Skip to main content
Top
Published in: Journal of Diabetes & Metabolic Disorders 1/2021

01-06-2021 | Hyperglycemia | Research article

The investigation of the efficacy ratio of cress seeds supplementation to moderate hyperglycemia and hepatotoxicity in streptozotocin‐induced diabetic rats

Authors: Amina Doghmane, Ouassila Aouacheri, Rania Laouaichia, Saad Saka

Published in: Journal of Diabetes & Metabolic Disorders | Issue 1/2021

Login to get access

Abstract

Objective

Oxidative stress resulting from chronic hyperglycemia induced many complications in diabetes and led to disorders and dysfunctions in different organs. This study aimed to evaluate the hepatoprotective rate of cress seeds (CS) or Lepidium sativum seeds in the diet on lowering hyperglycemia and oxidative stress damaging.

Methods

Diabetes was induced by a single intraperitoneal injection of 60 mg/kg of streptozotocin (STZ). Forty-eight male rats were randomly divided into six groups : (D-0) and (ND-0) diabetic, and non-diabetic groups were fed with a normal diet, (ND-CS2) and (ND-CS5) non-diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively, (D-CS2) and (D-CS5) diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively. After 28 days of treatment, biochemical, histological, and oxidative parameters were determined. Hepatic and pancreatic histological sections were developed.

Results

STZ-injection caused hyperglycemia accompanied by a disturbance in biochemical parameters and intensified oxidative stress status compared to the (ND-0) group. Hepatic and pancreatic histological sections of diabetic rats showed a disrupted architecture. However, the cress seeds-diet revealed a significant decrease of hyperglycemia and a reduction of the intensity of oxidative stress induced by diabetes compared to the (D-0) group, remarked by a decreased level of Malondialdehyde (MDA) and high levels of glutathione (GSH) and the antioxidant enzymes, led to the decrease of the majority of parameters principally hepatic and lipid profile with histological regeneration.

