Skip to main content
Top
Published in: Clinical Pharmacokinetics 12/2018

Open Access 01-12-2018 | Review Article

Clinical Pharmacokinetics and Pharmacodynamics of Propofol

Authors: Marko M. Sahinovic, Michel M. R. F. Struys, Anthony R. Absalom

Published in: Clinical Pharmacokinetics | Issue 12/2018

Login to get access

Abstract

Propofol is an intravenous hypnotic drug that is used for induction and maintenance of sedation and general anaesthesia. It exerts its effects through potentiation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) at the GABAA receptor, and has gained widespread use due to its favourable drug effect profile. The main adverse effects are disturbances in cardiopulmonary physiology. Due to its narrow therapeutic margin, propofol should only be administered by practitioners trained and experienced in providing general anaesthesia. Many pharmacokinetic (PK) and pharmacodynamic (PD) models for propofol exist. Some are used to inform drug dosing guidelines, and some are also implemented in so-called target-controlled infusion devices, to calculate the infusion rates required for user-defined target plasma or effect-site concentrations. Most of the models were designed for use in a specific and well-defined patient category. However, models applicable in a more general population have recently been developed and published. The most recent example is the general purpose propofol model developed by Eleveld and colleagues. Retrospective predictive performance evaluations show that this model performs as well as, or even better than, PK models developed for specific populations, such as adults, children or the obese; however, prospective evaluation of the model is still required. Propofol undergoes extensive PK and PD interactions with both other hypnotic drugs and opioids. PD interactions are the most clinically significant, and, with other hypnotics, tend to be additive, whereas interactions with opioids tend to be highly synergistic. Response surface modelling provides a tool to gain understanding and explore these complex interactions. Visual displays illustrating the effect of these interactions in real time can aid clinicians in optimal drug dosing while minimizing adverse effects. In this review, we provide an overview of the PK and PD of propofol in order to refresh readers’ knowledge of its clinical applications, while discussing the main avenues of research where significant recent advances have been made.
Literature
1.
go back to reference Glen JB, James R. 2,6-Diisopropylphenol as an anaesthetic agent. London: United States Patent and Trademark Office; 1977. p. 1–10. Glen JB, James R. 2,6-Diisopropylphenol as an anaesthetic agent. London: United States Patent and Trademark Office; 1977. p. 1–10.
2.
go back to reference Thompson KA, Goodale DB. The recent development of propofol (DIPRIVAN). Intensive Care Med. 2000;26(Suppl 4):S400–4.PubMed Thompson KA, Goodale DB. The recent development of propofol (DIPRIVAN). Intensive Care Med. 2000;26(Suppl 4):S400–4.PubMed
3.
go back to reference Schüttler J, Schwilden H, editors. Modern anesthetics (handbook of experimental pharmacology), vol. 182. Heidelberg: Springer; 2008. Schüttler J, Schwilden H, editors. Modern anesthetics (handbook of experimental pharmacology), vol. 182. Heidelberg: Springer; 2008.
4.
go back to reference Baker MT, Naguib M. Propofol: the challenges of formulation. Anesthesiology. 2005;103:860–76.PubMed Baker MT, Naguib M. Propofol: the challenges of formulation. Anesthesiology. 2005;103:860–76.PubMed
5.
go back to reference Bryson HM, Fulton BR, Faulds D. Propofol. An update of its use in anaesthesia and conscious sedation. Drugs. 1995;50:513–59.PubMed Bryson HM, Fulton BR, Faulds D. Propofol. An update of its use in anaesthesia and conscious sedation. Drugs. 1995;50:513–59.PubMed
6.
go back to reference Fulton B, Sorkin EM. Propofol. An overview of its pharmacology and a review of its clinical efficacy in intensive care sedation. Drugs. 1995;50:636–57.PubMed Fulton B, Sorkin EM. Propofol. An overview of its pharmacology and a review of its clinical efficacy in intensive care sedation. Drugs. 1995;50:636–57.PubMed
7.
go back to reference Trapani G, Altomare C, Liso G, Sanna E, Biggio G. Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery. Curr Med Chem. 2000;7:249–71.PubMed Trapani G, Altomare C, Liso G, Sanna E, Biggio G. Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery. Curr Med Chem. 2000;7:249–71.PubMed
8.
go back to reference Joo HS, Perks WJ. Sevoflurane versus propofol for anesthetic induction: a meta-analysis. Anesth Analg. 2000;91:213–9.PubMed Joo HS, Perks WJ. Sevoflurane versus propofol for anesthetic induction: a meta-analysis. Anesth Analg. 2000;91:213–9.PubMed
9.
go back to reference Liu H, Ji F, Peng K, Applegate RL, Fleming N. Sedation after cardiac surgery: is one drug better than another? Anesth Analg. 2017;124:1061–70.PubMed Liu H, Ji F, Peng K, Applegate RL, Fleming N. Sedation after cardiac surgery: is one drug better than another? Anesth Analg. 2017;124:1061–70.PubMed
10.
go back to reference Kochhar GS, Gill A, Vargo JJ. On the horizon: the future of procedural sedation. Gastrointest Endosc Clin N Am. 2016;26:577–92.PubMed Kochhar GS, Gill A, Vargo JJ. On the horizon: the future of procedural sedation. Gastrointest Endosc Clin N Am. 2016;26:577–92.PubMed
11.
go back to reference Marik PE. Propofol: therapeutic indications and side-effects. Curr Pharm Des. 2004;10:3639–49.PubMed Marik PE. Propofol: therapeutic indications and side-effects. Curr Pharm Des. 2004;10:3639–49.PubMed
12.
go back to reference Package insert, Diprivan (Propofol) Injectable Emulsion. Lake Zurich, IL: Fresenius Kabi; 2014. Package insert, Diprivan (Propofol) Injectable Emulsion. Lake Zurich, IL: Fresenius Kabi; 2014.
13.
go back to reference Hart B. “Diprivan”: a change of formulation. Eur J Anaesthesiol. 2000;17:71–3.PubMed Hart B. “Diprivan”: a change of formulation. Eur J Anaesthesiol. 2000;17:71–3.PubMed
15.
go back to reference Fischer MJM, Leffler A, Niedermirtl F, Kistner K, Eberhardt M, Reeh PW, et al. The general anesthetic propofol excites nociceptors by activating TRPV1 and TRPA1 rather than GABAA receptors. J Biol Chem. 2010;285:34781–92.PubMedPubMedCentral Fischer MJM, Leffler A, Niedermirtl F, Kistner K, Eberhardt M, Reeh PW, et al. The general anesthetic propofol excites nociceptors by activating TRPV1 and TRPA1 rather than GABAA receptors. J Biol Chem. 2010;285:34781–92.PubMedPubMedCentral
16.
go back to reference Klement W, Arndt JO. Pain on injection of propofol: effects of concentration and diluent. Br J Anaesth. 1991;67:281–4.PubMed Klement W, Arndt JO. Pain on injection of propofol: effects of concentration and diluent. Br J Anaesth. 1991;67:281–4.PubMed
17.
go back to reference Allford MA, Mensah JA. Discomfort on injection. Eur J Anaesthesiol. 2006;23:971–4.PubMed Allford MA, Mensah JA. Discomfort on injection. Eur J Anaesthesiol. 2006;23:971–4.PubMed
18.
go back to reference Picard P, Tramèr MR. Prevention of pain on injection with propofol: a quantitative systematic review. Anesth Analg. 2000;90:963–9.PubMed Picard P, Tramèr MR. Prevention of pain on injection with propofol: a quantitative systematic review. Anesth Analg. 2000;90:963–9.PubMed
19.
go back to reference Hardman JG, Hopkins PM, Struys MMR, editors. Oxford textbook of anaesthesia. Oxford: Oxford University Press; 2017. Hardman JG, Hopkins PM, Struys MMR, editors. Oxford textbook of anaesthesia. Oxford: Oxford University Press; 2017.
20.
go back to reference Asserhøj LL, Mosbech H, Krøigaard M, Garvey LH. No evidence for contraindications to the use of propofol in adults allergic to egg, soy or peanut. Br J Anaesth. 2016;116:77–82.PubMed Asserhøj LL, Mosbech H, Krøigaard M, Garvey LH. No evidence for contraindications to the use of propofol in adults allergic to egg, soy or peanut. Br J Anaesth. 2016;116:77–82.PubMed
22.
go back to reference Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.PubMedPubMedCentral Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.PubMedPubMedCentral
23.
go back to reference Jevtovic-Todorovic V, Absalom AR, Blomgren K, Brambrink A, Crosby G, Culley DJ, et al. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar. Br J Anaesth. 2013;111:143–51.PubMedPubMedCentral Jevtovic-Todorovic V, Absalom AR, Blomgren K, Brambrink A, Crosby G, Culley DJ, et al. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar. Br J Anaesth. 2013;111:143–51.PubMedPubMedCentral
24.
go back to reference Raoof AA, Augustijns PR, Verbeeck RK. In vivo assessment of intenstinal, hepatic, and pulmonary first pass metabolism of propofol in the rat. Pharm Res. 1996;13:891–5.PubMed Raoof AA, Augustijns PR, Verbeeck RK. In vivo assessment of intenstinal, hepatic, and pulmonary first pass metabolism of propofol in the rat. Pharm Res. 1996;13:891–5.PubMed
25.
go back to reference Uchegbu I, Jones M-C, Corrente F, Godfrey L, Laghezza D, Carafa M, et al. The oral and intranasal delivery of propofol using chitosan amphiphile nanoparticles. Pharm Nanotechnol. 2014;2:65–74. Uchegbu I, Jones M-C, Corrente F, Godfrey L, Laghezza D, Carafa M, et al. The oral and intranasal delivery of propofol using chitosan amphiphile nanoparticles. Pharm Nanotechnol. 2014;2:65–74.
