Skip to main content
Top
Published in: Clinical Pharmacokinetics 8/2019

01-08-2019 | Pharmacokinetics | Original Research Article

Differences in Warfarin Pharmacodynamics and Predictors of Response Among Three Racial Populations

Authors: Minami Ohara, Yasuhiko Suzuki, Saki Shinohara, Inna Y. Gong, Crystal L. Schmerk, Rommel G. Tirona, Ute I. Schwarz, Ming-Shien Wen, Ming Ta Michael Lee, Kiyoshi Mihara, Edith A. Nutescu, Minoli A. Perera, Larisa H. Cavallari, Richard B. Kim, Harumi Takahashi

Published in: Clinical Pharmacokinetics | Issue 8/2019

Login to get access

Abstract

Background

Population differences in warfarin dosing requirement have been reported; however, unlike the pharmacokinetics (PK) of warfarin, the quantitative influences of pharmacodynamic (PD) factors on the anticoagulation response to warfarin in different ethnic populations are totally unknown.

Methods

Using population PK/PD analysis, we attempted to identify predictors of S-warfarin clearance [CL(S)] and half maximal effective concentration (EC50) to quantify racial differences in both PK and PD parameters, and to assess the contribution of these parameters to the international normalized ratio (INR) and over-anticoagulation response (INR ≥ 4) in a cohort of 309 White, Asian and African American patients.

Results

Similar to our previous findings, the median CL(S) was 30% lower in African American patients than Asian and White patients (169 vs. 243 and 234 mL/h, p < 0.01). EC50 showed a greater racial difference than CL(S) [1.03, 1.70 and 2.76 μg/mL for Asian, White and African American patients, respectively, p < 0.01). Significant predictors of INR included demographic/clinical (age, body weight, creatinine clearance and sex) and genotypic (CYP2C9*3,*8 and VKORC1 −1639G>A) factors, as well as African American ethnicity. In all three racial groups, genetic predictors of INR appeared to have greater influence than demographic/clinical predictors. Both CL(S) and EC50 contributed to the over-anticoagulation response to warfarin. Patients having VKORC1 −1639 G>A and/or factors associated with reduced CYP2C9 activity were more likely to have an INR ≥ 4.

