Skip to main content
Top
Published in: Ophthalmology and Therapy 1-2/2014

Open Access 01-12-2014 | Original Research

Antioxidants Improve the Viability of Stored Adult Retinal Pigment Epithelial-19 Cultures

Authors: Lara Pasovic, Jon R. Eidet, Torstein Lyberg, Edward B. Messelt, Peder Aabel, Tor P. Utheim

Published in: Ophthalmology and Therapy | Issue 1-2/2014

Login to get access

Abstract

Introduction

There is increasing evidence that retinal pigment epithelium (RPE) can be used to treat age-related macular degeneration, one of the leading causes of blindness worldwide. However, the best way to store RPE to enable worldwide distribution is unknown. We investigated the effects of supplementing our previously published storage method with seven additives, attempting to improve the number of viable adult retinal pigment epithelial (ARPE)-19 cells after storage.

Materials and methods

ARPE-19 cells were cultured on multiwell plates before being stored for 1 week at 16 °C. Unsupplemented Minimal Essential Medium (MEM) (control) and a total of seven individual additives (DADLE ([d-Ala2, d-Leu5]-encephalin), capsazepine, docosahexaenoic acid (DHA), resveratrol, quercetin, simvastatin and sulforaphane) at three to four concentrations in MEM were tested. The individual effect of each additive on cell viability was analyzed with a microplate fluorometer. Cell phenotype was investigated by both microplate fluorometer and epifluorescence microscopy, and morphology by scanning electron microscopy.

Results

Supplementation of the storage medium with DADLE, capsazepine, DHA or resveratrol significantly increased the number of viable cells by 86.1% ± 41.9%, 67.9% ± 24.7%, 36.5% ± 10.3% and 21.1% ± 6.4%, respectively, compared to cells stored in unsupplemented MEM. DHA and resveratrol significantly reduced caspase-3 expression, while expression of RPE65 was maintained across groups.