Conclusions

Cress seeds supplementation confirmed their potential anti-diabetic and antioxidant activities with higher efficacy of 5 % dose than the lower dose of 2 %. Therefore, 5 % of cress seeds administration seems to be the excellent rate recommended in controlling diabetes and its complications.
Literature
1.
go back to reference El Barky AR, Ezz AA, Alm-Eldeen H, Hussein AAE, Hafez SA, Mohamed YA. Can stem cells ameliorate the pancreatic damage induced by streptozotocin in rats? Can J Diabetes. 2017;42(1):61–70.PubMedCrossRef El Barky AR, Ezz AA, Alm-Eldeen H, Hussein AAE, Hafez SA, Mohamed YA. Can stem cells ameliorate the pancreatic damage induced by streptozotocin in rats? Can J Diabetes. 2017;42(1):61–70.PubMedCrossRef
2.
go back to reference Ghosh S, Chowdhury S, Sarkar P, Sil PC. Ameliorative role of ferulic acid against diabetes-associated oxidative stress-induced spleen damage. Food Chem Toxicol. 2018;118:272–86.PubMedCrossRef Ghosh S, Chowdhury S, Sarkar P, Sil PC. Ameliorative role of ferulic acid against diabetes-associated oxidative stress-induced spleen damage. Food Chem Toxicol. 2018;118:272–86.PubMedCrossRef
3.
go back to reference Chauhan K, Sharma S, Agarwal N, Chauhan S, Chauhan B. A study on potential hypoglycemic and hypolipidemic effects of Lepidium Sativum (Garden Cress) in Alloxan induced diabetic rats. Am J Pharm Tech Res. 2012;2(3):522–35. Chauhan K, Sharma S, Agarwal N, Chauhan S, Chauhan B. A study on potential hypoglycemic and hypolipidemic effects of Lepidium Sativum (Garden Cress) in Alloxan induced diabetic rats. Am J Pharm Tech Res. 2012;2(3):522–35.
4.
go back to reference Aouacheri O, Saka S, Krim M, Messaadia A, Maidi I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can J Diabetes. 2015;39(1):44–9.PubMedCrossRef Aouacheri O, Saka S, Krim M, Messaadia A, Maidi I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can J Diabetes. 2015;39(1):44–9.PubMedCrossRef
5.
go back to reference Attia ES, Amer AH, Hassanein MA. The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat Prod Res. 2017;33(6):901–5.PubMedCrossRef Attia ES, Amer AH, Hassanein MA. The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat Prod Res. 2017;33(6):901–5.PubMedCrossRef
6.
go back to reference Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocrine Connect. 2018;7(1):R38-46.CrossRef Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocrine Connect. 2018;7(1):R38-46.CrossRef
8.
go back to reference Malar MJ, Vanmathi JS, Chairman K. Antidiabetic activity of different parts of the plant Lepidium sativum Linn. Asian J App Sci Technol. 2017;1(9):135–41. Malar MJ, Vanmathi JS, Chairman K. Antidiabetic activity of different parts of the plant Lepidium sativum Linn. Asian J App Sci Technol. 2017;1(9):135–41.
9.
go back to reference Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. 2014;2014:1–11. Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. 2014;2014:1–11.
11.
go back to reference Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr Clin Res Rev. 2018;12(3):455–62.CrossRef Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr Clin Res Rev. 2018;12(3):455–62.CrossRef
12.
go back to reference Laura A, Klibet F, Bourogaa E, Benamara A, Boumendjel A, Chefrour A, Messiah M. Potential antioxidant properties and hepatoprotective effects of Juniperus phoenicea berries against CCl4 induced hepatic damage in rats. Asian Pac J Trop Med. 2017;10(3):263-9. Laura A, Klibet F, Bourogaa E, Benamara A, Boumendjel A, Chefrour A, Messiah M. Potential antioxidant properties and hepatoprotective effects of Juniperus phoenicea berries against CCl4 induced hepatic damage in rats. Asian Pac J Trop Med. 2017;10(3):263-9.
13.
go back to reference Kamkar MMA, Ahmad R, Alsmadi O, Behbehani K. Insight into the impact of diabetes mellitus on the increased risk of hepatocellular carcinoma: mini-review. J Diabetes Metab Disord. 2014;13(1):57.CrossRef Kamkar MMA, Ahmad R, Alsmadi O, Behbehani K. Insight into the impact of diabetes mellitus on the increased risk of hepatocellular carcinoma: mini-review. J Diabetes Metab Disord. 2014;13(1):57.CrossRef