26.
go back to reference Mazoit JX, Samii K. Binding of propofol to blood components: implications for pharmacokinetics and for pharmacodynamics. Br J Clin Pharmacol. 1999;47:35–42.PubMedPubMedCentral Mazoit JX, Samii K. Binding of propofol to blood components: implications for pharmacokinetics and for pharmacodynamics. Br J Clin Pharmacol. 1999;47:35–42.PubMedPubMedCentral
27.
go back to reference Tarr L, Oppenheimer B, Sager R. The circulation time in various clinical conditions determined by the use of sodium dehydrochlorate. Am Heart J. 1933;8:766. Tarr L, Oppenheimer B, Sager R. The circulation time in various clinical conditions determined by the use of sodium dehydrochlorate. Am Heart J. 1933;8:766.
28.
go back to reference Dawidowicz AL, Kalitynski R, Fijalkowska A. Free and bound propofol concentrations in human cerebrospinal fluid. Br J Clin Pharmacol. 2003;56:545–50.PubMedPubMedCentral Dawidowicz AL, Kalitynski R, Fijalkowska A. Free and bound propofol concentrations in human cerebrospinal fluid. Br J Clin Pharmacol. 2003;56:545–50.PubMedPubMedCentral
29.
go back to reference Engdahl O, Abrahams M, Björnsson A, et al. Cerebrospinal fluid concentrations of propofol during anaesthesia in humans. Br J Anaesth 1998;81:957–9.PubMed Engdahl O, Abrahams M, Björnsson A, et al. Cerebrospinal fluid concentrations of propofol during anaesthesia in humans. Br J Anaesth 1998;81:957–9.PubMed
30.
go back to reference Dailland P, Cockshott ID, Lirzin JD, Jacquinot P, Jorrot JC, Devery J, et al. Intravenous propofol during cesarean section: placental transfer, concentrations in breast milk, and neonatal effects. A preliminary study. Anesthesiology. 1989;71:827–34.PubMed Dailland P, Cockshott ID, Lirzin JD, Jacquinot P, Jorrot JC, Devery J, et al. Intravenous propofol during cesarean section: placental transfer, concentrations in breast milk, and neonatal effects. A preliminary study. Anesthesiology. 1989;71:827–34.PubMed
31.
go back to reference Gin T, Yau G, Jong W, Tan P, Leung RKW, Chan K. Disposition of propofol at caesarina section and in the postpartum period. Br J Anaesth. 1991;67:49–53.PubMed Gin T, Yau G, Jong W, Tan P, Leung RKW, Chan K. Disposition of propofol at caesarina section and in the postpartum period. Br J Anaesth. 1991;67:49–53.PubMed
32.
go back to reference Tumukunde J, Lomangisi DD, Davidson O, Kintu A, Joseph E, Kwizera A. Effects of propofol versus thiopental on Apgar scores in newborns and peri-operative outcomes of women undergoing emergency cesarean section: a randomized clinical trial. BMC Anesthesiol. 2015;15:63.PubMedPubMedCentral Tumukunde J, Lomangisi DD, Davidson O, Kintu A, Joseph E, Kwizera A. Effects of propofol versus thiopental on Apgar scores in newborns and peri-operative outcomes of women undergoing emergency cesarean section: a randomized clinical trial. BMC Anesthesiol. 2015;15:63.PubMedPubMedCentral
33.
go back to reference Simons PJ, Cockshott ID, Douglas EJ, Gordon E a, Hopkins K, Rowland M. Disposition in male volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of 14C-propofol. Xenobiotica. 1988;18:429–40.PubMed Simons PJ, Cockshott ID, Douglas EJ, Gordon E a, Hopkins K, Rowland M. Disposition in male volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of 14C-propofol. Xenobiotica. 1988;18:429–40.PubMed
34.
go back to reference Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76:334–41.PubMed Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76:334–41.PubMed
35.
go back to reference Hannivoort LN, Eleveld DJ, Proost JH, Reyntjens KMEM, Absalom AR, Vereecke HEM, et al. Development of an optimized pharmacokinetic model of dexmedetomidine using target-controlled infusion in healthy volunteers. Anesthesiology. 2015;123:357–67.PubMed Hannivoort LN, Eleveld DJ, Proost JH, Reyntjens KMEM, Absalom AR, Vereecke HEM, et al. Development of an optimized pharmacokinetic model of dexmedetomidine using target-controlled infusion in healthy volunteers. Anesthesiology. 2015;123:357–67.PubMed
36.
go back to reference Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology. 2001;94:110–9.PubMed Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology. 2001;94:110–9.PubMed
37.
go back to reference Shioya N, Ishibe Y, Shibata S, Makabe H, Kan S, Matsumoto N, et al. Green urine discoloration due to propofol infusion: a case report. Case Rep Emerg Med. 2011;2011:1–4. Shioya N, Ishibe Y, Shibata S, Makabe H, Kan S, Matsumoto N, et al. Green urine discoloration due to propofol infusion: a case report. Case Rep Emerg Med. 2011;2011:1–4.
38.
go back to reference Mikstacki A, Skrzypczak-Zielinska M, Tamowicz B, Zakerska-Banaszak O, Szalata M, Slomski R. The impact of genetic factors on response to anaesthetics. Adv Med Sci. 2013;58:9–14.PubMed Mikstacki A, Skrzypczak-Zielinska M, Tamowicz B, Zakerska-Banaszak O, Szalata M, Slomski R. The impact of genetic factors on response to anaesthetics. Adv Med Sci. 2013;58:9–14.PubMed
39.
go back to reference Takizawa D, Sato E, Hiraoka H, Tomioka A, Yamamoto K, Horiuchi R, et al. Changes in apparent systemic clearance of propofol during transplantation of living related donor liver. Br J Anaesth. 2005;95:643–7.PubMed Takizawa D, Sato E, Hiraoka H, Tomioka A, Yamamoto K, Horiuchi R, et al. Changes in apparent systemic clearance of propofol during transplantation of living related donor liver. Br J Anaesth. 2005;95:643–7.PubMed
40.
go back to reference Hiraoka H, Yamamoto K, Miyoshi S, Morita T, Nakamura K, Kadoi Y, et al. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol. 2005;60:176–82.PubMedPubMedCentral Hiraoka H, Yamamoto K, Miyoshi S, Morita T, Nakamura K, Kadoi Y, et al. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol. 2005;60:176–82.PubMedPubMedCentral
41.
go back to reference Takizawa D, Hiraoka H, Goto F, Yamamoto K, Horiuchi R. Human kidneys play an important role in the elimination of propofol. Anesthesiology. 2005;102:327–30.PubMed Takizawa D, Hiraoka H, Goto F, Yamamoto K, Horiuchi R. Human kidneys play an important role in the elimination of propofol. Anesthesiology. 2005;102:327–30.PubMed
42.
go back to reference Dawidowicz AL, Fornal E, Mardarowicz M, Fijalkowska A. The role of human lungs in the biotransformation of propofol. Anesthesiology. 2000;93:992–7.PubMed Dawidowicz AL, Fornal E, Mardarowicz M, Fijalkowska A. The role of human lungs in the biotransformation of propofol. Anesthesiology. 2000;93:992–7.PubMed
43.
go back to reference He YL, Ueyama H, Tashiro C, Mashimo T, Yoshiya I. Pulmonary disposition of propofol in surgical patients. Anesthesiology. 2000;93:986–91.PubMed He YL, Ueyama H, Tashiro C, Mashimo T, Yoshiya I. Pulmonary disposition of propofol in surgical patients. Anesthesiology. 2000;93:986–91.PubMed
44.
go back to reference Bodenham A, Culank LS, Park GR. Propofol infusion and green urine. Lancet. 1987;2:740.PubMed Bodenham A, Culank LS, Park GR. Propofol infusion and green urine. Lancet. 1987;2:740.PubMed
45.
go back to reference Takita A, Masui K, Kazama T. On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology. 2007;106:659–64.PubMed Takita A, Masui K, Kazama T. On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology. 2007;106:659–64.PubMed
46.
go back to reference Grossherr M, Hengstenberg A, Meier T, Dibbelt L, Gerlach K, Gehring H. Discontinuous monitoring of propofol concentrations in expired alveolar gas and in arterial and venous plasma during artificial ventilation. Anesthesiology. 2006;104:786–90.PubMed Grossherr M, Hengstenberg A, Meier T, Dibbelt L, Gerlach K, Gehring H. Discontinuous monitoring of propofol concentrations in expired alveolar gas and in arterial and venous plasma during artificial ventilation. Anesthesiology. 2006;104:786–90.PubMed
47.