Conclusion

The number of viable ARPE-19 cells can be increased by the addition of DADLE, capsazepine, DHA or resveratrol to the storage medium without perturbing apoptosis or differentiation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med. 2008;358:2606–17.PubMedCrossRef Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med. 2008;358:2606–17.PubMedCrossRef
2.
go back to reference da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its role in retinal disease. Prog Retina Eye Res. 2007;26:598–635.CrossRef da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its role in retinal disease. Prog Retina Eye Res. 2007;26:598–635.CrossRef
3.
go back to reference Lund RD, Adamson P, Sauve Y, et al. Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc Natl Acad Sci USA. 2001;98:9942–7.PubMedCentralPubMedCrossRef Lund RD, Adamson P, Sauve Y, et al. Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc Natl Acad Sci USA. 2001;98:9942–7.PubMedCentralPubMedCrossRef
4.
go back to reference McGill TJ, Lund RD, Douglas RM, Wang S, Lu B, Prusky GT. Preservation of vision following cell-based therapies in a model of retinal degenerative disease. Vision Res. 2004;44:2559–66.PubMedCrossRef McGill TJ, Lund RD, Douglas RM, Wang S, Lu B, Prusky GT. Preservation of vision following cell-based therapies in a model of retinal degenerative disease. Vision Res. 2004;44:2559–66.PubMedCrossRef
5.
go back to reference Sheridan CM, Mason S, Pattwell DM, Kent D, Grierson I, Williams R. Replacement of the RPE monolayer. Eye. 2009;23:1910–5.PubMedCrossRef Sheridan CM, Mason S, Pattwell DM, Kent D, Grierson I, Williams R. Replacement of the RPE monolayer. Eye. 2009;23:1910–5.PubMedCrossRef
6.
go back to reference Yaji N, Yamato M, Yang J, Okano T, Hori S. Transplantation of tissue-engineered retinal pigment epithelial cell sheets in a rabbit model. Biomaterials. 2009;30:797–803.PubMedCrossRef Yaji N, Yamato M, Yang J, Okano T, Hori S. Transplantation of tissue-engineered retinal pigment epithelial cell sheets in a rabbit model. Biomaterials. 2009;30:797–803.PubMedCrossRef
7.
go back to reference Falkner-Radler CI, Krebs I, Glittenberg C, et al. Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol. 2011;95:370–5.PubMedCrossRef Falkner-Radler CI, Krebs I, Glittenberg C, et al. Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol. 2011;95:370–5.PubMedCrossRef
8.
go back to reference Coffey PJ, Girman S, Wang SM, et al. Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nat Neurosci. 2002;5:53–6.PubMedCrossRef Coffey PJ, Girman S, Wang SM, et al. Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nat Neurosci. 2002;5:53–6.PubMedCrossRef
9.
go back to reference Wang S, Lu B, Wood P, Lund RD. Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats. Invest Ophthalmol Vis Sci. 2005;46:2552–60.PubMedCrossRef Wang S, Lu B, Wood P, Lund RD. Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats. Invest Ophthalmol Vis Sci. 2005;46:2552–60.PubMedCrossRef
10.
go back to reference Zhang T, Hu Y, Li Y, et al. Photoreceptors repair by autologous transplantation of retinal pigment epithelium and partial-thickness choroid graft in rabbits. Invest Ophthalmol Vis Sci. 2009;50:2982–8.PubMedCrossRef Zhang T, Hu Y, Li Y, et al. Photoreceptors repair by autologous transplantation of retinal pigment epithelium and partial-thickness choroid graft in rabbits. Invest Ophthalmol Vis Sci. 2009;50:2982–8.PubMedCrossRef
11.
go back to reference Sauve Y, Pinilla I, Lund RD. Partial preservation of rod and cone ERG function following subretinal injection of ARPE-19 cells in RCS rats. Vision Res. 2006;46:1459–72.PubMedCrossRef Sauve Y, Pinilla I, Lund RD. Partial preservation of rod and cone ERG function following subretinal injection of ARPE-19 cells in RCS rats. Vision Res. 2006;46:1459–72.PubMedCrossRef
12.
go back to reference Ahmad S, Osei-Bempong C, Dana R, Jurkunas U. The culture and transplantation of human limbal stem cells. J Cell Physiol. 2010;225:15–9.PubMedCrossRef Ahmad S, Osei-Bempong C, Dana R, Jurkunas U. The culture and transplantation of human limbal stem cells. J Cell Physiol. 2010;225:15–9.PubMedCrossRef
13.