14.
go back to reference Karigidi KO, Akintimehin ES, Omoboyowa DA, Adetuyi FO, Olaiya CO. Effect of Curculigo pilosa supplemented diet on blood sugar, lipid metabolism, hepatic oxidative stress and carbohydrate metabolism enzymes in streptozotocin-induced diabetic rats. J Diabetes Metab Disord. 2020;2020:1–12. Karigidi KO, Akintimehin ES, Omoboyowa DA, Adetuyi FO, Olaiya CO. Effect of Curculigo pilosa supplemented diet on blood sugar, lipid metabolism, hepatic oxidative stress and carbohydrate metabolism enzymes in streptozotocin-induced diabetic rats. J Diabetes Metab Disord. 2020;2020:1–12.
15.
go back to reference Tran TQ, Hsu YM, Huang YC, Chen CJ, Lin WD, Lin YJ, Chen SY. Integrated analysis of gene modulation profile identifies pathogenic factors and pathways in the liver of diabetic mice. J Diabetes Metab Disord. 2019;8(2):471–85.CrossRef Tran TQ, Hsu YM, Huang YC, Chen CJ, Lin WD, Lin YJ, Chen SY. Integrated analysis of gene modulation profile identifies pathogenic factors and pathways in the liver of diabetic mice. J Diabetes Metab Disord. 2019;8(2):471–85.CrossRef
16.
go back to reference Mohamed J, Nafizah AN, Zariyantey AH, Budin S. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J. 2016;16(2):e132. Mohamed J, Nafizah AN, Zariyantey AH, Budin S. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J. 2016;16(2):e132.
17.
go back to reference Mishra N, Mohammed A, Rizvi SI. Efficacy of Lepidium Sativum to act as an anti-diabetic agent. Prog Health Sci. 2017;7(1):44–53.CrossRef Mishra N, Mohammed A, Rizvi SI. Efficacy of Lepidium Sativum to act as an anti-diabetic agent. Prog Health Sci. 2017;7(1):44–53.CrossRef
18.
go back to reference Desai SS, Walvekar MV, Shaikh NH. Cytoprotective effects of Lepidium sativum seed extract on liver and pancreas of HFD/STZ induced type 2 diabetic mice. Inter J Pharm Phytochem Res. 2017;9(4):502–7. Desai SS, Walvekar MV, Shaikh NH. Cytoprotective effects of Lepidium sativum seed extract on liver and pancreas of HFD/STZ induced type 2 diabetic mice. Inter J Pharm Phytochem Res. 2017;9(4):502–7.
19.
go back to reference Kumar V, Tomar V, Ranade SA, Yadav HK, Srivastava M. Phytochemical, antioxidant investigations and fatty acid composition of Lepidium sativum seeds. J Environ Biol. 2020;41(1):59–65.CrossRef Kumar V, Tomar V, Ranade SA, Yadav HK, Srivastava M. Phytochemical, antioxidant investigations and fatty acid composition of Lepidium sativum seeds. J Environ Biol. 2020;41(1):59–65.CrossRef
20.
go back to reference Raish M, Ahmad A, Alkharfy KM, Ahamad SR, Mohsin K, Al-Jenoobi F, Ansari MA. Hepatoprotective activity of Lepidium sativum seeds against D-galactosamine/ lipopolysaccharide-induced hepatotoxicity in animal model. BMC Complement Altern Med. 2016;16(1):501.PubMedPubMedCentralCrossRef Raish M, Ahmad A, Alkharfy KM, Ahamad SR, Mohsin K, Al-Jenoobi F, Ansari MA. Hepatoprotective activity of Lepidium sativum seeds against D-galactosamine/ lipopolysaccharide-induced hepatotoxicity in animal model. BMC Complement Altern Med. 2016;16(1):501.PubMedPubMedCentralCrossRef
21.
go back to reference Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharm Biol. 2016;54(2):314–21.PubMedCrossRef Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharm Biol. 2016;54(2):314–21.PubMedCrossRef
22.
go back to reference Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes Target Ther. 2015;8:181. Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes Target Ther. 2015;8:181.
23.
go back to reference Weckbecker G, Cory JG. Ribonucleotide reductase activity and growth of glutathione-depended mouse leukaemia L1210 cells in vitro. Cancer Lett. 1988;40:257–64.PubMedCrossRef Weckbecker G, Cory JG. Ribonucleotide reductase activity and growth of glutathione-depended mouse leukaemia L1210 cells in vitro. Cancer Lett. 1988;40:257–64.PubMedCrossRef
24.