go back to reference Colin P, Eleveld DJ, van den Berg JP, Vereecke HEM, Struys MMRF, Schelling G, et al. Propofol breath monitoring as a potential tool to improve the prediction of intraoperative plasma concentrations. Clin Pharmacokinet. 2016;55:849–59.PubMed Colin P, Eleveld DJ, van den Berg JP, Vereecke HEM, Struys MMRF, Schelling G, et al. Propofol breath monitoring as a potential tool to improve the prediction of intraoperative plasma concentrations. Clin Pharmacokinet. 2016;55:849–59.PubMed
49.
go back to reference Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg. 1987;66:1256–63.PubMed Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg. 1987;66:1256–63.PubMed
50.
go back to reference Shafer A, Doze VA, Shafer SL, White PF. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology. 1988;69:348–56.PubMed Shafer A, Doze VA, Shafer SL, White PF. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology. 1988;69:348–56.PubMed
51.
go back to reference Kirkpatrick T, Cockshott ID, Douglas EJ, Nimmo WS. Pharmacokinetics of propofol (diprivan) in elderly patients. Br J Anaesth. 1988;60:146–50.PubMed Kirkpatrick T, Cockshott ID, Douglas EJ, Nimmo WS. Pharmacokinetics of propofol (diprivan) in elderly patients. Br J Anaesth. 1988;60:146–50.PubMed
52.
go back to reference Schüttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000;92:727–38.PubMed Schüttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000;92:727–38.PubMed
53.
go back to reference Wietasch JKG, Scholz M, Zinserling J, Kiefer N, Frenkel C, Knüfermann P, et al. The performance of a target-controlled infusion of propofol in combination with remifentanil: a clinical investigation with two propofol formulations. Anesth Analg. 2006;102:430–7.PubMed Wietasch JKG, Scholz M, Zinserling J, Kiefer N, Frenkel C, Knüfermann P, et al. The performance of a target-controlled infusion of propofol in combination with remifentanil: a clinical investigation with two propofol formulations. Anesth Analg. 2006;102:430–7.PubMed
54.
go back to reference Struys MMRF, Sahinovic MM, Lichtenbelt BJ, Vereecke HEM, Absalom AR. Optimizing intravenous drug administration by applying pharmacokinetic/pharmacodynamic concepts. Br J Anaesth. 2011;107:38–47.PubMed Struys MMRF, Sahinovic MM, Lichtenbelt BJ, Vereecke HEM, Absalom AR. Optimizing intravenous drug administration by applying pharmacokinetic/pharmacodynamic concepts. Br J Anaesth. 2011;107:38–47.PubMed
55.
go back to reference Sahinovic MM. Intravenous drug dose optimization and drug effect monitoring in anaesthesia. Groningen: Rijksuniversiteit Groningen; 2017. Sahinovic MM. Intravenous drug dose optimization and drug effect monitoring in anaesthesia. Groningen: Rijksuniversiteit Groningen; 2017.
56.
go back to reference Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol. 2004;58:119–33.PubMedPubMedCentral Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol. 2004;58:119–33.PubMedPubMedCentral
57.
go back to reference Eleveld DJ, Proost JH, Absalom AR, Struys MMRF. Obesity and allometric scaling of pharmacokinetics. Clin Pharmacokinet. 2011;50:751–3.PubMed Eleveld DJ, Proost JH, Absalom AR, Struys MMRF. Obesity and allometric scaling of pharmacokinetics. Clin Pharmacokinet. 2011;50:751–3.PubMed
58.
go back to reference Snell O. Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten. Arch Psychiatr Nervenkr. 1892;23:436–46. Snell O. Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten. Arch Psychiatr Nervenkr. 1892;23:436–46.
59.
go back to reference Huxley JS, Needham J, Lerner IM. Terminology of relative growth-rates. Nature. 1941;148:225. Huxley JS, Needham J, Lerner IM. Terminology of relative growth-rates. Nature. 1941;148:225.
60.
go back to reference Wang C, Allegaert K, Peeters MYM, Tibboel D, Danhof M, Knibbe CAJ. The allometric exponent for scaling clearance varies with age: a study on seven propofol datasets ranging from preterm neonates to adults. Br J Clin Pharmacol. 2014;77:149–59.PubMed Wang C, Allegaert K, Peeters MYM, Tibboel D, Danhof M, Knibbe CAJ. The allometric exponent for scaling clearance varies with age: a study on seven propofol datasets ranging from preterm neonates to adults. Br J Clin Pharmacol. 2014;77:149–59.PubMed
61.
go back to reference Eleveld DJ, Colin P, Absalom AR, Struys MMRF. Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br J Anaesth. 2018;120(5):942–59.PubMed Eleveld DJ, Colin P, Absalom AR, Struys MMRF. Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br J Anaesth. 2018;120(5):942–59.PubMed
62.
go back to reference Eleveld DJ, Proost JH, Vereecke H, Absalom AR, Olofsen E, Vuyk J, et al. An allometric model of remifentanil pharmacokinetics and pharmacodynamics. Anesthesiology. 2017;126:1005–18.PubMed Eleveld DJ, Proost JH, Vereecke H, Absalom AR, Olofsen E, Vuyk J, et al. An allometric model of remifentanil pharmacokinetics and pharmacodynamics. Anesthesiology. 2017;126:1005–18.PubMed
63.
go back to reference West GB, et al. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122–6.PubMed West GB, et al. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122–6.PubMed
64.
go back to reference Proost J. Pharmacokinetic-pharmacodynamic modelling of anesthetic drugs. In: Absalom AR, Mason KP, editors. Total intravenous anesthesia and target controlled infusions. Cham: Springer International Publishing; 2017. Proost J. Pharmacokinetic-pharmacodynamic modelling of anesthetic drugs. In: Absalom AR, Mason KP, editors. Total intravenous anesthesia and target controlled infusions. Cham: Springer International Publishing; 2017.
65.
go back to reference Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41–8.PubMed Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41–8.PubMed
66.
go back to reference Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88:1170–82.PubMed Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88:1170–82.PubMed
67.
go back to reference Absalom AR, Mani V, De Smet T, Struys MMRF. Pharmacokinetic models for propofol: defining and illuminating the devil in the detail. Br J Anaesth. 2009;103:26–37.PubMed Absalom AR, Mani V, De Smet T, Struys MMRF. Pharmacokinetic models for propofol: defining and illuminating the devil in the detail. Br J Anaesth. 2009;103:26–37.PubMed
68.
go back to reference De Baerdemaeker LEC, Mortier EP, Struys MMRF. Pharmacokinetics in obese patients. Contin Educ Anaesth Crit Care Pain. 2004;4:152–5. De Baerdemaeker LEC, Mortier EP, Struys MMRF. Pharmacokinetics in obese patients. Contin Educ Anaesth Crit Care Pain. 2004;4:152–5.
69.
go back to reference Cortínez LI, Anderson BJ, Penna A, Olivares L, Munoz HR, Holford NHG, et al. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth. 2010;105:448–56.PubMed Cortínez LI, Anderson BJ, Penna A, Olivares L, Munoz HR, Holford NHG, et al. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth. 2010;105:448–56.PubMed
70.
go back to reference van Kralingen S, Diepstraten J, Peeters MYM, Deneer VHM, van Ramshorst B, Wiezer RJ, et al. Population pharmacokinetics and pharmacodynamics of propofol in morbidly obese patients. Clin Pharmacokinet. 2011;50:739–50.PubMed van Kralingen S, Diepstraten J, Peeters MYM, Deneer VHM, van Ramshorst B, Wiezer RJ, et al. Population pharmacokinetics and pharmacodynamics of propofol in morbidly obese patients. Clin Pharmacokinet. 2011;50:739–50.PubMed
71.
go back to reference Cortínez LI, De la Fuente N, Eleveld DJ, Oliveros A, Crovari F, Sepúlveda P, et al. Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg. 2014;119:302–10.PubMed Cortínez LI, De la Fuente N, Eleveld DJ, Oliveros A, Crovari F, Sepúlveda P, et al. Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg. 2014;119:302–10.PubMed
72.
go back to reference Eleveld DJ, Proost JH, Cortínez LI, Absalom AR, Struys MMRF. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118:1221–37.PubMed Eleveld DJ, Proost JH, Cortínez LI, Absalom AR, Struys MMRF. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118:1221–37.PubMed
73.
go back to reference Absalom AR. “Paedfusor” pharmacokinetic data set. Br J Anaesth. 2005;95:110.PubMed Absalom AR. “Paedfusor” pharmacokinetic data set. Br J Anaesth. 2005;95:110.PubMed
74.
go back to reference Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, et al. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 1994;80:104–22.PubMed Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, et al. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 1994;80:104–22.PubMed
75.
go back to reference Short TG, Aun CS, Tan P, Wong J, Tam YH, Oh TE. A prospective evaluation of pharmacokinetic model controlled infusion of propofol in paediatric patients. Br J Anaesth. 1994;72:302–6.PubMed Short TG, Aun CS, Tan P, Wong J, Tam YH, Oh TE. A prospective evaluation of pharmacokinetic model controlled infusion of propofol in paediatric patients. Br J Anaesth. 1994;72:302–6.PubMed
76.