go back to reference Utheim TP, Raeder S, Utheim OA, de la Paz M, Roald B, Lyberg T. Sterility control and long-term eye-bank storage of cultured human limbal epithelial cells for transplantation. Br J Ophthalmol. 2009;93:980–3.PubMedCrossRef Utheim TP, Raeder S, Utheim OA, de la Paz M, Roald B, Lyberg T. Sterility control and long-term eye-bank storage of cultured human limbal epithelial cells for transplantation. Br J Ophthalmol. 2009;93:980–3.PubMedCrossRef
14.
go back to reference Utheim TP. Limbal epithelial cell therapy: past, present, and future. Methods Mol Biol. 2013;1014:3–43.PubMedCrossRef Utheim TP. Limbal epithelial cell therapy: past, present, and future. Methods Mol Biol. 2013;1014:3–43.PubMedCrossRef
15.
go back to reference Utheim TP, Lyberg T, Raeder S. The culture of limbal epithelial cells. Methods Mol Biol. 2013;1014:103–29.PubMedCrossRef Utheim TP, Lyberg T, Raeder S. The culture of limbal epithelial cells. Methods Mol Biol. 2013;1014:103–29.PubMedCrossRef
16.
go back to reference Pasovic L, Utheim TP, Maria R, et al. Optimization of storage temperature for cultured ARPE-19 cells. J Ophthalmol. 2013;2013:1–11.CrossRef Pasovic L, Utheim TP, Maria R, et al. Optimization of storage temperature for cultured ARPE-19 cells. J Ophthalmol. 2013;2013:1–11.CrossRef
18.
go back to reference Tsao L-I, Su T-P. Hibernation-induction peptide and cell death: [d-Ala2, d-Leu5]enkephalin blocks Bax-related apoptotic processes. Eur J Pharmacol. 2001;428(1):149–51.PubMedCrossRef Tsao L-I, Su T-P. Hibernation-induction peptide and cell death: [d-Ala2, d-Leu5]enkephalin blocks Bax-related apoptotic processes. Eur J Pharmacol. 2001;428(1):149–51.PubMedCrossRef
19.
go back to reference Vecchio L, Soldani C, Bottone MG, et al. DADLE induces a reversible hibernation-like state in HeLa cells. Histochem Cell Biol. 2006;125:193–201.PubMedCrossRef Vecchio L, Soldani C, Bottone MG, et al. DADLE induces a reversible hibernation-like state in HeLa cells. Histochem Cell Biol. 2006;125:193–201.PubMedCrossRef
20.
go back to reference Radtke C, Sinis N, Sauter M, et al. TRPV channel expression in human skin and possible role in thermally induced cell death. J Burn Care Res. 2011;32:150–9.PubMedCrossRef Radtke C, Sinis N, Sauter M, et al. TRPV channel expression in human skin and possible role in thermally induced cell death. J Burn Care Res. 2011;32:150–9.PubMedCrossRef
21.
go back to reference Mergler S, Valtink M, Coulson-Thomas VJ, et al. TRPV channels mediate temperature-sensing in human corneal endothelial cells. Exp Eye Res. 2010;90:758–70.PubMedCrossRef Mergler S, Valtink M, Coulson-Thomas VJ, et al. TRPV channels mediate temperature-sensing in human corneal endothelial cells. Exp Eye Res. 2010;90:758–70.PubMedCrossRef
22.
go back to reference Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. 2004;101:8491–6.PubMedCentralPubMedCrossRef Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. 2004;101:8491–6.PubMedCentralPubMedCrossRef
23.
go back to reference Antony R, Lukiw WJ, Bazan NG. Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. J Biol Chem. 2010;285:8.CrossRef Antony R, Lukiw WJ, Bazan NG. Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. J Biol Chem. 2010;285:8.CrossRef
24.
go back to reference Mansoor S, Gupta N, Patil AJ, et al. Inhibition of apoptosis in human retinal pigment epithelial cells treated with benzo(e)pyrene, a toxic component of cigarette smoke. Invest Ophthalmol Vis Sci. 2010;51:2601–7.PubMedCrossRef Mansoor S, Gupta N, Patil AJ, et al. Inhibition of apoptosis in human retinal pigment epithelial cells treated with benzo(e)pyrene, a toxic component of cigarette smoke. Invest Ophthalmol Vis Sci. 2010;51:2601–7.PubMedCrossRef
25.
go back to reference King RE, Kent KD, Bomser JA. Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact. 2005;151:143–9.PubMedCrossRef King RE, Kent KD, Bomser JA. Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact. 2005;151:143–9.PubMedCrossRef
26.
go back to reference Pintea A, Rugina D, Pop R, Bunea A, Socaciu C, Diehl HA. Antioxidant effect of trans-resveratrol in cultured human retinal pigment epithelial cells. J Ocular Pharmacol Ther. 2011;27:315–21.CrossRef Pintea A, Rugina D, Pop R, Bunea A, Socaciu C, Diehl HA. Antioxidant effect of trans-resveratrol in cultured human retinal pigment epithelial cells. J Ocular Pharmacol Ther. 2011;27:315–21.CrossRef
