Skip to main content
Top
Published in: BioDrugs 2/2016

01-04-2016 | Leading Article

Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs)

Authors: Kerstin Nagel-Wolfrum, Fabian Möller, Inessa Penner, Timor Baasov, Uwe Wolfrum

Published in: BioDrugs | Issue 2/2016

Login to get access

Abstract

In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12 % of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.
Literature
2.
go back to reference Mort M, Ivanov D, Cooper DN, Chuzhanova NA. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat. 2008;29:1037–47.PubMedCrossRef Mort M, Ivanov D, Cooper DN, Chuzhanova NA. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat. 2008;29:1037–47.PubMedCrossRef
4.
go back to reference Overlack N, Goldmann T, Wolfrum U, Nagel-Wolfrum K. Current therapeutic strategies for human Usher syndrome. In: Ahuja S, editor. Usher syndrome: pathogenesis, diagnosis and therapy. New York: Nova Science Publishers, Inc.; 2011. p. 377–95. Overlack N, Goldmann T, Wolfrum U, Nagel-Wolfrum K. Current therapeutic strategies for human Usher syndrome. In: Ahuja S, editor. Usher syndrome: pathogenesis, diagnosis and therapy. New York: Nova Science Publishers, Inc.; 2011. p. 377–95.
5.
go back to reference Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet. 2015;52:289–96.PubMedCrossRef Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet. 2015;52:289–96.PubMedCrossRef
6.
go back to reference Carroll D. Genome editing by targeted chromosomal mutagenesis. Method Mol Biol. 2015;1239:1–13.CrossRef Carroll D. Genome editing by targeted chromosomal mutagenesis. Method Mol Biol. 2015;1239:1–13.CrossRef
7.
go back to reference Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliver Rev. 2015;1239:1–13. Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliver Rev. 2015;1239:1–13.
8.
go back to reference Ain QU, Chung JY, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release. 2015;205:120–7.CrossRef Ain QU, Chung JY, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release. 2015;205:120–7.CrossRef
11.
go back to reference Wohlgemuth I, Pohl C, Mittelstaet J, Konevega AL, Rodnina MV. Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philos T Roy Soc B. 2011;366:2979–86.CrossRef Wohlgemuth I, Pohl C, Mittelstaet J, Konevega AL, Rodnina MV. Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philos T Roy Soc B. 2011;366:2979–86.CrossRef
12.
go back to reference Keeling KM, Xue X, Gunn G, Bedwell DM. Therapeutics based on stop codon readthrough. Annu Rev Genom Hum G. 2014;15:371–94.CrossRef Keeling KM, Xue X, Gunn G, Bedwell DM. Therapeutics based on stop codon readthrough. Annu Rev Genom Hum G. 2014;15:371–94.CrossRef
13.
go back to reference Tate WP, Poole ES, Horsfield JA, Mannering SA, Brown CM, Moffat JG, et al. Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochem Cell Biol. 1995;73:1095–103.PubMedCrossRef Tate WP, Poole ES, Horsfield JA, Mannering SA, Brown CM, Moffat JG, et al. Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochem Cell Biol. 1995;73:1095–103.PubMedCrossRef
14.
go back to reference Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA. 2000;6:1044–55.PubMedPubMedCentralCrossRef Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA. 2000;6:1044–55.PubMedPubMedCentralCrossRef
15.
go back to reference Keeling KM, Wang D, Conard SE, Bedwell DM. Suppression of premature termination codons as a therapeutic approach. Crit Rev Biochem Mol. 2012;47:444–63.CrossRef Keeling KM, Wang D, Conard SE, Bedwell DM. Suppression of premature termination codons as a therapeutic approach. Crit Rev Biochem Mol. 2012;47:444–63.CrossRef
16.
go back to reference Celik A, Kervestin S, Jacobson A. NMD: at the crossroads between translation termination and ribosome recycling. Biochimie. 2015;114:2–9.PubMedCrossRef Celik A, Kervestin S, Jacobson A. NMD: at the crossroads between translation termination and ribosome recycling. Biochimie. 2015;114:2–9.PubMedCrossRef
17.
go back to reference Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447:87–91.PubMedCrossRef Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447:87–91.PubMedCrossRef
18.
go back to reference Keeling KM, Bedwell DM. Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the I DUA and P53 cDNAs in a mammalian translation system. J Mol Med. 2002;80:367–76.PubMedCrossRef Keeling KM, Bedwell DM. Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the I DUA and P53 cDNAs in a mammalian translation system. J Mol Med. 2002;80:367–76.PubMedCrossRef
19.
go back to reference Floquet C, Hatin I, Rousset JP, Bidou L. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet. 2012;8:e1002608.PubMedPubMedCentralCrossRef Floquet C, Hatin I, Rousset JP, Bidou L. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet. 2012;8:e1002608.PubMedPubMedCentralCrossRef
20.
go back to reference Matalonga L, Arias A, Tort F, Ferrer-Cortes X, Garcia-Villoria J, Coll MJ, et al. Effect of readthrough treatment in fibroblasts of patients affected by lysosomal diseases caused by premature termination codons. Neurotherapeutics. 2015;10:e0135873. Matalonga L, Arias A, Tort F, Ferrer-Cortes X, Garcia-Villoria J, Coll MJ, et al. Effect of readthrough treatment in fibroblasts of patients affected by lysosomal diseases caused by premature termination codons. Neurotherapeutics. 2015;10:e0135873.