go back to reference Sepúlveda P, Cortínez LI, Sáez C, Penna A, Solari S, Guerra I, et al. Performance evaluation of paediatric propofol pharmacokinetic models in healthy young children. Br J Anaesth. 2011;107:593–600.PubMed Sepúlveda P, Cortínez LI, Sáez C, Penna A, Solari S, Guerra I, et al. Performance evaluation of paediatric propofol pharmacokinetic models in healthy young children. Br J Anaesth. 2011;107:593–600.PubMed
77.
go back to reference Hara M, Masui K, Eleveld DJ, Struys MMRF, Uchida O. Predictive performance of eleven pharmacokinetic models for propofol infusion in children for long-duration anaesthesia. Br J Anaesth. 2017;118:415–23.PubMed Hara M, Masui K, Eleveld DJ, Struys MMRF, Uchida O. Predictive performance of eleven pharmacokinetic models for propofol infusion in children for long-duration anaesthesia. Br J Anaesth. 2017;118:415–23.PubMed
78.
go back to reference Knibbe CAJ, Zuideveld KP, Aarts LPHJ, Kuks PFM, Danhof M. Allometric relationships between the pharmacokinetics of propofol in rats, children and adults. Br J Clin Pharmacol. 2005;59:705–11.PubMedPubMedCentral Knibbe CAJ, Zuideveld KP, Aarts LPHJ, Kuks PFM, Danhof M. Allometric relationships between the pharmacokinetics of propofol in rats, children and adults. Br J Clin Pharmacol. 2005;59:705–11.PubMedPubMedCentral
79.
go back to reference Hoymork SC, Raeder J, Grimsmo B, Steen PA. Bispectral index, serum drug concentrations and emergence associated with individually adjusted target-controlled infusions of remifentanil and propofol for laparoscopic surgery. Br J Anaesth. 2003;91:773–80.PubMed Hoymork SC, Raeder J, Grimsmo B, Steen PA. Bispectral index, serum drug concentrations and emergence associated with individually adjusted target-controlled infusions of remifentanil and propofol for laparoscopic surgery. Br J Anaesth. 2003;91:773–80.PubMed
80.
go back to reference Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet Syst Pharmacol. 2013;2:e63. Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet Syst Pharmacol. 2013;2:e63.
81.
go back to reference Masui K, Kira M, Kazama T, Hagihira S, Mortier EP, Struys MMRF. Early phase pharmacokinetics but not pharmacodynamics are influenced by propofol infusion rate. Anesthesiology. 2009;111:805–17.PubMed Masui K, Kira M, Kazama T, Hagihira S, Mortier EP, Struys MMRF. Early phase pharmacokinetics but not pharmacodynamics are influenced by propofol infusion rate. Anesthesiology. 2009;111:805–17.PubMed
82.
go back to reference Upton RN, Ludbrook GL, Grant C, Martinez AM. Cardiac output is a determinant of the initial concentrations of propofol after short-infusion administration. Anesth Analg. 1999;89:545–52.PubMed Upton RN, Ludbrook GL, Grant C, Martinez AM. Cardiac output is a determinant of the initial concentrations of propofol after short-infusion administration. Anesth Analg. 1999;89:545–52.PubMed
83.
go back to reference Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, et al. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol. Anesth Analg. 2010;111:368–79.PubMed Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, et al. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol. Anesth Analg. 2010;111:368–79.PubMed
84.
go back to reference Upton RN, Ludbrook G. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesthesiology. 2005;103:344–52.PubMed Upton RN, Ludbrook G. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesthesiology. 2005;103:344–52.PubMed
85.
go back to reference Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5:709–20.PubMed Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5:709–20.PubMed
86.
go back to reference Sieghart W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev. 1995;47:181–234.PubMed Sieghart W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev. 1995;47:181–234.PubMed
87.
go back to reference Bormann J. The, “ABC” of GABA receptors. Trends Pharmacol Sci. 2000;21:16–9.PubMed Bormann J. The, “ABC” of GABA receptors. Trends Pharmacol Sci. 2000;21:16–9.PubMed
88.
go back to reference Adapa RM. Consiousness and anesthesia. In: Absalom AR, Mason KP, editors. Total intravenous anesthesia and target controlled infusions. Cham: Springer International Publishing; 2017. p. 63–78. Adapa RM. Consiousness and anesthesia. In: Absalom AR, Mason KP, editors. Total intravenous anesthesia and target controlled infusions. Cham: Springer International Publishing; 2017. p. 63–78.
89.
go back to reference Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73.PubMed Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73.PubMed
91.
go back to reference Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726–31.PubMed Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726–31.PubMed
92.
go back to reference Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol. 2014;122:24–44.PubMed Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol. 2014;122:24–44.PubMed
93.
go back to reference Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci. 1999;19:5506–13.PubMedPubMedCentral Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci. 1999;19:5506–13.PubMedPubMedCentral
94.
go back to reference Mashour GA, Alkire MT. Consciousness, anesthesia, and the thalamocortical system. Anesthesiology. 2013;118:13–5.PubMed Mashour GA, Alkire MT. Consciousness, anesthesia, and the thalamocortical system. Anesthesiology. 2013;118:13–5.PubMed
95.
go back to reference Detsch O, Vahle-Hinz C, Kochs E, Siemers M, Bromm B. Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Res. 1999;829:77–89.PubMed Detsch O, Vahle-Hinz C, Kochs E, Siemers M, Bromm B. Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Res. 1999;829:77–89.PubMed
96.
go back to reference Velly LJ, Rey MF, Bruder NJ, Gouvitsos FA, Witjas T, Regis JM, et al. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology. 2007;107:202–12.PubMed Velly LJ, Rey MF, Bruder NJ, Gouvitsos FA, Witjas T, Regis JM, et al. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology. 2007;107:202–12.PubMed
97.
go back to reference Alkire MT, Haier RJ, Fallon JH. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn. 2000;9:370–86.PubMed Alkire MT, Haier RJ, Fallon JH. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn. 2000;9:370–86.PubMed
99.
go back to reference Kaisti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, et al. Effects of sevoflurane, propofol and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99:603–13.PubMed Kaisti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, et al. Effects of sevoflurane, propofol and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99:603–13.PubMed
100.
go back to reference Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S, Doyon J, et al. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci USA. 2012;109:5856–61.PubMedPubMedCentral Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S, Doyon J, et al. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci USA. 2012;109:5856–61.PubMedPubMedCentral
101.
go back to reference Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA. 2010;107:2681–6.PubMedPubMedCentral Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA. 2010;107:2681–6.PubMedPubMedCentral
102.
go back to reference Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science. 2005;309:2228–32.PubMed Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science. 2005;309:2228–32.PubMed
104.
go back to reference Nordström O, Sandin R. Recall during intermittent propofol anaesthesia. Br J Anaesth. 1996;76:699–701.PubMed Nordström O, Sandin R. Recall during intermittent propofol anaesthesia. Br J Anaesth. 1996;76:699–701.PubMed
105.
go back to reference Andrade J, Deeprose C. Unconscious memory formation during anaesthesia. Best Pract Res Clin Anaesthesiol. 2007;21:385–401.PubMed Andrade J, Deeprose C. Unconscious memory formation during anaesthesia. Best Pract Res Clin Anaesthesiol. 2007;21:385–401.PubMed
106.
go back to reference Veselis RA, Pryor KO, Reinsel RA, Mehta M, Pan H, Johnson R. Low-dose propofol-induced amnesia is not due to a failure of encoding: left inferior prefrontal cortex is still active. Anesthesiology. 2008;109:213–24.PubMed Veselis RA, Pryor KO, Reinsel RA, Mehta M, Pan H, Johnson R. Low-dose propofol-induced amnesia is not due to a failure of encoding: left inferior prefrontal cortex is still active. Anesthesiology. 2008;109:213–24.PubMed
107.
go back to reference Kurt M, Bilge SS, Kukula O, Celik S, Kesim Y. Anxiolytic-like profile of propofol, a general anesthetic, in the plus-maze test in mice. Pol J Pharmacol. 2003;55:973–7.PubMed Kurt M, Bilge SS, Kukula O, Celik S, Kesim Y. Anxiolytic-like profile of propofol, a general anesthetic, in the plus-maze test in mice. Pol J Pharmacol. 2003;55:973–7.PubMed
108.
go back to reference Smith I, Monk TG, White PF, Ding Y. Propofol infusion during regional anesthesia: sedative, amnestic, and anxiolytic properties. Anesth Analg. 1994;79:313–9.PubMed Smith I, Monk TG, White PF, Ding Y. Propofol infusion during regional anesthesia: sedative, amnestic, and anxiolytic properties. Anesth Analg. 1994;79:313–9.PubMed
109.
go back to reference Ure RW, Dwyer SJ, Blogg CE, White AP. Patient-controlled anxiolysis with propofol. Br J Anaesth. 1991;67:857P–8P. Ure RW, Dwyer SJ, Blogg CE, White AP. Patient-controlled anxiolysis with propofol. Br J Anaesth. 1991;67:857P–8P.
