Skip to main content
Top
Published in: Current Nutrition Reports 4/2014

01-12-2014 | Public Health and Translational Medicine (PW Franks, Section Editor)

Diet, Lifestyle, and Genetic Risk Factors for Type 2 Diabetes: A Review from the Nurses’ Health Study, Nurses’ Health Study 2, and Health Professionals’ Follow-Up Study

Authors: Andres V. Ardisson Korat, Walter C. Willett, Frank B. Hu

Published in: Current Nutrition Reports | Issue 4/2014

Login to get access

Abstract

The vast amount of epidemiological evidence from three large US cohorts (Nurses’ Health Study, Nurses’ Health Study 2, and Health Professionals’ Follow-Up Study) has yielded important information regarding the roles of overall diet, individual foods and nutrients, physical activity, and other lifestyle factors in the development of type 2 diabetes. Excess adiposity is a major risk factor for diabetes, and thus maintaining a healthy body weight and avoidance of excess weight gain during adulthood is the cornerstone of diabetes prevention. Independent of body weight, the quality or type of dietary fat and carbohydrates is more crucial than the quantity in determining diabetes risk. Higher consumption of coffee, whole grains, fruits, and nuts is associated with lower risk of diabetes, whereas regular consumption of refined grains, red and processed meats, and sugar-sweetened beverages including fruits juices is associated with increased risk. Dietary patterns rich in fruits and vegetables, whole grains, and nuts and legumes, but lower in red and processed meats, refined grains, and sugar-sweetened beverages are consistently associated with reduced diabetes risk, even after adjustment for body mass index. The genome-wide association studies conducted in these cohorts have contributed substantially to the discoveries of novel genetic loci for type 2 diabetes and other metabolic traits, although the identified common variants explain only a small proportion of overall diabetes predisposition. Taken together, these ongoing large cohort studies have provided convincing epidemiologic evidence that a healthy diet, together with regular physical activity, maintenance of a healthy weight, moderate alcohol consumption, and avoidance of prolonged sedentary behaviors and smoking would prevent the majority of type 2 diabetes cases.
Literature
2.••
go back to reference Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 2011;34(6):1249–57. doi:10.2337/dc11-0442. This comprehensive reviews examines global trends of type 2 diabetes and the roles of diet, lifestyle, and genetic factors as well as gene-environment interactions in the development of diabetes in the global context.PubMedCentralPubMed Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 2011;34(6):1249–57. doi:10.​2337/​dc11-0442. This comprehensive reviews examines global trends of type 2 diabetes and the roles of diet, lifestyle, and genetic factors as well as gene-environment interactions in the development of diabetes in the global context.PubMedCentralPubMed
4.
go back to reference Van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care. 2002;25(3):417–24.PubMed Van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care. 2002;25(3):417–24.PubMed
5.
go back to reference Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med. 2004;164:2235–40.PubMed Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med. 2004;164:2235–40.PubMed
6.
go back to reference Colditz GA, Martine P, Stampfer MJ, et al. Validation of questionnaire information on risk factors and disease outcomes in a prospective cohort study of women. Am J Epidemiol. 1986;123(5):894–900.PubMed Colditz GA, Martine P, Stampfer MJ, et al. Validation of questionnaire information on risk factors and disease outcomes in a prospective cohort study of women. Am J Epidemiol. 1986;123(5):894–900.PubMed
7.
go back to reference Carey VJ, Walters EE, Colditz GA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. Am J Epidemiol. 1997;145(7):614–9.PubMed Carey VJ, Walters EE, Colditz GA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. Am J Epidemiol. 1997;145(7):614–9.PubMed
8.
go back to reference Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17(9):961–9.PubMed Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17(9):961–9.PubMed
9.
go back to reference Colditz GA, Willett WC, Stampfer MJ, et al. Weight as a risk factor for clinical diabetes in women. Am J Epidemiol. 1990;132(3):501–13.PubMed Colditz GA, Willett WC, Stampfer MJ, et al. Weight as a risk factor for clinical diabetes in women. Am J Epidemiol. 1990;132(3):501–13.PubMed
