Sandset PM. Heparin requires both antithrombin and extrinsic pathway inhibitor for its anticoagulant effect in human blood. Haemostasis. 1991;21(4):254–7.PubMed
78.
go back to reference Hansen JB, Sandset PM, Huseby KR, Huseby NE, Nordoy A. Depletion of intravascular pools of tissue factor pathway inhibitor (TFPI) during repeated or continuous intravenous infusion of heparin in man. Thromb Haemost. 1996;76(5):703–9.CrossRefPubMed Hansen JB, Sandset PM, Huseby KR, Huseby NE, Nordoy A. Depletion of intravascular pools of tissue factor pathway inhibitor (TFPI) during repeated or continuous intravenous infusion of heparin in man. Thromb Haemost. 1996;76(5):703–9.CrossRefPubMed
79.
go back to reference Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP. The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood. 1988;71(2):335–43.PubMed Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP. The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood. 1988;71(2):335–43.PubMed
80.
go back to reference Jesty J, Wun TC, Lorenz A. Kinetics of the inhibition of factor Xa and the tissue factor-factor VIIa complex by the tissue factor pathway inhibitor in the presence and absence of heparin. Biochemistry. 1994;33(42):12686–94.CrossRefPubMed Jesty J, Wun TC, Lorenz A. Kinetics of the inhibition of factor Xa and the tissue factor-factor VIIa complex by the tissue factor pathway inhibitor in the presence and absence of heparin. Biochemistry. 1994;33(42):12686–94.CrossRefPubMed
81.
go back to reference Hirsh J, Raschke R. Heparin and low-molecular-weight heparin: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126(3 Suppl):188S–203S.CrossRefPubMed Hirsh J, Raschke R. Heparin and low-molecular-weight heparin: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126(3 Suppl):188S–203S.CrossRefPubMed
82.
go back to reference Francis JL, Groce JB. Challenges in variation and responsiveness of unfractionated heparin. Pharmacotherapy. 2004;24(8P2):108S–19S.CrossRefPubMed Francis JL, Groce JB. Challenges in variation and responsiveness of unfractionated heparin. Pharmacotherapy. 2004;24(8P2):108S–19S.CrossRefPubMed
83.
go back to reference Kuhle S, Eulmesekian P, Kavanagh B, Massicotte P, Vegh P, Lau A, et al. Lack of correlation between heparin dose and standard clinical monitoring tests in treatment with unfractionated heparin in critically ill children. Haematologica. 2007;92(4):554–7.CrossRefPubMed Kuhle S, Eulmesekian P, Kavanagh B, Massicotte P, Vegh P, Lau A, et al. Lack of correlation between heparin dose and standard clinical monitoring tests in treatment with unfractionated heparin in critically ill children. Haematologica. 2007;92(4):554–7.CrossRefPubMed
84.
go back to reference Moynihan K, Johnson K, Straney L, Stocker C, Anderson B, Venugopal P, et al. Coagulation monitoring correlation with heparin dose in pediatric extracorporeal life support. Perfusion. 2017;32(8):675–85.CrossRefPubMed Moynihan K, Johnson K, Straney L, Stocker C, Anderson B, Venugopal P, et al. Coagulation monitoring correlation with heparin dose in pediatric extracorporeal life support. Perfusion. 2017;32(8):675–85.CrossRefPubMed
87.
go back to reference Crowther MA, Berry LR, Monagle PT, Chan AK. Mechanisms responsible for the failure of protamine to inactivate low-molecular-weight heparin. Br J Haematol. 2002;116(1):178–86.CrossRefPubMed Crowther MA, Berry LR, Monagle PT, Chan AK. Mechanisms responsible for the failure of protamine to inactivate low-molecular-weight heparin. Br J Haematol. 2002;116(1):178–86.CrossRefPubMed
88.
go back to reference Ramamurthy N, Baliga N, Wakefield TW, Andrews PC, Yang VC, Meyerhoff ME. Determination of low-molecular-weight heparins and their binding to protamine and a protamine analog using polyion-sensitive membrane electrodes. Anal Biochem. 1999;266(1):116–24.CrossRefPubMed Ramamurthy N, Baliga N, Wakefield TW, Andrews PC, Yang VC, Meyerhoff ME. Determination of low-molecular-weight heparins and their binding to protamine and a protamine analog using polyion-sensitive membrane electrodes. Anal Biochem. 1999;266(1):116–24.CrossRefPubMed
89.
go back to reference Ignjatovic V, Summerhayes R, Gan A, Than J, Chan A, Cochrane A, et al. Monitoring unfractionated heparin (UFH) therapy: which anti factor Xa assay is appropriate? Thromb Res. 2007;120(3):347–51.CrossRefPubMed Ignjatovic V, Summerhayes R, Gan A, Than J, Chan A, Cochrane A, et al. Monitoring unfractionated heparin (UFH) therapy: which anti factor Xa assay is appropriate? Thromb Res. 2007;120(3):347–51.CrossRefPubMed
90.
go back to reference Bromfield SM, Barnard A, Posocco P, Fermeglia M, Pricl S, Smith DK. Mallard blue: a high-affinity selective heparin sensor that operates in highly competitive media. J Am Chem Soc. 2013;135(8):2911–4.CrossRefPubMed Bromfield SM, Barnard A, Posocco P, Fermeglia M, Pricl S, Smith DK. Mallard blue: a high-affinity selective heparin sensor that operates in highly competitive media. J Am Chem Soc. 2013;135(8):2911–4.CrossRefPubMed
91.