110.
go back to reference Matsuo M, Ayuse T, Oi K, Kataoka Y. Propofol produces anticonflict action by inhibiting 5-HT release in rat dorsal hippocampus. NeuroReport. 1997;8:3087–90.PubMed Matsuo M, Ayuse T, Oi K, Kataoka Y. Propofol produces anticonflict action by inhibiting 5-HT release in rat dorsal hippocampus. NeuroReport. 1997;8:3087–90.PubMed
111.
go back to reference Volke V, Kõks S, Vasar E, Bourin M, Bradwejn J, Männistö PT. Inhibition of nitric oxide synthase causes anxiolytic-like behaviour in an elevated plus-maze. NeuroReport. 1995;6:1413–6.PubMed Volke V, Kõks S, Vasar E, Bourin M, Bradwejn J, Männistö PT. Inhibition of nitric oxide synthase causes anxiolytic-like behaviour in an elevated plus-maze. NeuroReport. 1995;6:1413–6.PubMed
112.
go back to reference Zacny JP, Coalson DW, Young CJ, Klafta JM, Lichtor JL, Rupani G, et al. Propofol at conscious sedation doses produces mild analgesia to cold pressor-induced pain in healthy volunteers. J Clin Anesth. 1996;8:469–74.PubMed Zacny JP, Coalson DW, Young CJ, Klafta JM, Lichtor JL, Rupani G, et al. Propofol at conscious sedation doses produces mild analgesia to cold pressor-induced pain in healthy volunteers. J Clin Anesth. 1996;8:469–74.PubMed
113.
go back to reference Anker-Moller E, Spangsberg N, Arendt-Nielsen L, Schultz P, Krinstensen M, Bjerring P. Subhypnotic doses of thiopentone and propofol cause analgesia to experimentally induced acute pain. Br J Anaesth. 1991;66:185–8.PubMed Anker-Moller E, Spangsberg N, Arendt-Nielsen L, Schultz P, Krinstensen M, Bjerring P. Subhypnotic doses of thiopentone and propofol cause analgesia to experimentally induced acute pain. Br J Anaesth. 1991;66:185–8.PubMed
114.
go back to reference Nadeson R, Goodchild CS. Antinociceptive properties of propofol: involvement of spinal cord gamma-aminobutyric acid(A) receptors. J Pharmacol Exp Ther. 1997;282:1181–6.PubMed Nadeson R, Goodchild CS. Antinociceptive properties of propofol: involvement of spinal cord gamma-aminobutyric acid(A) receptors. J Pharmacol Exp Ther. 1997;282:1181–6.PubMed
115.
go back to reference Jewett BA, Gibbs LM, Tarasiuk A, Kendig JJ. Propofol and barbiturate depression of spinal nociceptive neurotransmission. Anesthesiology. 1992;77:1148–54.PubMed Jewett BA, Gibbs LM, Tarasiuk A, Kendig JJ. Propofol and barbiturate depression of spinal nociceptive neurotransmission. Anesthesiology. 1992;77:1148–54.PubMed
116.
go back to reference Nishiyama T, Matsukawa T, Hanaoka K. Intrathecal propofol has analgesic effects on inflammation-induced pain in rats. Can J Anaesth. 2004;51:899–904.PubMed Nishiyama T, Matsukawa T, Hanaoka K. Intrathecal propofol has analgesic effects on inflammation-induced pain in rats. Can J Anaesth. 2004;51:899–904.PubMed
117.
go back to reference Peng K, Liu H-Y, Wu S-R, Liu H, Zhang Z-C, Ji F-H. Does propofol anesthesia lead to less postoperative pain compared with inhalational anesthesia? A systematic review and meta-analysis. Anesth Analg. 2016;123:846–58.PubMed Peng K, Liu H-Y, Wu S-R, Liu H, Zhang Z-C, Ji F-H. Does propofol anesthesia lead to less postoperative pain compared with inhalational anesthesia? A systematic review and meta-analysis. Anesth Analg. 2016;123:846–58.PubMed
118.
go back to reference Borgeat A, Stirnemann HR. Antiemetische Wirkung von propofol. Anaesthesist. 1998;47:918–24.PubMed Borgeat A, Stirnemann HR. Antiemetische Wirkung von propofol. Anaesthesist. 1998;47:918–24.PubMed
119.
go back to reference Sneyd JR, Carr A, Byrom WD, Bilski AJ. A meta-analysis of nausea and vomiting following maintenance of anaesthesia with propofol or inhalational agents. Eur J Anaesthesiol. 1998;15:433–45.PubMed Sneyd JR, Carr A, Byrom WD, Bilski AJ. A meta-analysis of nausea and vomiting following maintenance of anaesthesia with propofol or inhalational agents. Eur J Anaesthesiol. 1998;15:433–45.PubMed
120.
go back to reference Reddi KK. Nature and possible origin of human serum ribonuclease. Biochem Biophys Res Commun. 1975;67:110–8.PubMed Reddi KK. Nature and possible origin of human serum ribonuclease. Biochem Biophys Res Commun. 1975;67:110–8.PubMed
121.
go back to reference Cavazzuti M, Porro CA, Barbieri A, Galetti A. Brain and spinal cord metabolic activity during propofol anaesthesia. Br J Anaesth. 1991;66:490–5.PubMed Cavazzuti M, Porro CA, Barbieri A, Galetti A. Brain and spinal cord metabolic activity during propofol anaesthesia. Br J Anaesth. 1991;66:490–5.PubMed
122.
go back to reference Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. 1995;83:66–76.PubMed Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. 1995;83:66–76.PubMed
123.
go back to reference Fox J, Gelb AW, Enns J, Murkin JM, Farrar JK, Manninen PH. The responsiveness of cerebral blood flow to changes in arterial carbon dioxide is maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology. 1992;77:453–6.PubMed Fox J, Gelb AW, Enns J, Murkin JM, Farrar JK, Manninen PH. The responsiveness of cerebral blood flow to changes in arterial carbon dioxide is maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology. 1992;77:453–6.PubMed
124.
go back to reference Kotani Y, Nakajima Y, Hasegawa T, Satoh M, Nagase H, Shimazawa M, et al. Propofol exerts greater neuroprotection with disodium edetate than without it. J Cereb Blood Flow Metab. 2008;28:354–66.PubMed Kotani Y, Nakajima Y, Hasegawa T, Satoh M, Nagase H, Shimazawa M, et al. Propofol exerts greater neuroprotection with disodium edetate than without it. J Cereb Blood Flow Metab. 2008;28:354–66.PubMed
125.
go back to reference Fan W, Zhu X, Wu L, Wu Z, Li D, Huang F, et al. Propofol: an anesthetic possessing neuroprotective effects. Eur Rev Med Pharmacol Sci. 2015;19:1520–9.PubMed Fan W, Zhu X, Wu L, Wu Z, Li D, Huang F, et al. Propofol: an anesthetic possessing neuroprotective effects. Eur Rev Med Pharmacol Sci. 2015;19:1520–9.PubMed
126.
127.
go back to reference Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980–1002.PubMed Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980–1002.PubMed
128.
go back to reference Samra SK, Sneyd JR, Ross DA, Henry TR. Effects of propofol sedation on seizures and intracranially recorded epileptiform activity in patients with partial epilepsy. Anesthesiology. 1995;82:843–51.PubMed Samra SK, Sneyd JR, Ross DA, Henry TR. Effects of propofol sedation on seizures and intracranially recorded epileptiform activity in patients with partial epilepsy. Anesthesiology. 1995;82:843–51.PubMed
129.
go back to reference Hug CC, McLeskey CH, Nahrwold ML, Roizen MF, Stanley TH, Thisted RA, et al. Hemodynamic effects of propofol: data from over 25,000 patients. Anesth Analg. 1993;77:S21–9.PubMed Hug CC, McLeskey CH, Nahrwold ML, Roizen MF, Stanley TH, Thisted RA, et al. Hemodynamic effects of propofol: data from over 25,000 patients. Anesth Analg. 1993;77:S21–9.PubMed
130.
go back to reference Ebert TJ. Sympathetic and hemodynamic effects of moderate and deep sedation with propofol in humans. Anesthesiology. 2005;103:20–4.PubMed Ebert TJ. Sympathetic and hemodynamic effects of moderate and deep sedation with propofol in humans. Anesthesiology. 2005;103:20–4.PubMed
131.
go back to reference Sprung J, Ogletree-Hughes ML, McConnell BK, Zakhary DR, Smolsky SM, Moravec CS. The effects of propofol on the contractility of failing and nonfailing human heart muscles. Anesth Analg. 2001;93:550–9.PubMed Sprung J, Ogletree-Hughes ML, McConnell BK, Zakhary DR, Smolsky SM, Moravec CS. The effects of propofol on the contractility of failing and nonfailing human heart muscles. Anesth Analg. 2001;93:550–9.PubMed
132.
go back to reference Kazama T, Ikeda K, Morita K, Kikura M, Doi M, Ikeda T, et al. Comparison of the effect-site k(eO)s of propofol for blood pressure and EEG bispectral index in elderly and younger patients. Anesthesiology. 1999;90:1517–27.PubMed Kazama T, Ikeda K, Morita K, Kikura M, Doi M, Ikeda T, et al. Comparison of the effect-site k(eO)s of propofol for blood pressure and EEG bispectral index in elderly and younger patients. Anesthesiology. 1999;90:1517–27.PubMed
133.
go back to reference Xia Z, Godin DV, Ansley DM. Application of high-dose propofol during ischemia improves postischemic function of rat hearts: effects on tissue antioxidant capacity. Can J Physiol Pharmacol. 2004;82:919–26.PubMed Xia Z, Godin DV, Ansley DM. Application of high-dose propofol during ischemia improves postischemic function of rat hearts: effects on tissue antioxidant capacity. Can J Physiol Pharmacol. 2004;82:919–26.PubMed
134.
