Skip to main content
Top
Published in: Clinical Pharmacokinetics 8/2016

01-08-2016 | Original Research Article

Development of a Physiologically Based Pharmacokinetic/Pharmacodynamic Model to Predict the Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics Represented by Receptor/Transporter Occupancy of Central Nervous System Drugs

Authors: Saeed Alqahtani, Amal Kaddoumi

Published in: Clinical Pharmacokinetics | Issue 8/2016

Login to get access

Abstract

Background

Genetic polymorphisms are major determinants of individual variability in a drug’s efficacy and safety, which is one of the main challenges in current clinical practice and drug development. The aim of this work was to develop a physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) model to predict changes in the PK parameters associated with genetic polymorphisms and the impact of these changes on drugs’ PD effect.

Methods

We developed PBPK models for two central nervous system (CNS) medications, namely quetiapine and fluvoxamine that are substrates for polymorphic enzymes by incorporating the corresponding alterations in the enzyme activity and/or abundance. Then, the PBPK models were linked to PD models to predict the influence of these changes on the drugs’ PD effect.

Results

Application of the PBPK models for prediction of phenotypic differences in the PKs compared favorably with reported clinical data. In addition, the PBPK/PD models were able to describe the relationship between the drugs’ PD effect and their unbound fractions in the brain and predict changes in receptor/transporter occupancy percentages, obtained from positron emission tomography occupancy studies, associated with genetic variations.