27.
go back to reference Sheu SJ, Liu NC, Chen JL. Resveratrol protects human retinal pigment epithelial cells from acrolein-induced damage. J Ocular Pharmacol Ther. 2010;26(3):231–6.CrossRef Sheu SJ, Liu NC, Chen JL. Resveratrol protects human retinal pigment epithelial cells from acrolein-induced damage. J Ocular Pharmacol Ther. 2010;26(3):231–6.CrossRef
28.
go back to reference Gao X, Dinkova-Kostova AT, Talalay P. Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci USA. 2001;98:15221–6.PubMedCentralPubMedCrossRef Gao X, Dinkova-Kostova AT, Talalay P. Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci USA. 2001;98:15221–6.PubMedCentralPubMedCrossRef
29.
go back to reference Gao X, Talalay P. Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc Natl Acad Sci USA. 2004;101:10446–51.PubMedCentralPubMedCrossRef Gao X, Talalay P. Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc Natl Acad Sci USA. 2004;101:10446–51.PubMedCentralPubMedCrossRef
30.
go back to reference Hanneken A, Lin FF, Johnson J, Maher P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci. 2006;47:3164–77.PubMedCrossRef Hanneken A, Lin FF, Johnson J, Maher P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci. 2006;47:3164–77.PubMedCrossRef
31.
go back to reference Qian J, Keyes KT, Long B, Chen G, Ye Y. Impact of HMG-CoA reductase inhibition on oxidant-induced injury in human retinal pigment epithelium cells. J Cell Biochem. 2011;112:10.CrossRef Qian J, Keyes KT, Long B, Chen G, Ye Y. Impact of HMG-CoA reductase inhibition on oxidant-induced injury in human retinal pigment epithelium cells. J Cell Biochem. 2011;112:10.CrossRef
32.
go back to reference Johnson-Anuna LN, Eckert GP, Franke C, Igbavboa U, Muller WE, Wood WG. Simvastatin protects neurons from cytotoxicity by up-regulating Bcl-2 mRNA and protein. J Neurochem. 2007;101:77–86.PubMedCrossRef Johnson-Anuna LN, Eckert GP, Franke C, Igbavboa U, Muller WE, Wood WG. Simvastatin protects neurons from cytotoxicity by up-regulating Bcl-2 mRNA and protein. J Neurochem. 2007;101:77–86.PubMedCrossRef
33.
go back to reference Dajas F. Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol. 2012;143:383–96.PubMedCrossRef Dajas F. Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol. 2012;143:383–96.PubMedCrossRef
34.
go back to reference Kook D, Wolf AH, Yu AL, et al. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci. 2008;49:1712–20.PubMedCrossRef Kook D, Wolf AH, Yu AL, et al. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci. 2008;49:1712–20.PubMedCrossRef
35.
go back to reference Rauen U, de Groot H. Mammalian cell injury induced by hypothermia—the emerging role for reactive oxygen species. Biol Chem. 2002;383:477–88.PubMedCrossRef Rauen U, de Groot H. Mammalian cell injury induced by hypothermia—the emerging role for reactive oxygen species. Biol Chem. 2002;383:477–88.PubMedCrossRef
36.
go back to reference Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–212.PubMedCrossRef Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–212.PubMedCrossRef
37.
go back to reference Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991;24:203–14.PubMedCrossRef Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991;24:203–14.PubMedCrossRef
38.
go back to reference Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.PubMedCrossRef Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.PubMedCrossRef
39.
go back to reference Cordeiro S, Seyler S, Stindl J, Milenkovic VM, Strauss O. Heat-sensitive TRPV channels in retinal pigment epithelial cells: regulation of VEGF-A secretion. Invest Ophthalmol Vis Sci. 2010;51:6001–8.PubMedCrossRef Cordeiro S, Seyler S, Stindl J, Milenkovic VM, Strauss O. Heat-sensitive TRPV channels in retinal pigment epithelial cells: regulation of VEGF-A secretion. Invest Ophthalmol Vis Sci. 2010;51:6001–8.PubMedCrossRef
40.
go back to reference Donoso LA, Edwards AO, Frost A, et al. Autosomal dominant Stargardt-like macular dystrophy. Surv Ophthalmol. 2001;46:149–63.PubMedCrossRef Donoso LA, Edwards AO, Frost A, et al. Autosomal dominant Stargardt-like macular dystrophy. Surv Ophthalmol. 2001;46:149–63.PubMedCrossRef