go back to reference Li F, Yuan Y. Meta-analysis of the cardioprotective effect of sevoflurane versus propofol during cardiac surgery. BMC Anesthesiol. 2015;15:128.PubMedPubMedCentral Li F, Yuan Y. Meta-analysis of the cardioprotective effect of sevoflurane versus propofol during cardiac surgery. BMC Anesthesiol. 2015;15:128.PubMedPubMedCentral
135.
go back to reference Huang Z, Zhong X, Irwin MG, Ji S, Wong GT, Liu Y, et al. Synergy of isoflurane preconditioning and propofol postconditioning reduces myocardial reperfusion injury in patients. Clin Sci. (Lond). 2011;121:57–69.PubMed Huang Z, Zhong X, Irwin MG, Ji S, Wong GT, Liu Y, et al. Synergy of isoflurane preconditioning and propofol postconditioning reduces myocardial reperfusion injury in patients. Clin Sci. (Lond). 2011;121:57–69.PubMed
136.
go back to reference Nieuwenhuijs D, Sarton E, Teppema L, Dahan A. Propofol for monitored anesthesia care: implications on hypoxic control of cardiorespiratory responses. Anesthesiology. 2000;92:46–54.PubMed Nieuwenhuijs D, Sarton E, Teppema L, Dahan A. Propofol for monitored anesthesia care: implications on hypoxic control of cardiorespiratory responses. Anesthesiology. 2000;92:46–54.PubMed
137.
go back to reference Nieuwenhuijs D, Sarton E, Teppema LJ, Kruyt E, Olievier I, van Kleef J, et al. Respiratory sites of action of propofol: absence of depression of peripheral chemoreflex loop by low-dose propofol. Anesthesiology. 2001;95:889–95.PubMed Nieuwenhuijs D, Sarton E, Teppema LJ, Kruyt E, Olievier I, van Kleef J, et al. Respiratory sites of action of propofol: absence of depression of peripheral chemoreflex loop by low-dose propofol. Anesthesiology. 2001;95:889–95.PubMed
138.
go back to reference Jonsson MM, Lindahl SGE, Eriksson LI. Effect of propofol on carotid body chemosensitivity and cholinergic chemotransduction. Anesthesiology. 2005;102:110–6.PubMed Jonsson MM, Lindahl SGE, Eriksson LI. Effect of propofol on carotid body chemosensitivity and cholinergic chemotransduction. Anesthesiology. 2005;102:110–6.PubMed
139.
go back to reference Yamakage M, Kamada Y, Toriyabe M, Honma Y, Namiki A. Changes in respiratory pattern and arterial blood gases during sedation with propofol or midazolam in spinal anesthesia. J Clin Anesth. 1999;11:375–9.PubMed Yamakage M, Kamada Y, Toriyabe M, Honma Y, Namiki A. Changes in respiratory pattern and arterial blood gases during sedation with propofol or midazolam in spinal anesthesia. J Clin Anesth. 1999;11:375–9.PubMed
140.
go back to reference McKeating K, Bali IM, Dundee JW. The effects of thiopentone and propofol on upper airway integrity. Anaesthesia. 1988;43:638–40.PubMed McKeating K, Bali IM, Dundee JW. The effects of thiopentone and propofol on upper airway integrity. Anaesthesia. 1988;43:638–40.PubMed
141.
go back to reference Kabara S, Hirota K, Hashiba E, Yoshioka H, Kudo T, Sato T, et al. Comparison of relaxant effects of propofol on methacholine-induced bronchoconstriction in dogs with and without vagotomy. Br J Anaesth. 2001;86:249–53.PubMed Kabara S, Hirota K, Hashiba E, Yoshioka H, Kudo T, Sato T, et al. Comparison of relaxant effects of propofol on methacholine-induced bronchoconstriction in dogs with and without vagotomy. Br J Anaesth. 2001;86:249–53.PubMed
142.
go back to reference Nakayama M, Murray PA. Ketamine preserves and propofol potentiates hypoxic pulmonary vasoconstriction compared with the conscious state in chronically instrumented dogs. Anesthesiology. 1999;91:760–71.PubMed Nakayama M, Murray PA. Ketamine preserves and propofol potentiates hypoxic pulmonary vasoconstriction compared with the conscious state in chronically instrumented dogs. Anesthesiology. 1999;91:760–71.PubMed
143.
go back to reference Meierhenrich R, Gauss A, Mühling B, Bracht H, Radermacher P, Georgieff M, et al. The effect of propofol and desflurane anaesthesia on human hepatic blood flow: a pilot study. Anaesthesia. 2010;65:1085–93.PubMed Meierhenrich R, Gauss A, Mühling B, Bracht H, Radermacher P, Georgieff M, et al. The effect of propofol and desflurane anaesthesia on human hepatic blood flow: a pilot study. Anaesthesia. 2010;65:1085–93.PubMed
144.
go back to reference Demeure dit Latte D, Bernard JM, Blanloeil Y, Peltier P, Francois T, Chatal JF. Induction of anaesthesia by propofol and hepatic blood flow in the rabbit. Clin. Physiol. 1995;15:515–22. Demeure dit Latte D, Bernard JM, Blanloeil Y, Peltier P, Francois T, Chatal JF. Induction of anaesthesia by propofol and hepatic blood flow in the rabbit. Clin. Physiol. 1995;15:515–22.
145.
go back to reference Zhu T, Pang Q, McCluskey SA, Luo C. Effect of propofol on hepatic blood flow and oxygen balance in rabbits. Can J Anaesth. 2008;55:364–70.PubMed Zhu T, Pang Q, McCluskey SA, Luo C. Effect of propofol on hepatic blood flow and oxygen balance in rabbits. Can J Anaesth. 2008;55:364–70.PubMed
146.
go back to reference Wouters PF, Van de Velde MA, Marcus MA, Deruyter HA, Van Aken H. Hemodynamic changes during induction of anesthesia with eltanolone and propofol in dogs. Anesth Analg. 1995;81:125–31. Wouters PF, Van de Velde MA, Marcus MA, Deruyter HA, Van Aken H. Hemodynamic changes during induction of anesthesia with eltanolone and propofol in dogs. Anesth Analg. 1995;81:125–31.
147.
go back to reference Palanca BJ, Mashour GA, Avidan MS. Processed electroencephalogram in depth of anesthesia monitoring. Curr Opin Anaesthesiol. 2009;22:553–9.PubMed Palanca BJ, Mashour GA, Avidan MS. Processed electroencephalogram in depth of anesthesia monitoring. Curr Opin Anaesthesiol. 2009;22:553–9.PubMed
148.
go back to reference Bruhn J, Myles PS, Sneyd R, Struys MMRF. Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? Br J Anaesth. 2006;97:85–94.PubMed Bruhn J, Myles PS, Sneyd R, Struys MMRF. Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? Br J Anaesth. 2006;97:85–94.PubMed
149.
go back to reference Sahinovic MM, Eleveld DJ, Miyabe-Nishiwaki T, Struys MMRF, Absalom AR. Pharmacokinetics and pharmacodynamics of propofol: changes in patients with frontal brain tumours. Br J Anaesth. 2017;118:901–9.PubMed Sahinovic MM, Eleveld DJ, Miyabe-Nishiwaki T, Struys MMRF, Absalom AR. Pharmacokinetics and pharmacodynamics of propofol: changes in patients with frontal brain tumours. Br J Anaesth. 2017;118:901–9.PubMed
150.
go back to reference Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, et al. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90:1502–16.PubMed Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, et al. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90:1502–16.PubMed
151.
go back to reference Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61:45–58.PubMed Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61:45–58.PubMed
152.
go back to reference Seo JH, Goo EK, Song IA, Park SH, Park HP, Jeon YT, et al. Influence of a modified propofol equilibration rate constant (k(e0)) on the effect-site concentration at loss and recovery of consciousness with the Marsh model. Anaesthesia. 2013;68:1232–8.PubMed Seo JH, Goo EK, Song IA, Park SH, Park HP, Jeon YT, et al. Influence of a modified propofol equilibration rate constant (k(e0)) on the effect-site concentration at loss and recovery of consciousness with the Marsh model. Anaesthesia. 2013;68:1232–8.PubMed
153.
go back to reference Sahinovic MM, Absalom AR, Struys MMRF. Administration and monitoring of intravenous anesthetics. Curr Opin Anaesthesiol. 2010;23:734–40.PubMed Sahinovic MM, Absalom AR, Struys MMRF. Administration and monitoring of intravenous anesthetics. Curr Opin Anaesthesiol. 2010;23:734–40.PubMed
154.
go back to reference van den Berg JP, Vereecke HEM, Proost JH, Eleveld DJ, Wietasch JKG, Absalom AR, et al. Pharmacokinetic and pharmacodynamic interactions in anaesthesia. A review of current knowledge and how it can be used to optimize anaesthetic drug administration. Br J Anaesth. 2017;118:44–57.PubMed van den Berg JP, Vereecke HEM, Proost JH, Eleveld DJ, Wietasch JKG, Absalom AR, et al. Pharmacokinetic and pharmacodynamic interactions in anaesthesia. A review of current knowledge and how it can be used to optimize anaesthetic drug administration. Br J Anaesth. 2017;118:44–57.PubMed
155.