go back to reference Warttinger U, Giese C, Harenberg J, Holmer E, Kramer R. A fluorescent probe assay (Heparin Red) for direct detection of heparins in human plasma. Anal Bioanal Chem. 2016;408(28):8241–51.CrossRefPubMed Warttinger U, Giese C, Harenberg J, Holmer E, Kramer R. A fluorescent probe assay (Heparin Red) for direct detection of heparins in human plasma. Anal Bioanal Chem. 2016;408(28):8241–51.CrossRefPubMed
92.
go back to reference Li G, Yang B, Li L, Zhang F, Xue C, Linhardt RJ. Analysis of 3-O-sulfo group-containing heparin tetrasaccharides in heparin by liquid chromatography-mass spectrometry. Anal Biochem. 2014;455:3–9.CrossRefPubMedPubMedCentral Li G, Yang B, Li L, Zhang F, Xue C, Linhardt RJ. Analysis of 3-O-sulfo group-containing heparin tetrasaccharides in heparin by liquid chromatography-mass spectrometry. Anal Biochem. 2014;455:3–9.CrossRefPubMedPubMedCentral
93.
go back to reference Yoshimi Y, Yagisawa Y, Yamaguchi R, Seki M. Blood heparin sensor made from a paste electrode of graphite particles grafted with molecularly imprinted polymer. Sensors Actuators B Chem. 2018;259:455–62.CrossRef Yoshimi Y, Yagisawa Y, Yamaguchi R, Seki M. Blood heparin sensor made from a paste electrode of graphite particles grafted with molecularly imprinted polymer. Sensors Actuators B Chem. 2018;259:455–62.CrossRef
94.
go back to reference Barzu T, Molho P, Tobelem G, Petitou M, Caen J. Binding and endocytosis of heparin by human endothelial cells in culture. Biochim Biophys Acta. 1985;845(2):196–203.CrossRefPubMed Barzu T, Molho P, Tobelem G, Petitou M, Caen J. Binding and endocytosis of heparin by human endothelial cells in culture. Biochim Biophys Acta. 1985;845(2):196–203.CrossRefPubMed
95.
go back to reference Jaques L, Napke E, Levy S. The metachromatic activity of urine following the injection of heparin. Circ Res. 1953;1(4):321–30.CrossRefPubMed Jaques L, Napke E, Levy S. The metachromatic activity of urine following the injection of heparin. Circ Res. 1953;1(4):321–30.CrossRefPubMed
96.
go back to reference Bjornsson TD, Wolfram KM, Kitchell BB. Heparin kinetics determined by three assay methods. Clin Pharmacol Ther. 1982;31(1):104–13.CrossRefPubMed Bjornsson TD, Wolfram KM, Kitchell BB. Heparin kinetics determined by three assay methods. Clin Pharmacol Ther. 1982;31(1):104–13.CrossRefPubMed
97.
go back to reference Bjornsson TD, Levy G. Pharmacokinetics of heparin. II. Studies of time dependence in rats. J Pharmacol Exp Ther. 1979;210(2):243–6.PubMed Bjornsson TD, Levy G. Pharmacokinetics of heparin. II. Studies of time dependence in rats. J Pharmacol Exp Ther. 1979;210(2):243–6.PubMed
98.
go back to reference Boneu B, Caranobe C, Sie P. Pharmacokinetics of heparin and low molecular weight heparin. Baillieres Clin Haematol. 1990;3(3):531–44.CrossRefPubMed Boneu B, Caranobe C, Sie P. Pharmacokinetics of heparin and low molecular weight heparin. Baillieres Clin Haematol. 1990;3(3):531–44.CrossRefPubMed
99.
go back to reference McAvoy TJ. Pharmacokinetic modeling of heparin and its clinical implications. J Pharmacokinet Biopharm. 1979;7(4):331–54.CrossRefPubMed McAvoy TJ. Pharmacokinetic modeling of heparin and its clinical implications. J Pharmacokinet Biopharm. 1979;7(4):331–54.CrossRefPubMed
100.
go back to reference Edward Conrad H. Heparin-binding proteins in hemostasis, Chapter 8. In: Edward Conrad H, editor. Heparin-binding proteins. San Diego: Academic Press; 1998. p. 239–300.CrossRef Edward Conrad H. Heparin-binding proteins in hemostasis, Chapter 8. In: Edward Conrad H, editor. Heparin-binding proteins. San Diego: Academic Press; 1998. p. 239–300.CrossRef
101.
go back to reference Young E, Prins M, Levine MN, Hirsh J. Heparin binding to plasma proteins, an important mechanism for heparin resistance. Thromb Haemost. 1992;67(6):639–43.CrossRefPubMed Young E, Prins M, Levine MN, Hirsh J. Heparin binding to plasma proteins, an important mechanism for heparin resistance. Thromb Haemost. 1992;67(6):639–43.CrossRefPubMed
102.
go back to reference Lijnen HR, Hoylaerts M, Collen D. Heparin binding properties of human histidine-rich glycoprotein. Mechanism and role in the neutralization of heparin in plasma. J Biol Chem. 1983;258(6):3803–8.PubMed Lijnen HR, Hoylaerts M, Collen D. Heparin binding properties of human histidine-rich glycoprotein. Mechanism and role in the neutralization of heparin in plasma. J Biol Chem. 1983;258(6):3803–8.PubMed
Metadata
Title
Revisiting the Pharmacology of Unfractionated Heparin
Authors
Abdallah Derbalah
Stephen Duffull
Fiona Newall
Katie Moynihan
Hesham Al-Sallami
Publication date
01-08-2019
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 8/2019
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-019-00751-7

Other articles of this Issue 8/2019

Clinical Pharmacokinetics 8/2019 Go to the issue