10.
go back to reference Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481–6.PubMed Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481–6.PubMed
11.
go back to reference Koh-Banerjee P, Wang Y, Hu FB, Spiegelman D, Willett WC, Rimm EB. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am J Epidemiol. 2004;159(12):1150–9. doi:10.1093/aje/kwh167.PubMed Koh-Banerjee P, Wang Y, Hu FB, Spiegelman D, Willett WC, Rimm EB. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am J Epidemiol. 2004;159(12):1150–9. doi:10.​1093/​aje/​kwh167.PubMed
12.
go back to reference De Mutsert R, Sun Q, Willett WC, Hu FB, Dam RM V. Overweight in early adulthood, adult weight change, and risk of type 2 diabetes, cardiovascular diseases, and certain cancers in men: a Cohort Study. Am J Epidemiol. 2014. doi:10.1093/aje/kwu052.PubMed De Mutsert R, Sun Q, Willett WC, Hu FB, Dam RM V. Overweight in early adulthood, adult weight change, and risk of type 2 diabetes, cardiovascular diseases, and certain cancers in men: a Cohort Study. Am J Epidemiol. 2014. doi:10.​1093/​aje/​kwu052.PubMed
13.
go back to reference Field AE, Manson JE, Laird N, Williamson DF, Willett WC, Colditz GA. Weight cycling and the risk of developing type 2 diabetes among adult women in the United States. Obes Res. 2004;12(2):267–74.PubMed Field AE, Manson JE, Laird N, Williamson DF, Willett WC, Colditz GA. Weight cycling and the risk of developing type 2 diabetes among adult women in the United States. Obes Res. 2004;12(2):267–74.PubMed
14.
go back to reference Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. Diet Diabetes. 1997;277(6):472–7. Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. Diet Diabetes. 1997;277(6):472–7.
15.
go back to reference Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr. 2004;80:348–56.PubMed Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr. 2004;80:348–56.PubMed
16.
go back to reference Halton TL, Liu S, Manson JE, Hu FB. Low-carbohydrate-diet score and risk of type 2 diabetes inwomen. Am J Clin Nutr. 2008;87:339–46.PubMedCentralPubMed Halton TL, Liu S, Manson JE, Hu FB. Low-carbohydrate-diet score and risk of type 2 diabetes inwomen. Am J Clin Nutr. 2008;87:339–46.PubMedCentralPubMed
17.
go back to reference Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr. 2002;76:274S–80.PubMed Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr. 2002;76:274S–80.PubMed
18.••
go back to reference Bhupathiraju SN, Tobias DK, Malik VS, et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 2014;(C). doi:10.3945/ajcn.113.079533. This study examines the relationship between dietary glycemic index and glycemic load and risk of type 2 diabetes in the Nurses’ Health Study, Nurses’ Health Study 2, and Health Professionals’ Study, with an updated meta-analysis on this topic. It provides robust evidence that higher dietary glycemic index and glycemic load is associated with a significantly elevated risk of developing diabetes. Bhupathiraju SN, Tobias DK, Malik VS, et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 2014;(C). doi:10.​3945/​ajcn.​113.​079533. This study examines the relationship between dietary glycemic index and glycemic load and risk of type 2 diabetes in the Nurses’ Health Study, Nurses’ Health Study 2, and Health Professionals’ Study, with an updated meta-analysis on this topic. It provides robust evidence that higher dietary glycemic index and glycemic load is associated with a significantly elevated risk of developing diabetes.
19.
go back to reference Salmerón J, Hu FB, Manson JE, et al. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr. 2001;73:1019–26.PubMed Salmerón J, Hu FB, Manson JE, et al. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr. 2001;73:1019–26.PubMed
20.
go back to reference Colditz A, Manson JE, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Diet and risk of clinical diabetes in women. Am J Clin Nutr. 1992;55:1018–23.PubMed Colditz A, Manson JE, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Diet and risk of clinical diabetes in women. Am J Clin Nutr. 1992;55:1018–23.PubMed
21.
go back to reference Tinker LF, Bonds DE, Margolis KE, et al. Low-fat dietary pattern and risk of treated diabetes mellitus in postmenopausal women. Arch Intern Med. 2008;168(14):1500–11.PubMed Tinker LF, Bonds DE, Margolis KE, et al. Low-fat dietary pattern and risk of treated diabetes mellitus in postmenopausal women. Arch Intern Med. 2008;168(14):1500–11.PubMed
23.