go back to reference Michaels MR, Stauffer GL, Haas DP. Propofol compatibility with other intravenous drug products: two new methods of evaluating IV emulsion compatibility. Ann Pharmacother. 1996;30:228–32.PubMed Michaels MR, Stauffer GL, Haas DP. Propofol compatibility with other intravenous drug products: two new methods of evaluating IV emulsion compatibility. Ann Pharmacother. 1996;30:228–32.PubMed
156.
go back to reference Schmidt S, Gonzalez D, Derendorf H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J Pharm Sci. 2010;99:1107–22.PubMed Schmidt S, Gonzalez D, Derendorf H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J Pharm Sci. 2010;99:1107–22.PubMed
157.
go back to reference Wilson ES, McKinlay S, Crawford JM, Robb HM. The influence of esmolol on the dose of propofol required for induction of anaesthesia. Anaesthesia. 2004;59:122–6.PubMed Wilson ES, McKinlay S, Crawford JM, Robb HM. The influence of esmolol on the dose of propofol required for induction of anaesthesia. Anaesthesia. 2004;59:122–6.PubMed
158.
go back to reference Vuyk J. Pharmacokinetic and pharmacodynamic interactions between opioids and propofol. J Clin Anesth. 1997;9:23S–6S.PubMed Vuyk J. Pharmacokinetic and pharmacodynamic interactions between opioids and propofol. J Clin Anesth. 1997;9:23S–6S.PubMed
159.
go back to reference Perry S, Whelan E, Shay S, Wood A, Wppd M. Effect if I.V. anesthesia with propofol on drug distribution and metabolism in the dog. Br J Anaesth. 1991;66:66–72.PubMed Perry S, Whelan E, Shay S, Wood A, Wppd M. Effect if I.V. anesthesia with propofol on drug distribution and metabolism in the dog. Br J Anaesth. 1991;66:66–72.PubMed
160.
go back to reference Friedericy HJ, Bovill JG. The role of the cytochrome P450 system in drug interactions in anaesthesia. Baillieres Clin Anaesthesiol. 1998;12:213–28. Friedericy HJ, Bovill JG. The role of the cytochrome P450 system in drug interactions in anaesthesia. Baillieres Clin Anaesthesiol. 1998;12:213–28.
161.
go back to reference Vuyk J, Mertens MJ, Olofsen E, Burm AG, Bovill JG. Propofol anesthesia and rational opioid selection: determination of optimal EC50-EC95 propofol-opioid concentrations that assure adequate anesthesia and a rapid return of consciousness. Anesthesiology. 1997;87:1549–62.PubMed Vuyk J, Mertens MJ, Olofsen E, Burm AG, Bovill JG. Propofol anesthesia and rational opioid selection: determination of optimal EC50-EC95 propofol-opioid concentrations that assure adequate anesthesia and a rapid return of consciousness. Anesthesiology. 1997;87:1549–62.PubMed
162.
go back to reference Le Guellec C, Lacarelle B, Villard PH, Point H, Catalin J, Durand A. Glucuronidation of propofol in microsomal fractions from various tissues and species including humans: effect of different drugs. Anesth Analg. 1995;81:855–61.PubMed Le Guellec C, Lacarelle B, Villard PH, Point H, Catalin J, Durand A. Glucuronidation of propofol in microsomal fractions from various tissues and species including humans: effect of different drugs. Anesth Analg. 1995;81:855–61.PubMed
163.
164.
go back to reference Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL. Response surface model for anesthetic drug interactions. Anesthesiology. 2000;92:1603–16.PubMed Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL. Response surface model for anesthetic drug interactions. Anesthesiology. 2000;92:1603–16.PubMed
165.
go back to reference Short TG, Plummer JL, Chui PT. Hypnotic and anaesthetic interactions between midazolam, propofol and alfentanil. Br J Anaesth. 1992;69:162–7.PubMed Short TG, Plummer JL, Chui PT. Hypnotic and anaesthetic interactions between midazolam, propofol and alfentanil. Br J Anaesth. 1992;69:162–7.PubMed
166.
go back to reference Short TG, Chui PT. Propofol and midazolam act synergistically in combination. Br J Anaesth. 1991;67:539–45.PubMed Short TG, Chui PT. Propofol and midazolam act synergistically in combination. Br J Anaesth. 1991;67:539–45.PubMed
167.
go back to reference Fidler M, Kern SE. Flexible interaction model for complex interactions of multiple anesthetics. Anesthesiology. 2006;105:286–96.PubMed Fidler M, Kern SE. Flexible interaction model for complex interactions of multiple anesthetics. Anesthesiology. 2006;105:286–96.PubMed
168.
go back to reference Vinik HR, Bradley EL, Kissin I. Triple anesthetic combination: propofol-midazolam-alfentanil. Anesth Analg. 1994;78:354–8.PubMed Vinik HR, Bradley EL, Kissin I. Triple anesthetic combination: propofol-midazolam-alfentanil. Anesth Analg. 1994;78:354–8.PubMed
169.
go back to reference Wilder-Smith OH, Ravussin P, Decosterd L, Despland P, Bissonnette B. Midazolam premedication reduces propofol dose requirements for multiple anesthetic endpoints. Can J Anaesth. 2001;48:439–45.PubMed Wilder-Smith OH, Ravussin P, Decosterd L, Despland P, Bissonnette B. Midazolam premedication reduces propofol dose requirements for multiple anesthetic endpoints. Can J Anaesth. 2001;48:439–45.PubMed
170.
go back to reference McClune S, McKay AC, Wright PM, Patterson CC, Clarke RS. Synergistic interaction between midazolam and propofol. Br J Anaesth. 1992;69:240–5.PubMed McClune S, McKay AC, Wright PM, Patterson CC, Clarke RS. Synergistic interaction between midazolam and propofol. Br J Anaesth. 1992;69:240–5.PubMed
171.
go back to reference Lichtenbelt BJ, Olofsen E, Dahan A, van Kleef JW, Struys MMRF, Vuyk J. Propofol reduces the distribution and clearance of midazolam. Anesth Analg. 2010;110:1597–606.PubMed Lichtenbelt BJ, Olofsen E, Dahan A, van Kleef JW, Struys MMRF, Vuyk J. Propofol reduces the distribution and clearance of midazolam. Anesth Analg. 2010;110:1597–606.PubMed
172.
go back to reference Dutta S, Karol MD, Cohen T, Jones RM, Mant T. Effect of dexmedetomidine on propofol requirements in healthy subjects. J Pharm Sci. 2001;90:172–81.PubMed Dutta S, Karol MD, Cohen T, Jones RM, Mant T. Effect of dexmedetomidine on propofol requirements in healthy subjects. J Pharm Sci. 2001;90:172–81.PubMed
173.
go back to reference Peden CJ, Cloote AH, Stratford N, Prys-Roberts C. The effect of intravenous dexmedetomidine premedication on the dose requirement of propofol to induce loss of consciousness in patients receiving alfentanil. Anaesthesia. 2001;56:408–13.PubMed Peden CJ, Cloote AH, Stratford N, Prys-Roberts C. The effect of intravenous dexmedetomidine premedication on the dose requirement of propofol to induce loss of consciousness in patients receiving alfentanil. Anaesthesia. 2001;56:408–13.PubMed
174.
go back to reference Jang Y-E, Kim Y-C, Yoon H-K, Jeon Y-T, Hwang J-W, Kim E, et al. A randomized controlled trial of the effect of preoperative dexmedetomidine on the half maximal effective concentration of propofol for successful i-gel insertion without muscle relaxants. J Anesth. 2015;29:338–45.PubMed Jang Y-E, Kim Y-C, Yoon H-K, Jeon Y-T, Hwang J-W, Kim E, et al. A randomized controlled trial of the effect of preoperative dexmedetomidine on the half maximal effective concentration of propofol for successful i-gel insertion without muscle relaxants. J Anesth. 2015;29:338–45.PubMed
175.
go back to reference Hammer GB, Sam WJ, Chen MI, Golianu B, Drover DR. Determination of the pharmacodynamic interaction of propofol and dexmedetomidine during esophagogastroduodenoscopy in children. Paediatr Anaesth. 2009;19:138–44.PubMed Hammer GB, Sam WJ, Chen MI, Golianu B, Drover DR. Determination of the pharmacodynamic interaction of propofol and dexmedetomidine during esophagogastroduodenoscopy in children. Paediatr Anaesth. 2009;19:138–44.PubMed
176.
go back to reference Ngwenyama NE, Anderson J, Hoernschemeyer DG, Tobias JD. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents. Paediatr Anaesth. 2008;18:1190–5.PubMed Ngwenyama NE, Anderson J, Hoernschemeyer DG, Tobias JD. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents. Paediatr Anaesth. 2008;18:1190–5.PubMed
177.
go back to reference Ohtani N, Kida K, Shoji K, Yasui Y, Masaki E. Recovery profiles from dexmedetomidine as a general anesthetic adjuvant in patients undergoing lower abdominal surgery. Anesth Analg. 2008;107:1871–4.PubMed Ohtani N, Kida K, Shoji K, Yasui Y, Masaki E. Recovery profiles from dexmedetomidine as a general anesthetic adjuvant in patients undergoing lower abdominal surgery. Anesth Analg. 2008;107:1871–4.PubMed
178.