21.
go back to reference Howard MT, Anderson CB, Fass U, Khatri S, Gesteland RF, Atkins JF, et al. Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol. 2004;55:422–6.PubMedCrossRef Howard MT, Anderson CB, Fass U, Khatri S, Gesteland RF, Atkins JF, et al. Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol. 2004;55:422–6.PubMedCrossRef
22.
go back to reference Shalev M, Baasov T. When proteins start to make sense: fine-tuning aminoglycosides for PTC suppression therapy. Med Chem Comm. 2014;5:1092–105.CrossRef Shalev M, Baasov T. When proteins start to make sense: fine-tuning aminoglycosides for PTC suppression therapy. Med Chem Comm. 2014;5:1092–105.CrossRef
23.
go back to reference Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001;292:897–902.PubMedCrossRef Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001;292:897–902.PubMedCrossRef
24.
go back to reference Barbault F, Ren B, Rebehmed J, Teixeira C, Luo Y, Smila-Castro O, et al. Flexible computational docking studies of new aminoglycosides targeting RNA 16S bacterial ribosome site. Eur J Med Chem. 2008;43:1648–56.PubMedCrossRef Barbault F, Ren B, Rebehmed J, Teixeira C, Luo Y, Smila-Castro O, et al. Flexible computational docking studies of new aminoglycosides targeting RNA 16S bacterial ribosome site. Eur J Med Chem. 2008;43:1648–56.PubMedCrossRef
25.
go back to reference Lentini L, Melfi R, Di Leonardo A, Spinello A, Barone G, Pace A, et al. Toward a rationale for the PTC124 (Ataluren) promoted readthrough of premature stop codons: a computational approach and GFP-reporter cell-based assay. Mol Pharm. 2014;11:653–64.PubMedPubMedCentralCrossRef Lentini L, Melfi R, Di Leonardo A, Spinello A, Barone G, Pace A, et al. Toward a rationale for the PTC124 (Ataluren) promoted readthrough of premature stop codons: a computational approach and GFP-reporter cell-based assay. Mol Pharm. 2014;11:653–64.PubMedPubMedCentralCrossRef
26.
go back to reference Fearon K, McClendon V, Bonetti B, Bedwell DM. Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem. 1994;269:17802–8.PubMed Fearon K, McClendon V, Bonetti B, Bedwell DM. Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem. 1994;269:17802–8.PubMed
27.
go back to reference Roy B, Leszyk JD, Mangus DA, Jacobson A. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci USA. 2015;112:3038–43.PubMedPubMedCentralCrossRef Roy B, Leszyk JD, Mangus DA, Jacobson A. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci USA. 2015;112:3038–43.PubMedPubMedCentralCrossRef
28.
go back to reference Zingman LV, Park S, Olson TM, Alekseev AE, Terzic A. Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther. 2007;81:99–103.PubMedCrossRef Zingman LV, Park S, Olson TM, Alekseev AE, Terzic A. Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther. 2007;81:99–103.PubMedCrossRef
29.
go back to reference Kerem E, Hirawat S, Armoni S, Yaakov Y, Shoseyov D, Cohen M, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet. 2008;372:719–27.PubMedCrossRef Kerem E, Hirawat S, Armoni S, Yaakov Y, Shoseyov D, Cohen M, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet. 2008;372:719–27.PubMedCrossRef
30.
go back to reference Goldmann T, Rebibo-Sabbah A, Overlack N, Nudelman I, Belakhov V, Baasov T, et al. Beneficial read-through of a USH1C nonsense mutation by designed aminoglycoside NB30 in the retina. Invest Ophth Vis Sci. 2010;51:6671–80.CrossRef Goldmann T, Rebibo-Sabbah A, Overlack N, Nudelman I, Belakhov V, Baasov T, et al. Beneficial read-through of a USH1C nonsense mutation by designed aminoglycoside NB30 in the retina. Invest Ophth Vis Sci. 2010;51:6671–80.CrossRef
31.
go back to reference Goldmann T, Overlack N, Wolfrum U, Nagel-Wolfrum K. PTC124-mediated translational readthrough of a nonsense mutation causing Usher syndrome type 1C. Hum Gene Ther. 2011;22:537–47.PubMedCrossRef Goldmann T, Overlack N, Wolfrum U, Nagel-Wolfrum K. PTC124-mediated translational readthrough of a nonsense mutation causing Usher syndrome type 1C. Hum Gene Ther. 2011;22:537–47.PubMedCrossRef
32.
go back to reference Goldmann T, Overlack N, Moller F, Belakhov V, van Wyk M, Baasov T, et al. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO J Mol Med. 2012;4:1186–99.CrossRef Goldmann T, Overlack N, Moller F, Belakhov V, van Wyk M, Baasov T, et al. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO J Mol Med. 2012;4:1186–99.CrossRef
34.
go back to reference Bidou L, Allamand V, Rousset JP, Namy O. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med. 2012;18:679–88.PubMedCrossRef Bidou L, Allamand V, Rousset JP, Namy O. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med. 2012;18:679–88.PubMedCrossRef
35.
go back to reference Wang X, Gregory-Evans CY. Nonsense suppression therapies in ocular genetic diseases. Cell Mol Life Sci. 2015;72:1931–8.PubMedCrossRef Wang X, Gregory-Evans CY. Nonsense suppression therapies in ocular genetic diseases. Cell Mol Life Sci. 2015;72:1931–8.PubMedCrossRef
36.
go back to reference Lee HL, Dougherty JP. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Therapeut. 2012;136:227–66.CrossRef Lee HL, Dougherty JP. Pharmaceutical therapies to recode nonsense mutations in inherited diseases. Pharmacol Therapeut. 2012;136:227–66.CrossRef
37.
go back to reference Nagel-Wolfrum K, Moller F, Penner I, Wolfrum U. Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations. Vis Neurosci. 2014;31:309–16.PubMedCrossRef Nagel-Wolfrum K, Moller F, Penner I, Wolfrum U. Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations. Vis Neurosci. 2014;31:309–16.PubMedCrossRef
38.
go back to reference Schwarz N, Carr AJ, Lane A, Moeller F, Chen LL, Aguila M, et al. Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet. 2015;24:972–86.PubMedCrossRef Schwarz N, Carr AJ, Lane A, Moeller F, Chen LL, Aguila M, et al. Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet. 2015;24:972–86.PubMedCrossRef
39.
go back to reference Agrelo R, Sutz MA, Setien F, Aldunate F, Esteller M, Da Costa V, et al. A novel Werner Syndrome mutation: pharmacological treatment by read-through of nonsense mutations and epigenetic therapies. Epigenetics. 2015;10:329–41.PubMedCrossRefPubMedCentral Agrelo R, Sutz MA, Setien F, Aldunate F, Esteller M, Da Costa V, et al. A novel Werner Syndrome mutation: pharmacological treatment by read-through of nonsense mutations and epigenetic therapies. Epigenetics. 2015;10:329–41.PubMedCrossRefPubMedCentral
40.
go back to reference Linsdell P. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: pharmacological, biophysical and physiological relevance. World J Biol Chem. 2014;5:26–39.PubMedPubMedCentralCrossRef Linsdell P. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: pharmacological, biophysical and physiological relevance. World J Biol Chem. 2014;5:26–39.PubMedPubMedCentralCrossRef
41.