go back to reference Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.PubMedCrossRef Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.PubMedCrossRef
25.
go back to reference Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzym. 1984;105:114–20.CrossRef Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzym. 1984;105:114–20.CrossRef
26.
go back to reference Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9.PubMed Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9.PubMed
28.
go back to reference Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.PubMedCrossRef Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.PubMedCrossRef
29.
go back to reference Saka S, Aouacheri O. The investigation of the oxidative stress-related parameters in high doses methotrexate-induced albino Wistar rats. J Bioequiv Availab. 2017;9:372-6. Saka S, Aouacheri O. The investigation of the oxidative stress-related parameters in high doses methotrexate-induced albino Wistar rats. J Bioequiv Availab. 2017;9:372-6.
30.
go back to reference Houlot R. Techniques d’histopathologie et de cytopathologie. Paris: Editions Maloine; 1984. Houlot R. Techniques d’histopathologie et de cytopathologie. Paris: Editions Maloine; 1984.
31.
go back to reference Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9):430.PubMedCentralCrossRef Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9):430.PubMedCentralCrossRef
32.
go back to reference Chowdhury S, Ghosh S, Rashid K, Sil PC. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem Toxicol. 2016a;97:187–98.PubMedCrossRef Chowdhury S, Ghosh S, Rashid K, Sil PC. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem Toxicol. 2016a;97:187–98.PubMedCrossRef
33.
go back to reference Tebboub I, Kechrid Z. Effect of Curcuma on zinc, lipid profile and antioxidants levels in blood and tissue of streptozotocin-induced diabetic rats fed zinc deficiency diet. Arch Physiol Biochem. 2019;2019:1–8. Tebboub I, Kechrid Z. Effect of Curcuma on zinc, lipid profile and antioxidants levels in blood and tissue of streptozotocin-induced diabetic rats fed zinc deficiency diet. Arch Physiol Biochem. 2019;2019:1–8.
34.
go back to reference Kim JD, Kang SM, Seo BI, Choi HY, Choi HS, Ku SK. Anti-diabetic activity of SMK001, a polyherbal formula in streptozotocin-induced diabetic rats: therapeutic study. Biol Pharm Bull. 2006;29(3):477–82.PubMedCrossRef Kim JD, Kang SM, Seo BI, Choi HY, Choi HS, Ku SK. Anti-diabetic activity of SMK001, a polyherbal formula in streptozotocin-induced diabetic rats: therapeutic study. Biol Pharm Bull. 2006;29(3):477–82.PubMedCrossRef
35.
go back to reference Zafar M, Naqvi SNUH. Effects of STZ-induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. Int J Morphol. 2010;28(1):135–42.CrossRef Zafar M, Naqvi SNUH. Effects of STZ-induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. Int J Morphol. 2010;28(1):135–42.CrossRef
36.
go back to reference Wang F, Li H, Zhao H, Zhang Y, Qiu P, Li J, Wang S. Antidiabetic activity and chemical composition of Sanbai melon seed oil. Evid Based Complement Alternat Med. 2018;2018:1–14. Wang F, Li H, Zhao H, Zhang Y, Qiu P, Li J, Wang S. Antidiabetic activity and chemical composition of Sanbai melon seed oil. Evid Based Complement Alternat Med. 2018;2018:1–14.
37.
go back to reference Lanjhiyana S, Garabadu D, Ahirwar D, Bigoniya P, Rana AC, Patra KC, Karuppaih M. Antidiabetic activity of methanolic extract of stem bark of Elaeodendron glaucum Pers. in alloxanized rat model. Adv Appl Sci Res. 2011;2(1):47–62. Lanjhiyana S, Garabadu D, Ahirwar D, Bigoniya P, Rana AC, Patra KC, Karuppaih M. Antidiabetic activity of methanolic extract of stem bark of Elaeodendron glaucum Pers. in alloxanized rat model. Adv Appl Sci Res. 2011;2(1):47–62.
38.