Conclusions

Although there were contrasting racial differences in CL(S) and EC50 that impacted on the INR, the racial difference in EC50 was greater than that for CL(S), thus explaining the higher warfarin requirement for African American patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod H, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285–93.CrossRefPubMed Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod H, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285–93.CrossRefPubMed
2.
go back to reference Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genom. 2006;16:101–10.CrossRef Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genom. 2006;16:101–10.CrossRef
3.
go back to reference Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113:784–92.CrossRefPubMedPubMedCentral Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113:784–92.CrossRefPubMedPubMedCentral
4.
go back to reference Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84:326–31.CrossRefPubMed Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84:326–31.CrossRefPubMed
5.
go back to reference The International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–64.CrossRefPubMedCentral The International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–64.CrossRefPubMedCentral
6.
go back to reference Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369:2294–303.CrossRefPubMed Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369:2294–303.CrossRefPubMed
7.
go back to reference Gage BF, Bass AR, Lin H, Woller SC, Stevens SM, Al-Hammadi N, et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT randomized clinical trial. JAMA. 2017;318:1115–24.CrossRefPubMedPubMedCentral Gage BF, Bass AR, Lin H, Woller SC, Stevens SM, Al-Hammadi N, et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT randomized clinical trial. JAMA. 2017;318:1115–24.CrossRefPubMedPubMedCentral
8.
go back to reference Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369:2283–93.CrossRefPubMedPubMedCentral Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369:2283–93.CrossRefPubMedPubMedCentral
9.
go back to reference Cavallari LH, Kittles RA, Perera MA. Genotype-guided dosing of vitamin K antagonists [letter]. N Engl J Med. 2014;370:1763.PubMed Cavallari LH, Kittles RA, Perera MA. Genotype-guided dosing of vitamin K antagonists [letter]. N Engl J Med. 2014;370:1763.PubMed
10.
go back to reference Schwarz UI, Kim RB, Tirona RG. Genotype-guided dosing of vitamin K antagonists [letter]. N Engl J Med. 2014;370:1761–2.CrossRefPubMed Schwarz UI, Kim RB, Tirona RG. Genotype-guided dosing of vitamin K antagonists [letter]. N Engl J Med. 2014;370:1761–2.CrossRefPubMed
11.
go back to reference Pirmohamed M, Kamali F, Daly AK, Wadelius M. Oral anticoagulation: a critique of recent advances and controversies. Trends Pharmacol Sci. 2015;36:153–63.CrossRefPubMed Pirmohamed M, Kamali F, Daly AK, Wadelius M. Oral anticoagulation: a critique of recent advances and controversies. Trends Pharmacol Sci. 2015;36:153–63.CrossRefPubMed
12.
go back to reference Liu Y, Jeong H, Takahashi H, Drozda K, Patel SR, Shapiro NL, et al. Decreased warfarin clearance associated with the CYP2C9 R150H (*8) polymorphism. Clin Pharmacol Ther. 2012;91:660–5.CrossRefPubMed Liu Y, Jeong H, Takahashi H, Drozda K, Patel SR, Shapiro NL, et al. Decreased warfarin clearance associated with the CYP2C9 R150H (*8) polymorphism. Clin Pharmacol Ther. 2012;91:660–5.CrossRefPubMed
13.
go back to reference Drozda K, Wong S, Patel SR, Bress AP, Nutescu EA, Kittles RA, et al. Poor warfarin dose prediction with pharmacogenetic algorithms that exclude genotypes important for African Americans. Pharmacogenet Genom. 2015;25:73–81.CrossRef Drozda K, Wong S, Patel SR, Bress AP, Nutescu EA, Kittles RA, et al. Poor warfarin dose prediction with pharmacogenetic algorithms that exclude genotypes important for African Americans. Pharmacogenet Genom. 2015;25:73–81.CrossRef
14.
go back to reference Hernandez W, Gamazon ER, Aquino-Michaels K, Patel S, O’Brien TJ, Harralson AF, et al. Ethnicity-specific pharmacogenetics: the case of warfarin in African Americans. Pharmacogenomics J. 2014;14:223–8.CrossRefPubMed Hernandez W, Gamazon ER, Aquino-Michaels K, Patel S, O’Brien TJ, Harralson AF, et al. Ethnicity-specific pharmacogenetics: the case of warfarin in African Americans. Pharmacogenomics J. 2014;14:223–8.CrossRefPubMed
15.
go back to reference Limdi NA, Brown TM, Yan Q, Thigpen JL, Shendre A, Liu N, et al. Race influences warfarin dose changes associated with genetic factors. Blood. 2015;126:539–45.CrossRefPubMedPubMedCentral Limdi NA, Brown TM, Yan Q, Thigpen JL, Shendre A, Liu N, et al. Race influences warfarin dose changes associated with genetic factors. Blood. 2015;126:539–45.CrossRefPubMedPubMedCentral
16.
go back to reference Kubo K, Ohara M, Tachikawa M, Cavallari LH, Lee MTM, Wen MS, et al. Population differences in S-warfarin pharmacokinetics among African Americans, Asians and whites: their influence on pharmacogenetic dosing algorithms. Pharmacogenomics J. 2017;17:494–500.CrossRefPubMed Kubo K, Ohara M, Tachikawa M, Cavallari LH, Lee MTM, Wen MS, et al. Population differences in S-warfarin pharmacokinetics among African Americans, Asians and whites: their influence on pharmacogenetic dosing algorithms. Pharmacogenomics J. 2017;17:494–500.CrossRefPubMed
17.
go back to reference O’Reilly RA. Studies on the optical enantiomorphs of warfarin in man. Clin Pharmacol Ther. 1974;16:348–54.CrossRefPubMed O’Reilly RA. Studies on the optical enantiomorphs of warfarin in man. Clin Pharmacol Ther. 1974;16:348–54.CrossRefPubMed
18.
go back to reference Nagai R, Ohara M, Cavallari LH, Drozda K, Patel SR, Nutescu EA, et al. Factors influencing pharmacokinetics of warfarin in African–Americans: implications for pharmacogenetic dosing algorithms. Pharmacogenomics. 2015;16:217–25.CrossRefPubMed Nagai R, Ohara M, Cavallari LH, Drozda K, Patel SR, Nutescu EA, et al. Factors influencing pharmacokinetics of warfarin in African–Americans: implications for pharmacogenetic dosing algorithms. Pharmacogenomics. 2015;16:217–25.CrossRefPubMed