go back to reference Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations-correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606.PubMedCrossRef Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations-correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606.PubMedCrossRef
42.
go back to reference Finkel RS, Flanigan KM, Wong B, Bonnemann C, Sampson J, Sweeney HL, et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS One. 2013;8:e81302.PubMedPubMedCentralCrossRef Finkel RS, Flanigan KM, Wong B, Bonnemann C, Sampson J, Sweeney HL, et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS One. 2013;8:e81302.PubMedPubMedCentralCrossRef
43.
go back to reference Juan-Mateu J, Gonzalez-Quereda L, Rodriguez MJ, Baena M, Verdura E, Nascimento A, et al. DMD mutations in 576 dystrophinopathy families: a step forward in genotype-phenotype correlations. PLoS One. 2015;10:e013518943.CrossRef Juan-Mateu J, Gonzalez-Quereda L, Rodriguez MJ, Baena M, Verdura E, Nascimento A, et al. DMD mutations in 576 dystrophinopathy families: a step forward in genotype-phenotype correlations. PLoS One. 2015;10:e013518943.CrossRef
44.
go back to reference Dent KM, Dunn DM, von Niederhausern AC, Aoyagi AT, Kerr L, Bromberg MB, et al. Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am J Med Genet A. 2005;134:295–8.PubMedCrossRef Dent KM, Dunn DM, von Niederhausern AC, Aoyagi AT, Kerr L, Bromberg MB, et al. Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am J Med Genet A. 2005;134:295–8.PubMedCrossRef
45.
go back to reference Li A, Swift M. Mutations at the ataxia-telangiectasia locus and clinical phenotypes of A-T patients. Am J Med Genet A. 2000;92:170–7.CrossRef Li A, Swift M. Mutations at the ataxia-telangiectasia locus and clinical phenotypes of A-T patients. Am J Med Genet A. 2000;92:170–7.CrossRef
46.
go back to reference Rastall DP, Amalfitano A. Recent advances in gene therapy for lysosomal storage disorders. Appl Clin Genet. 2015;8:157–69.PubMedPubMedCentral Rastall DP, Amalfitano A. Recent advances in gene therapy for lysosomal storage disorders. Appl Clin Genet. 2015;8:157–69.PubMedPubMedCentral
47.
48.
go back to reference Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 2004;5:554–65.PubMedCrossRef Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 2004;5:554–65.PubMedCrossRef
49.
go back to reference Mehta A, Ricci R, Widmer U, Dehout F, Garcia de Lorenzo A, Kampmann C, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest. 2004;34:236–42.PubMedCrossRef Mehta A, Ricci R, Widmer U, Dehout F, Garcia de Lorenzo A, Kampmann C, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest. 2004;34:236–42.PubMedCrossRef
50.
go back to reference Gal A, Schafer E, Rohard I. The genetic basis of Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G, editors. Fabry disease: perspectives from 5 years of FOS. Oxford: Oxford PharmaGenesis; 2006. Gal A, Schafer E, Rohard I. The genetic basis of Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G, editors. Fabry disease: perspectives from 5 years of FOS. Oxford: Oxford PharmaGenesis; 2006.
51.
go back to reference Zampieri S, Filocamo M, Pianta A, Lualdi S, Gort L, Coll MJ, et al. SMPD1 mutation update: database and comprehensive analysis of published and novel variants. Hum Mutat. 2016;37(2):139–47. doi:10.1002/humu.22923.PubMedCrossRef Zampieri S, Filocamo M, Pianta A, Lualdi S, Gort L, Coll MJ, et al. SMPD1 mutation update: database and comprehensive analysis of published and novel variants. Hum Mutat. 2016;37(2):139–47. doi:10.​1002/​humu.​22923.PubMedCrossRef
52.
go back to reference Caciotti A, Garman SC, Rivera-Colon Y, Procopio E, Catarzi S, Ferri L, et al. GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings. Biochim Biophys Acta. 2011;1812:782–90.PubMedPubMedCentralCrossRef Caciotti A, Garman SC, Rivera-Colon Y, Procopio E, Catarzi S, Ferri L, et al. GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings. Biochim Biophys Acta. 2011;1812:782–90.PubMedPubMedCentralCrossRef
53.
go back to reference Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Gen Metab. 2008;94:391–6.CrossRef Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Gen Metab. 2008;94:391–6.CrossRef
54.
go back to reference Hein LK, Bawden M, Muller VJ, Sillence D, Hopwood JJ, Brooks DA. Alpha-l-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients. J Mol Biol. 2004;338:453–62.PubMedCrossRef Hein LK, Bawden M, Muller VJ, Sillence D, Hopwood JJ, Brooks DA. Alpha-l-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients. J Mol Biol. 2004;338:453–62.PubMedCrossRef
55.
go back to reference Wang D, Belakhov V, Kandasamy J, Baasov T, Li SC, Li YT, et al. The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse. Mol Genet Metab. 2012;105:116–25.PubMedPubMedCentralCrossRef Wang D, Belakhov V, Kandasamy J, Baasov T, Li SC, Li YT, et al. The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse. Mol Genet Metab. 2012;105:116–25.PubMedPubMedCentralCrossRef
57.
go back to reference Valstar MJ, Neijs S, Bruggenwirth HT, Olmer R, Ruijter GJ, Wevers RA, et al. Mucopolysaccharidosis type IIIA: clinical spectrum and genotype-phenotype correlations. Ann Neurol. 2010;68:876–87.PubMedCrossRef Valstar MJ, Neijs S, Bruggenwirth HT, Olmer R, Ruijter GJ, Wevers RA, et al. Mucopolysaccharidosis type IIIA: clinical spectrum and genotype-phenotype correlations. Ann Neurol. 2010;68:876–87.PubMedCrossRef
58.
go back to reference Brooks DA, Muller VJ, Hopwood JJ. Stop-codon read-through for patients affected by a lysosomal storage disorder. Trends Mol Med. 2006;12:367–73.PubMedCrossRef Brooks DA, Muller VJ, Hopwood JJ. Stop-codon read-through for patients affected by a lysosomal storage disorder. Trends Mol Med. 2006;12:367–73.PubMedCrossRef
59.