go back to reference Pitchai D, Manikkam R. Hypolipidemic, hepato-protective and renal damage recovering effects of catechin isolated from the methanolic extract of Cassia fistula stem bark on Streptozotocin-induced diabetic Wistar rats: a biochemical and morphological analysis. Med Chem Res. 2012;21(12):4535–41.CrossRef Pitchai D, Manikkam R. Hypolipidemic, hepato-protective and renal damage recovering effects of catechin isolated from the methanolic extract of Cassia fistula stem bark on Streptozotocin-induced diabetic Wistar rats: a biochemical and morphological analysis. Med Chem Res. 2012;21(12):4535–41.CrossRef
39.
go back to reference Al-khazraji SM. Biopharmacological studies of the aqueous extract of Lepidium sativum seeds in alloxan-induced diabetes in rats. Iraqi J Vet Med. 2012;36(2):158–63.CrossRef Al-khazraji SM. Biopharmacological studies of the aqueous extract of Lepidium sativum seeds in alloxan-induced diabetes in rats. Iraqi J Vet Med. 2012;36(2):158–63.CrossRef
40.
go back to reference Shukla AK, Bigoniya P, Soni P. Hypolipidemic activity of Lepidium sativum Linn. seed in rats. IOSR J Pharm Biol Sci. 2015;10(4):13–22. Shukla AK, Bigoniya P, Soni P. Hypolipidemic activity of Lepidium sativum Linn. seed in rats. IOSR J Pharm Biol Sci. 2015;10(4):13–22.
41.
go back to reference Halaby MS, Farag MH, Mahmoud SA. Protective and curative effect of garden cress seeds on acute renal failure in male albino rats. Middle East J Appl Sci. 2015;5(2):573–86. Halaby MS, Farag MH, Mahmoud SA. Protective and curative effect of garden cress seeds on acute renal failure in male albino rats. Middle East J Appl Sci. 2015;5(2):573–86.
42.
go back to reference Rajasekar R, Manokaran K, Rajasekaran N, Duraisamy G, Kanakasabapathi D. Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model. J Diabetes Metab Disord. 2014;13(1):33.PubMedPubMedCentralCrossRef Rajasekar R, Manokaran K, Rajasekaran N, Duraisamy G, Kanakasabapathi D. Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model. J Diabetes Metab Disord. 2014;13(1):33.PubMedPubMedCentralCrossRef
43.
go back to reference Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010;11(4):1365–402.PubMedPubMedCentralCrossRef Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010;11(4):1365–402.PubMedPubMedCentralCrossRef
44.
go back to reference Qusti S, El Rabey HA, Balashram SA. The hypoglycemic and antioxidant activity of cress seed and cinnamon on streptozotocin induced diabetes in male rats. Evid BasedComplement Alternat Med. 2016;2016:1–15.CrossRef Qusti S, El Rabey HA, Balashram SA. The hypoglycemic and antioxidant activity of cress seed and cinnamon on streptozotocin induced diabetes in male rats. Evid BasedComplement Alternat Med. 2016;2016:1–15.CrossRef
45.
go back to reference Eddouks M, Maghrani M, Zeggwagh NA, Michel JB. Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats. J Ethnopharmacol. 2005;97(2):391–5.PubMedCrossRef Eddouks M, Maghrani M, Zeggwagh NA, Michel JB. Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats. J Ethnopharmacol. 2005;97(2):391–5.PubMedCrossRef
46.
go back to reference Prajapati VD, Maheriya PM, Jani GK, Patil PD, Patel BN. Lepidium sativum Linn.: a current addition to the family of mucilage and its applications. Int J Biol Macromol. 2014;65:72–80.PubMedCrossRef Prajapati VD, Maheriya PM, Jani GK, Patil PD, Patel BN. Lepidium sativum Linn.: a current addition to the family of mucilage and its applications. Int J Biol Macromol. 2014;65:72–80.PubMedCrossRef
47.
go back to reference Radwan HM, El-Missiry MM, Al-Said WM, Ismail A, Abdel Shafeek KA, Seif-El-Nasr MM. Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci. 2007;2(2):127–32. Radwan HM, El-Missiry MM, Al-Said WM, Ismail A, Abdel Shafeek KA, Seif-El-Nasr MM. Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci. 2007;2(2):127–32.
48.
go back to reference Shukla A, Bigoniya P, Srivastava B. Hypoglycemic activity of Lepidium sativum Linn seed total alkaloid on alloxan-induced diabetic rats. Res J Med Plant. 2012;6(8):587–96.CrossRef Shukla A, Bigoniya P, Srivastava B. Hypoglycemic activity of Lepidium sativum Linn seed total alkaloid on alloxan-induced diabetic rats. Res J Med Plant. 2012;6(8):587–96.CrossRef
49.