go back to reference Anstassios GP, Sun Q, Manson JE, Dawnson-Hughes B, Hu FB. Plasma 25-Hydroxyvitamin D concentration and risk of incident type 2 diabetes in women. Diabetes Care. 2010;33(9):2021–3. doi:10.2337/dc10-0790. Anstassios GP, Sun Q, Manson JE, Dawnson-Hughes B, Hu FB. Plasma 25-Hydroxyvitamin D concentration and risk of incident type 2 diabetes in women. Diabetes Care. 2010;33(9):2021–3. doi:10.​2337/​dc10-0790.
24.
go back to reference Anstassios GP, Dawson-Hughes B, Li T, et al. Vitamin D and Calcium Intake in Relation to Type 2 Diabetes in Women. Diabetes Care. 2006;29(3):650–6. Anstassios GP, Dawson-Hughes B, Li T, et al. Vitamin D and Calcium Intake in Relation to Type 2 Diabetes in Women. Diabetes Care. 2006;29(3):650–6.
25.
go back to reference Lopez-Ridaura R, Willett WC, Rimm EB, et al. Magnesium intake and risk of type 2 in men and women. Diabetes Care. 2004;27(1):134–40.PubMed Lopez-Ridaura R, Willett WC, Rimm EB, et al. Magnesium intake and risk of type 2 in men and women. Diabetes Care. 2004;27(1):134–40.PubMed
26.
go back to reference Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes. Arch Intern Med. 2007;167:956–65.PubMed Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes. Arch Intern Med. 2007;167:956–65.PubMed
27.
go back to reference Sun Q, van Dam RM, Willett WC, Hu FB. Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care. 2009;32(4):629–34.PubMedCentralPubMed Sun Q, van Dam RM, Willett WC, Hu FB. Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care. 2009;32(4):629–34.PubMedCentralPubMed
32.••
go back to reference Muraki I, Imamura F, Manson JE, et al. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ. 2013;347:f5001. doi:10.1136/bmj.f5001. This study provides important evidence that higher consumption of whole fruits is protective against type 2 diabetes, but regular consumption of fruit juices increases diabetes risk.PubMedCentralPubMed Muraki I, Imamura F, Manson JE, et al. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ. 2013;347:f5001. doi:10.​1136/​bmj.​f5001. This study provides important evidence that higher consumption of whole fruits is protective against type 2 diabetes, but regular consumption of fruit juices increases diabetes risk.PubMedCentralPubMed
33.
go back to reference Cooper AJ, Forouhi NG, Ye Z, et al. Fruit and vegetable intake and type 2 diabetes : EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr. 2013;66(10):1082–92. doi:10.1038/ejcn.2012.85.Fruit. Cooper AJ, Forouhi NG, Ye Z, et al. Fruit and vegetable intake and type 2 diabetes : EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr. 2013;66(10):1082–92. doi:10.​1038/​ejcn.​2012.​85.​Fruit.
35.
go back to reference Choi HK, Willett WC, Stampfer MJ, Rimm E, Hu FB. Dairy consumption and risk of type 2 diabetes mellitus in men. Arch Intern Med. 2005;165:997–1003.PubMed Choi HK, Willett WC, Stampfer MJ, Rimm E, Hu FB. Dairy consumption and risk of type 2 diabetes mellitus in men. Arch Intern Med. 2005;165:997–1003.PubMed
36.•
go back to reference Pan A, Sun Q, Bernstein AM, et al. Red meat consumption and risk of type 2 diabetes : 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94:1088–96. doi:10.3945/ajcn.111.018978.INTRODUCTION. This study showed that higher consumption of red meat, especially processed red meat such as hot dogs, sausages, and bacon is associated with increased risk of type 2 diabetes, independent of body mass index and other diabetes risk factors.PubMedCentralPubMed Pan A, Sun Q, Bernstein AM, et al. Red meat consumption and risk of type 2 diabetes : 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94:1088–96. doi:10.​3945/​ajcn.​111.​018978.​INTRODUCTION. This study showed that higher consumption of red meat, especially processed red meat such as hot dogs, sausages, and bacon is associated with increased risk of type 2 diabetes, independent of body mass index and other diabetes risk factors.PubMedCentralPubMed
37.
go back to reference Pan A, Sun Q, Bernstein AM, Manson JE, Willett WC, Hu FB. Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus three cohorts of US men and women. J Am Med Assoc Intern Med. 2013;173(14):1328–35. doi:10.1001/jamainternmed.2013.6633. Pan A, Sun Q, Bernstein AM, Manson JE, Willett WC, Hu FB. Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus three cohorts of US men and women. J Am Med Assoc Intern Med. 2013;173(14):1328–35. doi:10.​1001/​jamainternmed.​2013.​6633.
38.
go back to reference Jiang R, Ma J, Ascherio A, Stampfer MJ, Willett WC, Hu FB. Dietary iron intake and blood donations in relation to risk of type 2 diabetes in men : a prospective cohort study. Am J Clin Nutr. 2004;79:70–5.PubMed Jiang R, Ma J, Ascherio A, Stampfer MJ, Willett WC, Hu FB. Dietary iron intake and blood donations in relation to risk of type 2 diabetes in men : a prospective cohort study. Am J Clin Nutr. 2004;79:70–5.PubMed