go back to reference Bartolomeo R, Polishchuk EV, Volpi N, Polishchuk RS, Auricchio A. Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI. J Inherit Metab Dis. 2013;36:363–71.PubMedPubMedCentralCrossRef Bartolomeo R, Polishchuk EV, Volpi N, Polishchuk RS, Auricchio A. Pharmacological read-through of nonsense ARSB mutations as a potential therapeutic approach for mucopolysaccharidosis VI. J Inherit Metab Dis. 2013;36:363–71.PubMedPubMedCentralCrossRef
61.
go back to reference Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 2015;1852:2237–41.PubMedCrossRef Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 2015;1852:2237–41.PubMedCrossRef
62.
go back to reference Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat. 2012;33:42–63.PubMedCrossRef Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat. 2012;33:42–63.PubMedCrossRef
63.
go back to reference Miller JN, Kovacs AD, Pearce DA. The novel Cln 1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy. Hum Mol Genet. 2015;24:185–96.PubMedPubMedCentralCrossRef Miller JN, Kovacs AD, Pearce DA. The novel Cln 1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy. Hum Mol Genet. 2015;24:185–96.PubMedPubMedCentralCrossRef
64.
go back to reference James PD, Raut S, Rivard GE, Poon MC, Warner M, McKenna S, et al. Aminoglycoside suppression of nonsense mutations in severe hemophilia. Blood. 2005;106:3043–8.PubMedCrossRef James PD, Raut S, Rivard GE, Poon MC, Warner M, McKenna S, et al. Aminoglycoside suppression of nonsense mutations in severe hemophilia. Blood. 2005;106:3043–8.PubMedCrossRef
67.
go back to reference Stone EM. Leber congenital amaurosis—a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144:791–811.PubMedCrossRef Stone EM. Leber congenital amaurosis—a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144:791–811.PubMedCrossRef
68.
69.
go back to reference den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27:391–419.CrossRef den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27:391–419.CrossRef
70.
go back to reference Moosajee M, Gregory-Evans K, Ellis CD, Seabra MC, Gregory-Evans CY. Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet. 2008;17:3987–4000.PubMedCrossRef Moosajee M, Gregory-Evans K, Ellis CD, Seabra MC, Gregory-Evans CY. Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet. 2008;17:3987–4000.PubMedCrossRef
71.
go back to reference Hardcastle AJ, Thiselton DL, Van Maldergem L, Saha BK, Jay M, Plant C, et al. Mutations in the RP2 gene cause disease in 10 % of families with familial X-linked retinitis pigmentosa assessed in this study. Am J Hum Genet. 1999;64:1210–5.PubMedPubMedCentralCrossRef Hardcastle AJ, Thiselton DL, Van Maldergem L, Saha BK, Jay M, Plant C, et al. Mutations in the RP2 gene cause disease in 10 % of families with familial X-linked retinitis pigmentosa assessed in this study. Am J Hum Genet. 1999;64:1210–5.PubMedPubMedCentralCrossRef
72.
go back to reference Millan JM, Aller E, Jaijo T, Blanco-Kelly F, Gimenez-Pardo A, Ayuso C. An update on the genetics of Usher syndrome. J Ophthalmol. 2011;2011:417217.PubMedPubMedCentral Millan JM, Aller E, Jaijo T, Blanco-Kelly F, Gimenez-Pardo A, Ayuso C. An update on the genetics of Usher syndrome. J Ophthalmol. 2011;2011:417217.PubMedPubMedCentral
73.
go back to reference Kimberling WJ, Hildebrand MS, Shearer AE, Jensen ML, Halder JA, Trzupek K, et al. Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet Med. 2010;12:512–6.PubMedPubMedCentralCrossRef Kimberling WJ, Hildebrand MS, Shearer AE, Jensen ML, Halder JA, Trzupek K, et al. Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet Med. 2010;12:512–6.PubMedPubMedCentralCrossRef
74.
go back to reference Wolfrum U. Protein networks related to the Usher syndrome gain insights in the molecular basis of the disease. In: Ahuja S, editor. Usher syndrome: pathogenesis, diagnosis and therapy. New York: Nova Science Publishers Inc.; 2011. p. 51–73. Wolfrum U. Protein networks related to the Usher syndrome gain insights in the molecular basis of the disease. In: Ahuja S, editor. Usher syndrome: pathogenesis, diagnosis and therapy. New York: Nova Science Publishers Inc.; 2011. p. 51–73.
75.
76.
77.
go back to reference Gregory-Evans CY, Wang X, Wasan KM, Zhao J, Metcalfe AL, Gregory-Evans K. Postnatal manipulation of Pax6 dosage reverses congenital tissue malformation defects. J Clin Invest. 2014;124:111–6.PubMedPubMedCentralCrossRef Gregory-Evans CY, Wang X, Wasan KM, Zhao J, Metcalfe AL, Gregory-Evans K. Postnatal manipulation of Pax6 dosage reverses congenital tissue malformation defects. J Clin Invest. 2014;124:111–6.PubMedPubMedCentralCrossRef
78.
go back to reference Burke JF, Mogg AE. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res. 1985;13:6265–72.PubMedPubMedCentralCrossRef Burke JF, Mogg AE. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res. 1985;13:6265–72.PubMedPubMedCentralCrossRef
79.
go back to reference Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest. 1999;104:375–81.PubMedPubMedCentralCrossRef Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest. 1999;104:375–81.PubMedPubMedCentralCrossRef
80.
go back to reference Wagner KR, Hamed S, Hadley DW, Gropman AL, Burstein AH, Escolar DM, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol. 2001;49:706–11.PubMedCrossRef Wagner KR, Hamed S, Hadley DW, Gropman AL, Burstein AH, Escolar DM, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol. 2001;49:706–11.PubMedCrossRef
81.
go back to reference Politano L, Nigro G, Nigro V, Piluso G, Papparella S, Paciello O, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol. 2003;22:15–21.PubMed Politano L, Nigro G, Nigro V, Piluso G, Papparella S, Paciello O, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol. 2003;22:15–21.PubMed
82.
go back to reference Malik V, Rodino-Klapac LR, Viollet L, Wall C, King W, Al Dahhak R, et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol. 2010;67:771–80.PubMed Malik V, Rodino-Klapac LR, Viollet L, Wall C, King W, Al Dahhak R, et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol. 2010;67:771–80.PubMed
83.