go back to reference Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab. 2015;12(1):1–20.CrossRef Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab. 2015;12(1):1–20.CrossRef
50.
go back to reference Yao Y, Zang Y, Qu J, Tang M, Zhang T. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomed. 2019;14:8787–804.CrossRef Yao Y, Zang Y, Qu J, Tang M, Zhang T. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomed. 2019;14:8787–804.CrossRef
51.
go back to reference Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C, Tataranni PA. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51(6):1889–95.PubMedCrossRef Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C, Tataranni PA. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51(6):1889–95.PubMedCrossRef
52.
go back to reference Al-Khazraji SM. Biopharmacological studies of the aqueous extract of Lepidium sativum seeds in alloxan-induced diabetes in rats. Iraqi J Vet Med. 2012;36(2):158–63.CrossRef Al-Khazraji SM. Biopharmacological studies of the aqueous extract of Lepidium sativum seeds in alloxan-induced diabetes in rats. Iraqi J Vet Med. 2012;36(2):158–63.CrossRef
53.
go back to reference Achi NK, Ohaeri OC, Ijeh II, Eleazu C. Modulation of the lipid profile and insulin levels of streptozotocin-induced diabetic rats by ethanol extract of Cnidoscolus aconitifolius leaves and some fractions: Effect on the oral glucose tolerance of normoglycemic rats. Biomed Pharmacother. 2017;86:562-9.CrossRef Achi NK, Ohaeri OC, Ijeh II, Eleazu C. Modulation of the lipid profile and insulin levels of streptozotocin-induced diabetic rats by ethanol extract of Cnidoscolus aconitifolius leaves and some fractions: Effect on the oral glucose tolerance of normoglycemic rats. Biomed Pharmacother. 2017;86:562-9.CrossRef
54.
go back to reference Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Europ Heart J. 2019;0:1–14. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Europ Heart J. 2019;0:1–14.
55.
go back to reference Alharbi FK, Sobhy HM. Influence of dietary supplementation of garden cress (Lepidium sativum L.) on histopathology and serum biochemistry in Diabetic Rats. Egyptian J Chem Env Health. 2017;3(1):1–19. Alharbi FK, Sobhy HM. Influence of dietary supplementation of garden cress (Lepidium sativum L.) on histopathology and serum biochemistry in Diabetic Rats. Egyptian J Chem Env Health. 2017;3(1):1–19.
56.
go back to reference El Barky AR, Hussein SA. Alm-Eldeen AA, Hafez YA, Mohamed TM. Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharma. 2016;84:1472-87. El Barky AR, Hussein SA. Alm-Eldeen AA, Hafez YA, Mohamed TM. Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharma. 2016;84:1472-87.
57.
go back to reference Amawi K, Aljamal A. Effect of Lepidium sativum on lipid profiles and blood glucose in rats. J Phys Pharm Adv. 2012;2(8):277–81. Amawi K, Aljamal A. Effect of Lepidium sativum on lipid profiles and blood glucose in rats. J Phys Pharm Adv. 2012;2(8):277–81.
59.
go back to reference Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol. 2009;15(33):4137–42.PubMedPubMedCentralCrossRef Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol. 2009;15(33):4137–42.PubMedPubMedCentralCrossRef
60.
go back to reference Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radical Biol Med. 2011;50(5):567–75.CrossRef Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radical Biol Med. 2011;50(5):567–75.CrossRef
61.
go back to reference Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016;24(5):547–53.PubMedCrossRef Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016;24(5):547–53.PubMedCrossRef
62.
go back to reference Adeyemi DO, Ukwenya VO, Obuotor EM, Adewole SO. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage. BMC Compl Altern Med. 2014;14(1):277.CrossRef Adeyemi DO, Ukwenya VO, Obuotor EM, Adewole SO. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage. BMC Compl Altern Med. 2014;14(1):277.CrossRef
63.