41.
go back to reference Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med. 2010;10:802–23.PubMedCrossRef Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med. 2010;10:802–23.PubMedCrossRef
42.
go back to reference Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res. 1995;62:155–69.CrossRef Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res. 1995;62:155–69.CrossRef
43.
go back to reference Dunn KC, Marmorstein AD, Bonilha VL, Rodriguez-Boulan E, Giordano F, Hjelmeland LM. Use of the ARPE-19 cell line as a model of RPE polarity. Invest Ophthalmol Vis Sci. 1998;39:6. Dunn KC, Marmorstein AD, Bonilha VL, Rodriguez-Boulan E, Giordano F, Hjelmeland LM. Use of the ARPE-19 cell line as a model of RPE polarity. Invest Ophthalmol Vis Sci. 1998;39:6.
44.
go back to reference Luo Y, Zhuo Y, Fukuhara M, Rizzolo LJ. Effects of culture conditions on heterogeneity and the apical junctional complex of the ARPE-19 cell line. Invest Ophthalmol Vis Sci. 2006;47:3644–55.PubMedCrossRef Luo Y, Zhuo Y, Fukuhara M, Rizzolo LJ. Effects of culture conditions on heterogeneity and the apical junctional complex of the ARPE-19 cell line. Invest Ophthalmol Vis Sci. 2006;47:3644–55.PubMedCrossRef
45.
go back to reference Tian J, Ishibashi K, Honda S, Boylan SA, Hjelmeland LM, Handa JT. The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions. Br J Ophthalmol. 2005;89:1510–7.PubMedCentralPubMedCrossRef Tian J, Ishibashi K, Honda S, Boylan SA, Hjelmeland LM, Handa JT. The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions. Br J Ophthalmol. 2005;89:1510–7.PubMedCentralPubMedCrossRef
46.
go back to reference Burke JM, Cao F, Irving PE. High levels of E-/P-cadherin: correlation with decreased apical polarity of Na/K ATPase in bovine RPE cells in situ. Invest Ophthalmol Vis Sci. 2000;41:1945–52.PubMed Burke JM, Cao F, Irving PE. High levels of E-/P-cadherin: correlation with decreased apical polarity of Na/K ATPase in bovine RPE cells in situ. Invest Ophthalmol Vis Sci. 2000;41:1945–52.PubMed
47.
go back to reference Burke JM, Hjelmeland LM. Mosaicism of the retinal pigment epithelium: seeing the small picture. Mol Interv. 2005;5:241–9.PubMedCrossRef Burke JM, Hjelmeland LM. Mosaicism of the retinal pigment epithelium: seeing the small picture. Mol Interv. 2005;5:241–9.PubMedCrossRef
48.
go back to reference Burke JM, Cao F, Irving PE, Skumatz CMB. Expression of E-cadherin by human retinal pigment epithelium: delayed expression in vitro. Invest Ophthalmol Vis Sci. 1999;40:2963–70.PubMed Burke JM, Cao F, Irving PE, Skumatz CMB. Expression of E-cadherin by human retinal pigment epithelium: delayed expression in vitro. Invest Ophthalmol Vis Sci. 1999;40:2963–70.PubMed
49.
go back to reference Ando A, Ueda M, Uyama M, Masu Y, Okumura T, Ito S. Heterogeneity in ornithine cytotoxicity of bovine retinal pigment epithelial cells in primary culture. Exp Eye Res. 2000;70:89–96.PubMedCrossRef Ando A, Ueda M, Uyama M, Masu Y, Okumura T, Ito S. Heterogeneity in ornithine cytotoxicity of bovine retinal pigment epithelial cells in primary culture. Exp Eye Res. 2000;70:89–96.PubMedCrossRef
50.
go back to reference McKay BS, Burke JM. Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells. Exp Cell Res. 1994;213:85–92.PubMedCrossRef McKay BS, Burke JM. Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells. Exp Cell Res. 1994;213:85–92.PubMedCrossRef
51.
go back to reference Albert DM, Tso MOM, Rabson AS. In vitro growth of pure cultures of retinal pigment epithelium. Arch Ophthal. 1972;88:63–9.PubMedCrossRef Albert DM, Tso MOM, Rabson AS. In vitro growth of pure cultures of retinal pigment epithelium. Arch Ophthal. 1972;88:63–9.PubMedCrossRef
Metadata
Title
Antioxidants Improve the Viability of Stored Adult Retinal Pigment Epithelial-19 Cultures
Authors
Lara Pasovic
Jon R. Eidet
Torstein Lyberg
Edward B. Messelt
Peder Aabel
Tor P. Utheim
Publication date
01-12-2014
Publisher
Springer Healthcare
Published in
Ophthalmology and Therapy / Issue 1-2/2014
Print ISSN: 2193-8245
Electronic ISSN: 2193-6528
DOI
https://doi.org/10.1007/s40123-014-0024-9

Other articles of this Issue 1-2/2014

Ophthalmology and Therapy 1-2/2014 Go to the issue