go back to reference Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med. 1996;2:467–9.PubMedCrossRef Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med. 1996;2:467–9.PubMedCrossRef
84.
go back to reference Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med. 1997;3:1280–4.PubMedCrossRef Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med. 1997;3:1280–4.PubMedCrossRef
85.
go back to reference Du M, Jones JR, Lanier J, Keeling KM, Lindsey JR, Tousson A, et al. Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J Mol Med. 2002;80:595–604.PubMedCrossRef Du M, Jones JR, Lanier J, Keeling KM, Lindsey JR, Tousson A, et al. Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J Mol Med. 2002;80:595–604.PubMedCrossRef
86.
go back to reference Wilschanski M, Famini C, Blau H, Rivlin J, Augarten A, Avital A, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med. 2000;161:860–5.PubMedCrossRef Wilschanski M, Famini C, Blau H, Rivlin J, Augarten A, Avital A, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med. 2000;161:860–5.PubMedCrossRef
87.
go back to reference Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med. 2003;349:1433–41.PubMedCrossRef Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med. 2003;349:1433–41.PubMedCrossRef
88.
go back to reference Clancy JP, Bebok Z, Ruiz F, King C, Jones J, Walker L, et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med. 2001;163:1683–92.PubMedCrossRef Clancy JP, Bebok Z, Ruiz F, King C, Jones J, Walker L, et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med. 2001;163:1683–92.PubMedCrossRef
89.
go back to reference Sermet-Gaudelus I, Renouil M, Fajac A, Bidou L, Parbaille B, Pierrot S, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med. 2007;5:5.PubMedPubMedCentralCrossRef Sermet-Gaudelus I, Renouil M, Fajac A, Bidou L, Parbaille B, Pierrot S, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med. 2007;5:5.PubMedPubMedCentralCrossRef
90.
go back to reference Guerin K, Gregory-Evans CY, Hodges MD, Moosajee M, Mackay DS, Gregory-Evans K, et al. Systemic aminoglycoside treatment in rodent models of retinitis pigmentosa. Exp Eye Res. 2008;87:197–207.PubMedCrossRef Guerin K, Gregory-Evans CY, Hodges MD, Moosajee M, Mackay DS, Gregory-Evans K, et al. Systemic aminoglycoside treatment in rodent models of retinitis pigmentosa. Exp Eye Res. 2008;87:197–207.PubMedCrossRef
91.
go back to reference Linde L, Kerem B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet. 2008;24:552–63.PubMedCrossRef Linde L, Kerem B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet. 2008;24:552–63.PubMedCrossRef
92.
go back to reference Popescu AC, Sidorova E, Zhang G, Eubanks JH. Aminoglycoside-mediated partial suppression of MECP2 nonsense mutations responsible for Rett syndrome in vitro. J Neurosci Res. 2010;88:2316–24.PubMed Popescu AC, Sidorova E, Zhang G, Eubanks JH. Aminoglycoside-mediated partial suppression of MECP2 nonsense mutations responsible for Rett syndrome in vitro. J Neurosci Res. 2010;88:2316–24.PubMed
93.
go back to reference Perez B, Rodriguez-Pombo P, Ugarte M, Desviat LR. Readthrough strategies for therapeutic suppression of nonsense mutations in inherited metabolic disease. Mol Syndromol. 2012;3:230–6.PubMedPubMedCentral Perez B, Rodriguez-Pombo P, Ugarte M, Desviat LR. Readthrough strategies for therapeutic suppression of nonsense mutations in inherited metabolic disease. Mol Syndromol. 2012;3:230–6.PubMedPubMedCentral
94.
go back to reference Lubamba B, Dhooghe B, Noel S, Leal T. Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem. 2012;45:1132–44.PubMedCrossRef Lubamba B, Dhooghe B, Noel S, Leal T. Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem. 2012;45:1132–44.PubMedCrossRef
95.
go back to reference Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79:33–45.PubMedCrossRef Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79:33–45.PubMedCrossRef
97.
go back to reference Hobbie SN, Akshay S, Kalapala SK, Bruell CM, Shcherbakov D, Bottger EC. Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci USA. 2008;105:20888–93.PubMedPubMedCentralCrossRef Hobbie SN, Akshay S, Kalapala SK, Bruell CM, Shcherbakov D, Bottger EC. Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci USA. 2008;105:20888–93.PubMedPubMedCentralCrossRef
98.
go back to reference Matt T, Ng CL, Lang K, Sha SH, Akbergenov R, Shcherbakov D, et al. Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc Natl Acad Sci USA. 2012;109:10984–9.PubMedPubMedCentralCrossRef Matt T, Ng CL, Lang K, Sha SH, Akbergenov R, Shcherbakov D, et al. Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc Natl Acad Sci USA. 2012;109:10984–9.PubMedPubMedCentralCrossRef
99.
go back to reference Shulman E, Belakhov V, Wei G, Kendall A, Meyron-Holtz EG, Ben-Shachar D, et al. Designer aminoglycosides that selectively inhibit cytoplasmic rather than mitochondrial ribosomes show decreased ototoxicity: a strategy for the treatment of genetic diseases. J Biol Chem. 2014;289:2318–30.PubMedPubMedCentralCrossRef Shulman E, Belakhov V, Wei G, Kendall A, Meyron-Holtz EG, Ben-Shachar D, et al. Designer aminoglycosides that selectively inhibit cytoplasmic rather than mitochondrial ribosomes show decreased ototoxicity: a strategy for the treatment of genetic diseases. J Biol Chem. 2014;289:2318–30.PubMedPubMedCentralCrossRef
100.
go back to reference Francis SP, Katz J, Fanning KD, Harris KA, Nicholas BD, Lacy M, et al. A novel role of cytosolic protein synthesis inhibition in aminoglycoside ototoxicity. J Neurosci. 2013;33:3079–93.PubMedPubMedCentralCrossRef Francis SP, Katz J, Fanning KD, Harris KA, Nicholas BD, Lacy M, et al. A novel role of cytosolic protein synthesis inhibition in aminoglycoside ototoxicity. J Neurosci. 2013;33:3079–93.PubMedPubMedCentralCrossRef
101.