go back to reference Mendes-Braz M, Martins JO. Diabetes mellitus and liver surgery: the effect of diabetes on oxidative stress and inflammation. Mediat Inflam. 2018;2018:1–11.CrossRef Mendes-Braz M, Martins JO. Diabetes mellitus and liver surgery: the effect of diabetes on oxidative stress and inflammation. Mediat Inflam. 2018;2018:1–11.CrossRef
64.
go back to reference Palma HE, Wolkmer P, Gallio M, Corrêa MM, Schmatz R, Thomé GR, Pereira LB, Castro VS, Pereira AB, Bueno A, de Oliveira LS, Rosolen D, Mann TR, de Cecco BS, Graça DL, Lopes ST, Mazzanti CM. Oxidative stress parameters in blood, liver, and kidney of diabetic rats treated with curcumin and/or insulin. Mol Cell Biochem. 2014;386(1–2):199–210.PubMedCrossRef Palma HE, Wolkmer P, Gallio M, Corrêa MM, Schmatz R, Thomé GR, Pereira LB, Castro VS, Pereira AB, Bueno A, de Oliveira LS, Rosolen D, Mann TR, de Cecco BS, Graça DL, Lopes ST, Mazzanti CM. Oxidative stress parameters in blood, liver, and kidney of diabetic rats treated with curcumin and/or insulin. Mol Cell Biochem. 2014;386(1–2):199–210.PubMedCrossRef
65.
go back to reference Ghosh S, Bhattacharyya S, Rashid K, Sil PC. Curcumin protects rat liver from streptozotocin-induced diabetic pathophysiology by counteracting reactive oxygen species and inhibiting the activation of p53 and MAPKs mediated stress response pathways. Toxicol Rep. 2015;2:365–76.PubMedPubMedCentralCrossRef Ghosh S, Bhattacharyya S, Rashid K, Sil PC. Curcumin protects rat liver from streptozotocin-induced diabetic pathophysiology by counteracting reactive oxygen species and inhibiting the activation of p53 and MAPKs mediated stress response pathways. Toxicol Rep. 2015;2:365–76.PubMedPubMedCentralCrossRef
66.
go back to reference Sekou O, Boumendjel M, Taibi F, Boumendjel A, Messarah M. Mitigating effects of antioxidant properties of Artemisia herba alba aqueous extract on hyperlipidemia and oxidative damage in alloxan-induced diabetic rats. Arch Physiol Biochem. 2019;125(2):163–73.CrossRef Sekou O, Boumendjel M, Taibi F, Boumendjel A, Messarah M. Mitigating effects of antioxidant properties of Artemisia herba alba aqueous extract on hyperlipidemia and oxidative damage in alloxan-induced diabetic rats. Arch Physiol Biochem. 2019;125(2):163–73.CrossRef
67.
go back to reference Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc Dialectal. 2013;12(1):142–6. Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc Dialectal. 2013;12(1):142–6.
68.
go back to reference Prabakaran D, Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie. 2013;95(2):366–73.PubMedCrossRef Prabakaran D, Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie. 2013;95(2):366–73.PubMedCrossRef
69.
go back to reference El-Zawahry BH, El-Shawwa MM, Hikal FS. Effect of Lepidium sativum on blood levels of apelin and some metabolic and oxidative parameters in obese male rats. Al-Azhar Med J. 2017;46(3):723–38.CrossRef El-Zawahry BH, El-Shawwa MM, Hikal FS. Effect of Lepidium sativum on blood levels of apelin and some metabolic and oxidative parameters in obese male rats. Al-Azhar Med J. 2017;46(3):723–38.CrossRef
70.
go back to reference Madić V, Petrović A, Jušković M, Jugović D, Djordjević L, Stojanović G, Vasiljević P. Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes. J Ethnopharmacol. 2020;265:113210.PubMedCrossRef Madić V, Petrović A, Jušković M, Jugović D, Djordjević L, Stojanović G, Vasiljević P. Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes. J Ethnopharmacol. 2020;265:113210.PubMedCrossRef
Metadata
Title
The investigation of the efficacy ratio of cress seeds supplementation to moderate hyperglycemia and hepatotoxicity in streptozotocin‐induced diabetic rats
Authors
Amina Doghmane
Ouassila Aouacheri
Rania Laouaichia
Saad Saka
Publication date
01-06-2021
Publisher
Springer International Publishing
Keyword
Hyperglycemia
Published in
Journal of Diabetes & Metabolic Disorders / Issue 1/2021
Electronic ISSN: 2251-6581
DOI
https://doi.org/10.1007/s40200-021-00764-9

Other articles of this Issue 1/2021

Journal of Diabetes & Metabolic Disorders 1/2021 Go to the issue