19.
go back to reference Gong IY, Tirona RG, Schwarz UI, Crown N, Dresser GK, Larue S, et al. Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy. Blood. 2011;118:3163–71.CrossRefPubMed Gong IY, Tirona RG, Schwarz UI, Crown N, Dresser GK, Larue S, et al. Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy. Blood. 2011;118:3163–71.CrossRefPubMed
20.
go back to reference Takahashi H, Kashima T, Kimura S, Muramoto N, Nakahata H, Kubo S, et al. Determination of unbound warfarin enantiomers in human plasma and 7-hydroxywarfarin in human urine by chiral stationary-phase liquid chromatography with ultraviolet or fluorescence and on-line circular dichroism detection. J Chromatogr B Biomed Sci Appl. 1997;701:71–80.CrossRefPubMed Takahashi H, Kashima T, Kimura S, Muramoto N, Nakahata H, Kubo S, et al. Determination of unbound warfarin enantiomers in human plasma and 7-hydroxywarfarin in human urine by chiral stationary-phase liquid chromatography with ultraviolet or fluorescence and on-line circular dichroism detection. J Chromatogr B Biomed Sci Appl. 1997;701:71–80.CrossRefPubMed
21.
go back to reference Gong IY, Schwarz UI, Crown N, Dresser GK, Lazo-Langner A, Zou G, et al. Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation. PLoS One. 2011;6:e27808.CrossRefPubMedPubMedCentral Gong IY, Schwarz UI, Crown N, Dresser GK, Lazo-Langner A, Zou G, et al. Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation. PLoS One. 2011;6:e27808.CrossRefPubMedPubMedCentral
22.
go back to reference Hruska MW, Frye RF, Langaee TY. Pyrosequencing method for genotyping cytochrome P450 CYP2C8 and CYP2C9 enzymes. Clin Chem. 2004;50:2392–5.CrossRefPubMed Hruska MW, Frye RF, Langaee TY. Pyrosequencing method for genotyping cytochrome P450 CYP2C8 and CYP2C9 enzymes. Clin Chem. 2004;50:2392–5.CrossRefPubMed
23.
go back to reference Hamberg AK, Dahl ML, Barban M, Scordo MG, Wadelius M, Pengo V, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther. 2007;81:529–38.CrossRefPubMed Hamberg AK, Dahl ML, Barban M, Scordo MG, Wadelius M, Pengo V, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther. 2007;81:529–38.CrossRefPubMed
24.
go back to reference Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed. 1999;59:19–29.CrossRefPubMed Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed. 1999;59:19–29.CrossRefPubMed
25.
go back to reference Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115:3827–34.CrossRefPubMedPubMedCentral Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115:3827–34.CrossRefPubMedPubMedCentral
26.
go back to reference Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, et al. Genetic variants associated with warfarin dose in African–American individuals: a genome-wide association study. Lancet. 2013;382:790–6.CrossRefPubMedPubMedCentral Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, et al. Genetic variants associated with warfarin dose in African–American individuals: a genome-wide association study. Lancet. 2013;382:790–6.CrossRefPubMedPubMedCentral
27.
go back to reference Perera MA, Gamazon E, Cavallari LH, Patel SR, Poindexter S, Kittles RA, et al. The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans. Clin Pharmacol Ther. 2011;89:408–15.CrossRefPubMed Perera MA, Gamazon E, Cavallari LH, Patel SR, Poindexter S, Kittles RA, et al. The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans. Clin Pharmacol Ther. 2011;89:408–15.CrossRefPubMed
28.
go back to reference Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, et al. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med. 2008;358:999–1008.CrossRefPubMedPubMedCentral Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, et al. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med. 2008;358:999–1008.CrossRefPubMedPubMedCentral
29.
go back to reference Limdi NA, Brown TM, Shendre A, Liu N, Hill CE, Beasley TM. Quality of anticoagulation control and hemorrhage risk among African American and European American warfarin users. Pharmacogenet Genom. 2017;27:347–55.CrossRef Limdi NA, Brown TM, Shendre A, Liu N, Hill CE, Beasley TM. Quality of anticoagulation control and hemorrhage risk among African American and European American warfarin users. Pharmacogenet Genom. 2017;27:347–55.CrossRef
31.
go back to reference Mega JL, Walker JR, Ruff CT, Vandell AG, Nordio F, Deenadayalu N, et al. Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet. 2015;385:2280–7.CrossRefPubMed Mega JL, Walker JR, Ruff CT, Vandell AG, Nordio F, Deenadayalu N, et al. Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet. 2015;385:2280–7.CrossRefPubMed
32.
go back to reference Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102:397–404.CrossRefPubMed Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102:397–404.CrossRefPubMed
33.
go back to reference Ohara M, Takahashi H, Lee MT, Wen MS, Lee TH, Chuang HP, et al. Determinants of the over-anticoagulation response during warfarin initiation therapy in Asian patients based on population pharmacokinetic-pharmacodynamic analyses. PLoS One. 2014;9:e105891.CrossRefPubMedPubMedCentral Ohara M, Takahashi H, Lee MT, Wen MS, Lee TH, Chuang HP, et al. Determinants of the over-anticoagulation response during warfarin initiation therapy in Asian patients based on population pharmacokinetic-pharmacodynamic analyses. PLoS One. 2014;9:e105891.CrossRefPubMedPubMedCentral
Metadata
Title
Differences in Warfarin Pharmacodynamics and Predictors of Response Among Three Racial Populations
Authors
Minami Ohara
Yasuhiko Suzuki
Saki Shinohara
Inna Y. Gong
Crystal L. Schmerk
Rommel G. Tirona
Ute I. Schwarz
Ming-Shien Wen
Ming Ta Michael Lee
Kiyoshi Mihara
Edith A. Nutescu
Minoli A. Perera
Larisa H. Cavallari
Richard B. Kim
Harumi Takahashi
Publication date
01-08-2019
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 8/2019
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-019-00745-5

Other articles of this Issue 8/2019

Clinical Pharmacokinetics 8/2019 Go to the issue