go back to reference Mattis VB, Rai R, Wang J, Chang CW, Coady T, Lorson CL. Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum Genet. 2006;120:589–601.PubMedCrossRef Mattis VB, Rai R, Wang J, Chang CW, Coady T, Lorson CL. Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum Genet. 2006;120:589–601.PubMedCrossRef
102.
go back to reference Mattis VB, Ebert AD, Fosso MY, Chang CW, Lorson CL. Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model. Hum Mol Genet. 2009;18:3906–13.PubMedPubMedCentralCrossRef Mattis VB, Ebert AD, Fosso MY, Chang CW, Lorson CL. Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model. Hum Mol Genet. 2009;18:3906–13.PubMedPubMedCentralCrossRef
103.
go back to reference Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet. 2005;14:845–57.PubMedCrossRef Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet. 2005;14:845–57.PubMedCrossRef
104.
go back to reference Heier CR, DiDonato CJ. Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Hum Mol Genet. 2009;18:1310–22.PubMedPubMedCentralCrossRef Heier CR, DiDonato CJ. Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Hum Mol Genet. 2009;18:1310–22.PubMedPubMedCentralCrossRef
105.
go back to reference Nudelman I, Rebibo-Sabbah A, Shallom-Shezifi D, Hainrichson M, Stahl I, Ben Yosef T, et al. Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorg Med Chem Lett. 2006;16:6310–5.PubMedCrossRef Nudelman I, Rebibo-Sabbah A, Shallom-Shezifi D, Hainrichson M, Stahl I, Ben Yosef T, et al. Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorg Med Chem Lett. 2006;16:6310–5.PubMedCrossRef
106.
go back to reference Brendel C, Belakhov V, Werner H, Wegener E, Gartner J, Nudelman I, et al. Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model. J Mol Med. 2011;89:389–98.PubMedPubMedCentralCrossRef Brendel C, Belakhov V, Werner H, Wegener E, Gartner J, Nudelman I, et al. Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model. J Mol Med. 2011;89:389–98.PubMedPubMedCentralCrossRef
107.
go back to reference Nudelman I, Rebibo-Sabbah A, Cherniavsky M, Belakhov V, Hainrichson M, Chen F, et al. Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J Med Chem. 2009;52:2836–45.PubMedPubMedCentralCrossRef Nudelman I, Rebibo-Sabbah A, Cherniavsky M, Belakhov V, Hainrichson M, Chen F, et al. Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J Med Chem. 2009;52:2836–45.PubMedPubMedCentralCrossRef
108.
go back to reference Vecsler M, Ben Zeev B, Nudelman I, Anikster Y, Simon AJ, Amariglio N, et al. Ex vivo treatment with a novel synthetic aminoglycoside NB54 in primary fibroblasts from Rett syndrome patients suppresses MECP2 nonsense mutations. PLoS One. 2011;6:e20733.PubMedPubMedCentralCrossRef Vecsler M, Ben Zeev B, Nudelman I, Anikster Y, Simon AJ, Amariglio N, et al. Ex vivo treatment with a novel synthetic aminoglycoside NB54 in primary fibroblasts from Rett syndrome patients suppresses MECP2 nonsense mutations. PLoS One. 2011;6:e20733.PubMedPubMedCentralCrossRef
109.
go back to reference Lee HL, Chen CC, Baasov T, Ron Y, Dougherty JP. Post-transcriptionally regulated expression system in human xenogeneic transplantation models. Mol Ther. 2011;19:1645–55.PubMedPubMedCentralCrossRef Lee HL, Chen CC, Baasov T, Ron Y, Dougherty JP. Post-transcriptionally regulated expression system in human xenogeneic transplantation models. Mol Ther. 2011;19:1645–55.PubMedPubMedCentralCrossRef
110.
go back to reference Rowe SM, Sloane P, Tang LP, Backer K, Mazur M, Buckley-Lanier J, et al. Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54. J Mol Med. 2011;89:1149–61.PubMedPubMedCentralCrossRef Rowe SM, Sloane P, Tang LP, Backer K, Mazur M, Buckley-Lanier J, et al. Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54. J Mol Med. 2011;89:1149–61.PubMedPubMedCentralCrossRef
111.
go back to reference Nudelman I, Glikin D, Smolkin B, Hainrichson M, Belakhov V, Baasov T. Repairing faulty genes by aminoglycosides: development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorg Med Chem. 2010;18:3735–46.PubMedCrossRef Nudelman I, Glikin D, Smolkin B, Hainrichson M, Belakhov V, Baasov T. Repairing faulty genes by aminoglycosides: development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorg Med Chem. 2010;18:3735–46.PubMedCrossRef
112.
go back to reference Kandasamy J, Atia-Glikin D, Shulman E, Shapira K, Shavit M, Belakhov V, et al. Increased selectivity toward cytoplasmic versus mitochondrial ribosome confers improved efficiency of synthetic aminoglycosides in fixing damaged genes: a strategy for treatment of genetic diseases caused by nonsense mutations. J Med Chem. 2012;55:10630–43.PubMedPubMedCentralCrossRef Kandasamy J, Atia-Glikin D, Shulman E, Shapira K, Shavit M, Belakhov V, et al. Increased selectivity toward cytoplasmic versus mitochondrial ribosome confers improved efficiency of synthetic aminoglycosides in fixing damaged genes: a strategy for treatment of genetic diseases caused by nonsense mutations. J Med Chem. 2012;55:10630–43.PubMedPubMedCentralCrossRef
113.
go back to reference Rebibo-Sabbah A, Nudelman I, Ahmed ZM, Baasov T, Ben-Yosef T. In vitro and ex vivo suppression by aminoglycosides of PCDH15 nonsense mutations underlying type 1 Usher syndrome. Hum Genet. 2007;122:373–81.PubMedCrossRef Rebibo-Sabbah A, Nudelman I, Ahmed ZM, Baasov T, Ben-Yosef T. In vitro and ex vivo suppression by aminoglycosides of PCDH15 nonsense mutations underlying type 1 Usher syndrome. Hum Genet. 2007;122:373–81.PubMedCrossRef
114.
go back to reference Keeling KM, Wang D, Dai Y, Murugesan S, Chenna B, Clark J, et al. Attenuation of nonsense-mediated mRNA decay enhances in vivo nonsense suppression. PLoS One. 2013;8:e60478.PubMedPubMedCentralCrossRef Keeling KM, Wang D, Dai Y, Murugesan S, Chenna B, Clark J, et al. Attenuation of nonsense-mediated mRNA decay enhances in vivo nonsense suppression. PLoS One. 2013;8:e60478.PubMedPubMedCentralCrossRef
115.