Conclusions

This work provides a simplified approach to predict the influence of genetic polymorphisms on the PK parameters and associated PD effect for CNS drugs. The impact of these polymorphisms on the drugs’ PD requires further in vivo validation.
Appendix
Available only for authorised users
Literature
5.
go back to reference Chetty M, Rose RH, Abduljalil K, Patel N, Lu G, Cain T, et al. Applications of linking PBPK and PD models to predict the impact of genotypic variability, formulation differences, differences in target binding capacity and target site drug concentrations on drug responses and variability. Front Pharmacol. 2014;5:258. doi:10.3389/fphar.2014.00258.CrossRefPubMedPubMedCentral Chetty M, Rose RH, Abduljalil K, Patel N, Lu G, Cain T, et al. Applications of linking PBPK and PD models to predict the impact of genotypic variability, formulation differences, differences in target binding capacity and target site drug concentrations on drug responses and variability. Front Pharmacol. 2014;5:258. doi:10.​3389/​fphar.​2014.​00258.CrossRefPubMedPubMedCentral
8.
go back to reference de Lange EC, Ravenstijn PG, Groenendaal D, van Steeg TJ. Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J. 2005;7(3):E532–43. doi:10.1208/aapsj070354.CrossRefPubMedPubMedCentral de Lange EC, Ravenstijn PG, Groenendaal D, van Steeg TJ. Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J. 2005;7(3):E532–43. doi:10.​1208/​aapsj070354.CrossRefPubMedPubMedCentral
9.
go back to reference Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des. 2009;15(22):2550–9.CrossRefPubMedPubMedCentral Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des. 2009;15(22):2550–9.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57. doi:10.1002/jps.20502.CrossRefPubMed Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57. doi:10.​1002/​jps.​20502.CrossRefPubMed
14.
16.
go back to reference Johnson TN, Zhou D, Bui KH. Development of physiologically based pharmacokinetic model to evaluate the relative systemic exposure to quetiapine after administration of IR and XR formulations to adults, children and adolescents. Biopharm Drug Dispos. 2014;35(6):341–52. doi:10.1002/bdd.1899.CrossRefPubMed Johnson TN, Zhou D, Bui KH. Development of physiologically based pharmacokinetic model to evaluate the relative systemic exposure to quetiapine after administration of IR and XR formulations to adults, children and adolescents. Biopharm Drug Dispos. 2014;35(6):341–52. doi:10.​1002/​bdd.​1899.CrossRefPubMed
20.
go back to reference Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91. doi:10.1038/86882.CrossRefPubMed Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91. doi:10.​1038/​86882.CrossRefPubMed
22.
go back to reference Nikisch G, Baumann P, Oneda B, Kiessling B, Weisser H, Mathe AA, et al. Cytochrome P450 and ABCB1 genetics: association with quetiapine and norquetiapine plasma and cerebrospinal fluid concentrations and with clinical response in patients suffering from schizophrenia: a pilot study. J Psychopharmacol. 2011;25(7):896–907. doi:10.1177/0269881110389208.CrossRefPubMed Nikisch G, Baumann P, Oneda B, Kiessling B, Weisser H, Mathe AA, et al. Cytochrome P450 and ABCB1 genetics: association with quetiapine and norquetiapine plasma and cerebrospinal fluid concentrations and with clinical response in patients suffering from schizophrenia: a pilot study. J Psychopharmacol. 2011;25(7):896–907. doi:10.​1177/​0269881110389208​.CrossRefPubMed
24.
go back to reference Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76. doi:10.1002/jps.20322.CrossRefPubMed Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76. doi:10.​1002/​jps.​20322.CrossRefPubMed
25.
go back to reference DeVane CL. Metabolism and pharmacokinetics of selective serotonin reuptake inhibitors. Cell Mol Neurobiol. 1999;19(4):443–66.CrossRefPubMed DeVane CL. Metabolism and pharmacokinetics of selective serotonin reuptake inhibitors. Cell Mol Neurobiol. 1999;19(4):443–66.CrossRefPubMed
26.
go back to reference Overmars H, Scherpenisse PM, Post LC. Fluvoxamine maleate: metabolism in man. Eur J Drug Metab Pharmacokinet. 1983;8(3):269–80.CrossRefPubMed Overmars H, Scherpenisse PM, Post LC. Fluvoxamine maleate: metabolism in man. Eur J Drug Metab Pharmacokinet. 1983;8(3):269–80.CrossRefPubMed
27.
go back to reference Spigset O, Axelsson S, Norstrom A, Hagg S, Dahlqvist R. The major fluvoxamine metabolite in urine is formed by CYP2D6. Eur J Clin Pharmacol. 2001;57(9):653–8.CrossRefPubMed Spigset O, Axelsson S, Norstrom A, Hagg S, Dahlqvist R. The major fluvoxamine metabolite in urine is formed by CYP2D6. Eur J Clin Pharmacol. 2001;57(9):653–8.CrossRefPubMed
29.
go back to reference Yao C, Kunze KL, Trager WF, Kharasch ED, Levy RH. Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos. 2003;31(5):565–71.CrossRefPubMed Yao C, Kunze KL, Trager WF, Kharasch ED, Levy RH. Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos. 2003;31(5):565–71.CrossRefPubMed
30.
go back to reference Strauss WL, Layton ME, Dager SR. Brain elimination half-life of fluvoxamine measured by 19F magnetic resonance spectroscopy. Am J Psychiatry. 1998;155(3):380–4.CrossRefPubMed Strauss WL, Layton ME, Dager SR. Brain elimination half-life of fluvoxamine measured by 19F magnetic resonance spectroscopy. Am J Psychiatry. 1998;155(3):380–4.CrossRefPubMed
31.
33.
go back to reference Nord M, Nyberg S, Brogren J, Jucaite A, Halldin C, Farde L. Comparison of D(2) dopamine receptor occupancy after oral administration of quetiapine fumarate immediate-release and extended-release formulations in healthy subjects. Int J Neuropsychopharmacol. 2011;14(10):1357–66. doi:10.1017/S1461145711000514.CrossRefPubMedPubMedCentral Nord M, Nyberg S, Brogren J, Jucaite A, Halldin C, Farde L. Comparison of D(2) dopamine receptor occupancy after oral administration of quetiapine fumarate immediate-release and extended-release formulations in healthy subjects. Int J Neuropsychopharmacol. 2011;14(10):1357–66. doi:10.​1017/​S146114571100051​4.CrossRefPubMedPubMedCentral
34.
go back to reference Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry. 2000;57(6):553–9.CrossRefPubMed Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry. 2000;57(6):553–9.CrossRefPubMed
37.
go back to reference Boulton DW, DeVane CL, Liston HL, Markowitz JS. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71(2):163–9.CrossRefPubMed Boulton DW, DeVane CL, Liston HL, Markowitz JS. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71(2):163–9.CrossRefPubMed
38.
go back to reference El Ela AA, Hartter S, Schmitt U, Hiemke C, Spahn-Langguth H, Langguth P. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds: implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56(8):967–75. doi:10.1211/0022357043969.CrossRefPubMed El Ela AA, Hartter S, Schmitt U, Hiemke C, Spahn-Langguth H, Langguth P. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds: implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56(8):967–75. doi:10.​1211/​0022357043969.CrossRefPubMed
40.
go back to reference Schmitt U, Kirschbaum KM, Poller B, Kusch-Poddar M, Drewe J, Hiemke C, et al. In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Pharmacol Biochem Behav. 2012;102(2):312–20. doi:10.1016/j.pbb.2012.04.002.CrossRefPubMed Schmitt U, Kirschbaum KM, Poller B, Kusch-Poddar M, Drewe J, Hiemke C, et al. In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Pharmacol Biochem Behav. 2012;102(2):312–20. doi:10.​1016/​j.​pbb.​2012.​04.​002.CrossRefPubMed
41.
go back to reference Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001;11(9):773–9.CrossRefPubMed Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001;11(9):773–9.CrossRefPubMed
42.
go back to reference Wilde MI, Plosker GL, Benfield P. Fluvoxamine: an updated review of its pharmacology, and therapeutic use in depressive illness. Drugs. 1993;46(5):895–924.CrossRefPubMed Wilde MI, Plosker GL, Benfield P. Fluvoxamine: an updated review of its pharmacology, and therapeutic use in depressive illness. Drugs. 1993;46(5):895–924.CrossRefPubMed
44.
go back to reference Geldof M, Freijer J, van Beijsterveldt L, Timmerman P, Ahnaou A, Drinkenburg WH, et al. Population pharmacokinetic model of fluvoxamine in rats: utility for application in animal behavioral studies. Eur J Pharm Sci. 2007;30(1):45–55. doi:10.1016/j.ejps.2006.10.001.CrossRefPubMed Geldof M, Freijer J, van Beijsterveldt L, Timmerman P, Ahnaou A, Drinkenburg WH, et al. Population pharmacokinetic model of fluvoxamine in rats: utility for application in animal behavioral studies. Eur J Pharm Sci. 2007;30(1):45–55. doi:10.​1016/​j.​ejps.​2006.​10.​001.CrossRefPubMed
46.
go back to reference Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002;303(3):1029–37. doi:10.1124/jpet.102.039255.CrossRefPubMed Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002;303(3):1029–37. doi:10.​1124/​jpet.​102.​039255.CrossRefPubMed
Metadata
Title
Development of a Physiologically Based Pharmacokinetic/Pharmacodynamic Model to Predict the Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics Represented by Receptor/Transporter Occupancy of Central Nervous System Drugs
Authors
Saeed Alqahtani
Amal Kaddoumi
Publication date
01-08-2016
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 8/2016
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-016-0367-6

Other articles of this Issue 8/2016

Clinical Pharmacokinetics 8/2016 Go to the issue