go back to reference Coppens MJ, Versichelen LFM, Mortier EP. Struys MMRF. Do we need inhaled anaesthetics to blunt arousal, haemodynamic responses to intubation after i.v. induction with propofol, remifentanil, rocuronium? Br J Anaesth. 2006;97:835–41.PubMed Coppens MJ, Versichelen LFM, Mortier EP. Struys MMRF. Do we need inhaled anaesthetics to blunt arousal, haemodynamic responses to intubation after i.v. induction with propofol, remifentanil, rocuronium? Br J Anaesth. 2006;97:835–41.PubMed
179.
go back to reference Diz JC, Del Río R, Lamas A, Mendoza M, Durán M, Ferreira LM. Analysis of pharmacodynamic interaction of sevoflurane and propofol on Bispectral Index during general anaesthesia using a response surface model. Br J Anaesth. 2010;104:733–9.PubMed Diz JC, Del Río R, Lamas A, Mendoza M, Durán M, Ferreira LM. Analysis of pharmacodynamic interaction of sevoflurane and propofol on Bispectral Index during general anaesthesia using a response surface model. Br J Anaesth. 2010;104:733–9.PubMed
180.
go back to reference Harris RS, Lazar O, Johansen JW, Sebel PS. Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology. 2006;104:1170–5.PubMed Harris RS, Lazar O, Johansen JW, Sebel PS. Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology. 2006;104:1170–5.PubMed
181.
go back to reference Schumacher PM, Dossche J, Mortier EP, Luginbuehl M, Bouillon TW, Struys MMRF. Response surface modeling of the interaction between propofol and sevoflurane. Anesthesiology. 2009;111:790–804.PubMed Schumacher PM, Dossche J, Mortier EP, Luginbuehl M, Bouillon TW, Struys MMRF. Response surface modeling of the interaction between propofol and sevoflurane. Anesthesiology. 2009;111:790–804.PubMed
182.
go back to reference Sebel LE, Richardson JE, Singh SP, Bell SV, Jenkins A. Additive effects of sevoflurane and propofol on gamma-aminobutyric acid receptor function. Anesthesiology. 2006;104:1176–83.PubMed Sebel LE, Richardson JE, Singh SP, Bell SV, Jenkins A. Additive effects of sevoflurane and propofol on gamma-aminobutyric acid receptor function. Anesthesiology. 2006;104:1176–83.PubMed
183.
go back to reference Kazama T, Ikeda K, Morita K. Reduction by fentanyl of the Cp50 values of propofol and hemodynamic responses to various noxious stimuli. Anesthesiology. 1997;87:213–27.PubMed Kazama T, Ikeda K, Morita K. Reduction by fentanyl of the Cp50 values of propofol and hemodynamic responses to various noxious stimuli. Anesthesiology. 1997;87:213–27.PubMed
184.
go back to reference Smith C, McEwan AI, Jhaveri R, Wilkinson M, Goodman D, Smith LR, et al. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology. 1994;81:820–8 (discussion 26A).PubMed Smith C, McEwan AI, Jhaveri R, Wilkinson M, Goodman D, Smith LR, et al. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology. 1994;81:820–8 (discussion 26A).PubMed
185.
go back to reference Schraag S, Mohl U, Bothner U, Georgieff M. Interaction modeling of propofol and sufentanil on loss of consciousness. J Clin Anesth. 1999;11:391–6.PubMed Schraag S, Mohl U, Bothner U, Georgieff M. Interaction modeling of propofol and sufentanil on loss of consciousness. J Clin Anesth. 1999;11:391–6.PubMed
186.
go back to reference Hentgen E, Houfani M, Billard V, Capron F, Ropars J-M, Travagli JP. Propofol-sufentanil anesthesia for thyroid surgery: optimal concentrations for hemodynamic and electroencephalogram stability, and recovery features. Anesth Analg. 2002;95:597–605.PubMed Hentgen E, Houfani M, Billard V, Capron F, Ropars J-M, Travagli JP. Propofol-sufentanil anesthesia for thyroid surgery: optimal concentrations for hemodynamic and electroencephalogram stability, and recovery features. Anesth Analg. 2002;95:597–605.PubMed
187.
go back to reference Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, et al. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004;100:1353–72.PubMed Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, et al. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004;100:1353–72.PubMed
188.
go back to reference Kern SE, Xie G, White JL, Egan TD. A response surface analysis of propofol-remifentanil pharmacodynamic interaction in volunteers. Anesthesiology. 2004;100:1373–81.PubMed Kern SE, Xie G, White JL, Egan TD. A response surface analysis of propofol-remifentanil pharmacodynamic interaction in volunteers. Anesthesiology. 2004;100:1373–81.PubMed
189.
go back to reference Kuizenga MH, Vereecke HEM, Struys MMRF. Model-based drug administration. Curr Opin Anaesthesiol. 2016;29:475–81.PubMed Kuizenga MH, Vereecke HEM, Struys MMRF. Model-based drug administration. Curr Opin Anaesthesiol. 2016;29:475–81.PubMed
190.
go back to reference Saint-Maurice C, Cockshott ID, Douglas EJ, Ricjard MO, Harmey JL. Pharmacokinetics of propofol in young children after a single dose. Br J Anaesth. 1989;63:667–70.PubMed Saint-Maurice C, Cockshott ID, Douglas EJ, Ricjard MO, Harmey JL. Pharmacokinetics of propofol in young children after a single dose. Br J Anaesth. 1989;63:667–70.PubMed
191.
go back to reference White M, Kenny GNC. Intravenous propofol anaesthesia using a computerised infusion system. Anaesthesia. 1990;45:204–9.PubMed White M, Kenny GNC. Intravenous propofol anaesthesia using a computerised infusion system. Anaesthesia. 1990;45:204–9.PubMed
192.
go back to reference Cox EH, Knibbe CAJ, Koster VS, Langemeijer MWE, Tukker EE, Lange R, et al. Influence of different fat emulsion-based intravenous formulations on the pharmacokinetics and pharmacodynamics of propofol. Pharm Res. 1998;15:442–8.PubMed Cox EH, Knibbe CAJ, Koster VS, Langemeijer MWE, Tukker EE, Lange R, et al. Influence of different fat emulsion-based intravenous formulations on the pharmacokinetics and pharmacodynamics of propofol. Pharm Res. 1998;15:442–8.PubMed
193.
go back to reference Knibbe CAJ, Melenhorst-de Jong G, Mestrom M, Rademaker CMA, Reijnvaan AFA, Zuideveld KP, et al. Pharmacokinetics and effects of propofol 6% for short-term sedation in paediatric patients following cardiac surgery. Br J Clin Pharmacol. 2002;54:415–22.PubMedPubMedCentral Knibbe CAJ, Melenhorst-de Jong G, Mestrom M, Rademaker CMA, Reijnvaan AFA, Zuideveld KP, et al. Pharmacokinetics and effects of propofol 6% for short-term sedation in paediatric patients following cardiac surgery. Br J Clin Pharmacol. 2002;54:415–22.PubMedPubMedCentral
194.
go back to reference Knibbe CA, Aarts LP, Kuks PF, Voortman HJ, Lie-A-Huen L, Bras LJ, et al. Pharmacokinetics and pharmacodynamics of propofol 6% SAZN versus propofol 1% SAZN and Diprivan-10 for short-term sedation following coronary artery bypass surgery. Eur J Clin Pharmacol. 2000;56:89–95.PubMed Knibbe CA, Aarts LP, Kuks PF, Voortman HJ, Lie-A-Huen L, Bras LJ, et al. Pharmacokinetics and pharmacodynamics of propofol 6% SAZN versus propofol 1% SAZN and Diprivan-10 for short-term sedation following coronary artery bypass surgery. Eur J Clin Pharmacol. 2000;56:89–95.PubMed
195.
go back to reference Knibbe CAJ, Zuideveld KP, DeJongh J, Kuks PFM, Aarts LPHJ, Danhof M. Population pharmacokinetic and pharmacodynamic modeling of propofol for long-term sedation in critically ill patients: a comparison between propofol 6% and propofol 1%. Clin Pharmacol Ther. 2002;72:670–84.PubMed Knibbe CAJ, Zuideveld KP, DeJongh J, Kuks PFM, Aarts LPHJ, Danhof M. Population pharmacokinetic and pharmacodynamic modeling of propofol for long-term sedation in critically ill patients: a comparison between propofol 6% and propofol 1%. Clin Pharmacol Ther. 2002;72:670–84.PubMed
196.
go back to reference Servin F, Farinotti R, Haberer JP, Desmonts JM. Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxide. A clinical and pharmacokinetic study. Anesthesiology. 1993;78:657–65.PubMed Servin F, Farinotti R, Haberer JP, Desmonts JM. Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxide. A clinical and pharmacokinetic study. Anesthesiology. 1993;78:657–65.PubMed
Metadata
Title
Clinical Pharmacokinetics and Pharmacodynamics of Propofol
Authors
Marko M. Sahinovic
Michel M. R. F. Struys
Anthony R. Absalom
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 12/2018
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-018-0672-3

Other articles of this Issue 12/2018

Clinical Pharmacokinetics 12/2018 Go to the issue