go back to reference Gunn G, Dai Y, Du M, Belakhov V, Kandasamy J, Schoeb TR, et al. Long-term nonsense suppression therapy moderates MPS I-H disease progression. Mol Genet Metab. 2014;111:374–81.PubMedPubMedCentralCrossRef Gunn G, Dai Y, Du M, Belakhov V, Kandasamy J, Schoeb TR, et al. Long-term nonsense suppression therapy moderates MPS I-H disease progression. Mol Genet Metab. 2014;111:374–81.PubMedPubMedCentralCrossRef
116.
go back to reference Xue X, Mutyam V, Tang L, Biswas S, Du M, Jackson LA, et al. Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am J Resp Cell Mol. 2014;50:805–16.CrossRef Xue X, Mutyam V, Tang L, Biswas S, Du M, Jackson LA, et al. Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am J Resp Cell Mol. 2014;50:805–16.CrossRef
117.
go back to reference Du L, Damoiseaux R, Nahas S, Gao K, Hu H, Pollard JM, et al. Nonaminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med. 2009;206:2285–97.PubMedPubMedCentralCrossRef Du L, Damoiseaux R, Nahas S, Gao K, Hu H, Pollard JM, et al. Nonaminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med. 2009;206:2285–97.PubMedPubMedCentralCrossRef
118.
119.
go back to reference Kayali R, Ku JM, Khitrov G, Jung ME, Prikhodko O, Bertoni C. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet. 2012;21:4007–20.PubMedPubMedCentralCrossRef Kayali R, Ku JM, Khitrov G, Jung ME, Prikhodko O, Bertoni C. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet. 2012;21:4007–20.PubMedPubMedCentralCrossRef
120.
go back to reference Du L, Jung ME, Damoiseaux R, Completo G, Fike F, Ku JM, et al. A new series of small molecular weight compounds induce read through of all three types of nonsense mutations in the ATM gene. Mol Ther. 2013;21:1653–60.PubMedPubMedCentralCrossRef Du L, Jung ME, Damoiseaux R, Completo G, Fike F, Ku JM, et al. A new series of small molecular weight compounds induce read through of all three types of nonsense mutations in the ATM gene. Mol Ther. 2013;21:1653–60.PubMedPubMedCentralCrossRef
121.
go back to reference Hirawat S, Welch EM, Elfring GL, Northcutt VJ, Paushkin S, Hwang S, et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol. 2007;47:430–44.PubMedCrossRef Hirawat S, Welch EM, Elfring GL, Northcutt VJ, Paushkin S, Hwang S, et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol. 2007;47:430–44.PubMedCrossRef
122.
go back to reference Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve. 2014;50:477–87.PubMedCrossRef Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve. 2014;50:477–87.PubMedCrossRef
123.
go back to reference Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014;2:539–47.PubMedCrossRef Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014;2:539–47.PubMedCrossRef
124.
go back to reference Du M, Liu X, Welch EM, Hirawat S, Peltz SW, Bedwell DM. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA. 2008;105:2064–9.PubMedPubMedCentralCrossRef Du M, Liu X, Welch EM, Hirawat S, Peltz SW, Bedwell DM. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA. 2008;105:2064–9.PubMedPubMedCentralCrossRef
125.
126.
127.
go back to reference Sermet-Gaudelus I, Boeck KD, Casimir GJ, Vermeulen F, Leal T, Mogenet A, et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med. 2010;182:1262–72.PubMedCrossRef Sermet-Gaudelus I, Boeck KD, Casimir GJ, Vermeulen F, Leal T, Mogenet A, et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med. 2010;182:1262–72.PubMedCrossRef
128.
go back to reference Finkel RS. Read-through strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 2010;25:1158–64.PubMedPubMedCentralCrossRef Finkel RS. Read-through strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 2010;25:1158–64.PubMedPubMedCentralCrossRef
129.
go back to reference Sarkar C, Zhang Z, Mukherjee AB. Stop codon read-through with PTC124 induces palmitoyl-protein thioesterase-1 activity, reduces thioester load and suppresses apoptosis in cultured cells from INCL patients. Mol Genet Metab. 2011;104:338–45.PubMedPubMedCentralCrossRef Sarkar C, Zhang Z, Mukherjee AB. Stop codon read-through with PTC124 induces palmitoyl-protein thioesterase-1 activity, reduces thioester load and suppresses apoptosis in cultured cells from INCL patients. Mol Genet Metab. 2011;104:338–45.PubMedPubMedCentralCrossRef
130.
131.
go back to reference Schweingruber C, Rufener SC, Zund D, Yamashita A, Muhlemann O. Nonsense-mediated mRNA decay—mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta. 2013;1829:612–23.PubMedCrossRef Schweingruber C, Rufener SC, Zund D, Yamashita A, Muhlemann O. Nonsense-mediated mRNA decay—mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta. 2013;1829:612–23.PubMedCrossRef
132.
go back to reference Oren YS, McClure ML, Rowe SM, Sorscher EJ, Bester AC, Manor M, et al. The unfolded protein response affects readthrough of premature termination codons. EMBO Mol Med. 2014;6:685–701.PubMedPubMedCentral Oren YS, McClure ML, Rowe SM, Sorscher EJ, Bester AC, Manor M, et al. The unfolded protein response affects readthrough of premature termination codons. EMBO Mol Med. 2014;6:685–701.PubMedPubMedCentral
133.
go back to reference Usuki F, Yamashita A, Higuchi I, Ohnishi T, Shiraishi T, Osame M, et al. Inhibition of nonsense-mediated mRNA decay rescues the phenotype in Ullrich’s disease. Ann Neurol. 2004;55:740–4.PubMedCrossRef Usuki F, Yamashita A, Higuchi I, Ohnishi T, Shiraishi T, Osame M, et al. Inhibition of nonsense-mediated mRNA decay rescues the phenotype in Ullrich’s disease. Ann Neurol. 2004;55:740–4.PubMedCrossRef
134.
go back to reference Linde L, Boelz S, Nissim-Rafinia M, Oren YS, Wilschanski M, Yaacov Y, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest. 2007;117:683–92.PubMedPubMedCentralCrossRef Linde L, Boelz S, Nissim-Rafinia M, Oren YS, Wilschanski M, Yaacov Y, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest. 2007;117:683–92.PubMedPubMedCentralCrossRef
135.
go back to reference Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem. 2007;76:51–74.PubMedCrossRef Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem. 2007;76:51–74.PubMedCrossRef
136.
go back to reference Wang D, Zavadil J, Martin L, Parisi F, Friedman E, Levy D, et al. Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol Cell Biol. 2011;31:3670–80.PubMedPubMedCentralCrossRef Wang D, Zavadil J, Martin L, Parisi F, Friedman E, Levy D, et al. Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol Cell Biol. 2011;31:3670–80.PubMedPubMedCentralCrossRef
137.
go back to reference Gonzalez-Hilarion S, Beghyn T, Jia J, Debreuck N, Berte G, Mamchaoui K, et al. Rescue of nonsense mutations by amlexanox in human cells. Orphanet J Rare Dis. 2012;7:58.PubMedPubMedCentralCrossRef Gonzalez-Hilarion S, Beghyn T, Jia J, Debreuck N, Berte G, Mamchaoui K, et al. Rescue of nonsense mutations by amlexanox in human cells. Orphanet J Rare Dis. 2012;7:58.PubMedPubMedCentralCrossRef
138.
go back to reference Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet. 2004;36:801–8.PubMedCrossRef Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet. 2004;36:801–8.PubMedCrossRef
139.
go back to reference Madni A, Sarfraz M, Rehman M, Ahmad M, Akhtar N, Ahmad S, et al. Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci. 2014;17:401–26.PubMed Madni A, Sarfraz M, Rehman M, Ahmad M, Akhtar N, Ahmad S, et al. Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci. 2014;17:401–26.PubMed
140.
go back to reference Yukihara M, Ito K, Tanoue O, Goto K, Matsushita T, Matsumoto Y, et al. Effective drug delivery system for duchenne muscular dystrophy using hybrid liposomes including gentamicin along with reduced toxicity. Biol Pharm Bull. 2011;34:712–6.PubMedCrossRef Yukihara M, Ito K, Tanoue O, Goto K, Matsushita T, Matsumoto Y, et al. Effective drug delivery system for duchenne muscular dystrophy using hybrid liposomes including gentamicin along with reduced toxicity. Biol Pharm Bull. 2011;34:712–6.PubMedCrossRef
141.
go back to reference Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vis Res. 2015;111:124–33.PubMedCrossRef Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vis Res. 2015;111:124–33.PubMedCrossRef
142.
go back to reference Du M, Keeling KM, Fan L, Liu X, Kovacs T, Sorscher E, et al. Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J Mol Med. 2006;84:573–82.PubMedCrossRef Du M, Keeling KM, Fan L, Liu X, Kovacs T, Sorscher E, et al. Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J Mol Med. 2006;84:573–82.PubMedCrossRef
143.
go back to reference Lojewski X, Staropoli JF, Biswas-Legrand S, Simas AM, Haliw L, Selig MK, et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet. 2014;23:2005–22.PubMedPubMedCentralCrossRef Lojewski X, Staropoli JF, Biswas-Legrand S, Simas AM, Haliw L, Selig MK, et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet. 2014;23:2005–22.PubMedPubMedCentralCrossRef
144.
go back to reference Karp GM, Hwang S, Chen G, Almstead NG. 1,2,4-Oxadiazole benzoic acid compounds and their use for nonsense suppression and the treatment of disease. US Patent 7772259 B2, 10 Aug 2010. Karp GM, Hwang S, Chen G, Almstead NG. 1,2,4-Oxadiazole benzoic acid compounds and their use for nonsense suppression and the treatment of disease. US Patent 7772259 B2, 10 Aug 2010.
146.
go back to reference PTC Therapeutics. Extension study of ataluren (PTC124) in cystic fibrosis [ClinicalTrials.gov identifier NCT01140451]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 12 Jan 2015. PTC Therapeutics. Extension study of ataluren (PTC124) in cystic fibrosis [ClinicalTrials.gov identifier NCT01140451]. US National Institutes of Health, ClinicalTrials.gov. https://​www.​clinicaltrials.​gov. Accessed 12 Jan 2015.
147.
go back to reference PTC Therapeutics. Safety and efficacy study of PTC124 in Duchenne muscle dystrophy [ClinicalTrials.gov identifier NCT00264888]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 12 Jan 2015. PTC Therapeutics. Safety and efficacy study of PTC124 in Duchenne muscle dystrophy [ClinicalTrials.gov identifier NCT00264888]. US National Institutes of Health, ClinicalTrials.gov. https://​www.​clinicaltrials.​gov. Accessed 12 Jan 2015.
148.
go back to reference PTC Therapeutics. Phase 3 study of ataluren in patients with nonsense mutation Duchenne muscle dystrophy [ClinicalTrials.gov identifier NCT01826487]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 12 Jan 2015. PTC Therapeutics. Phase 3 study of ataluren in patients with nonsense mutation Duchenne muscle dystrophy [ClinicalTrials.gov identifier NCT01826487]. US National Institutes of Health, ClinicalTrials.gov. https://​www.​clinicaltrials.​gov. Accessed 12 Jan 2015.
149.
go back to reference PTC Therapeutics. Study of ataluren (PTC124®) in hemophilia A and B [ClinicalTrials.gov identifier NCT00947193]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 12 Jan 2015. PTC Therapeutics. Study of ataluren (PTC124®) in hemophilia A and B [ClinicalTrials.gov identifier NCT00947193]. US National Institutes of Health, ClinicalTrials.gov. https://​www.​clinicaltrials.​gov. Accessed 12 Jan 2015.
Metadata
Title
Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs)
Authors
Kerstin Nagel-Wolfrum
Fabian Möller
Inessa Penner
Timor Baasov
Uwe Wolfrum
Publication date
01-04-2016
Publisher
Springer International Publishing
Published in
BioDrugs / Issue 2/2016
Print ISSN: 1173-8804
Electronic ISSN: 1179-190X
DOI
https://doi.org/10.1007/s40259-016-0157-6

Other articles of this Issue 2/2016

BioDrugs 2/2016 Go to the issue