39.
40.
go back to reference Aune D, Ursin G, Veierød MB. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia. 2009;52(11):2277–87. doi:10.1007/s00125-009-1481-x.PubMed Aune D, Ursin G, Veierød MB. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia. 2009;52(11):2277–87. doi:10.​1007/​s00125-009-1481-x.PubMed
41.
go back to reference Fung TT, Hu FB, Pereira MA, et al. Whole-grain intake and the risk of type 2 diabetes : a prospective study in men. Am J Clin Nutr. 2002;76:535–40.PubMed Fung TT, Hu FB, Pereira MA, et al. Whole-grain intake and the risk of type 2 diabetes : a prospective study in men. Am J Clin Nutr. 2002;76:535–40.PubMed
42.
go back to reference Liu S, Manson JE, Stampfer MJ, et al. A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health. 2000;90(9):1409–15.PubMedCentralPubMed Liu S, Manson JE, Stampfer MJ, et al. A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health. 2000;90(9):1409–15.PubMedCentralPubMed
43.
go back to reference De Munter JSL, Hu FB, Spiegelman D, Franz M, Van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med. 2007;4(8):1385–94. doi:10.1371/journal.pmed.0040261. De Munter JSL, Hu FB, Spiegelman D, Franz M, Van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med. 2007;4(8):1385–94. doi:10.​1371/​journal.​pmed.​0040261.
44.
go back to reference Sun Q, Spiegelman D, van Dam RM, et al. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch Intern Med. 2010;170(11):961–70.PubMedCentralPubMed Sun Q, Spiegelman D, van Dam RM, et al. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch Intern Med. 2010;170(11):961–70.PubMedCentralPubMed
45.••
go back to reference Hu EA, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ. 2012;344(March):e1454. doi:10.1136/bmj.e1454. This meta-analysis shows that higher consumption of white rice is associated with increased risk of type 2 diabetes, especially among Asian populations in which white rice is a staple food.PubMedCentralPubMed Hu EA, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ. 2012;344(March):e1454. doi:10.​1136/​bmj.​e1454. This meta-analysis shows that higher consumption of white rice is associated with increased risk of type 2 diabetes, especially among Asian populations in which white rice is a staple food.PubMedCentralPubMed
46.
go back to reference Halton TL, Willett WC, Liu S, Manson JE, Stampfer MJ, Hu FB. Potato and french fry consumption and risk of type 2 diabetes in women. Am J Clin Nutr. 2006;83(5):284–90.PubMed Halton TL, Willett WC, Liu S, Manson JE, Stampfer MJ, Hu FB. Potato and french fry consumption and risk of type 2 diabetes in women. Am J Clin Nutr. 2006;83(5):284–90.PubMed
47.
go back to reference Jiang R, Manson JE, Stampfer MJ, Liu S, Willett WC, Hu BF. Nut and peanut butter consumption and risk of type 2 diabetes in women. J Am Med Assoc. 2002;288(20):2554–60. Jiang R, Manson JE, Stampfer MJ, Liu S, Willett WC, Hu BF. Nut and peanut butter consumption and risk of type 2 diabetes in women. J Am Med Assoc. 2002;288(20):2554–60.
50.
go back to reference Schulze MB, Manson JE, Ludwig DS, et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. J Am Med Assoc. 2004;292(8):927–34. Schulze MB, Manson JE, Ludwig DS, et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. J Am Med Assoc. 2004;292(8):927–34.
52.•
go back to reference Bhupathiraju SN, Pan A, Malik VS, et al. Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am J Clin Nutr. 2013;97(2):155–66. doi:10.3945/ajcn.112.048603. This study shows that regular consumption of sugar-sweetened beverages regardless of caffeine content is associated with increased risk of type 2 diabetes, whereas higher consumption of both caffeinated and de-caffeinated coffee is associated with a lower risk.PubMed Bhupathiraju SN, Pan A, Malik VS, et al. Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am J Clin Nutr. 2013;97(2):155–66. doi:10.​3945/​ajcn.​112.​048603. This study shows that regular consumption of sugar-sweetened beverages regardless of caffeine content is associated with increased risk of type 2 diabetes, whereas higher consumption of both caffeinated and de-caffeinated coffee is associated with a lower risk.PubMed
53.
go back to reference Malik VS, Popkin BM, Bray GA, Despres J-P, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes. A meta-analysis. Diabetes Care. 2010;33(11):2477–83. doi:10.2337/dc10-1079.PubMedCentralPubMed Malik VS, Popkin BM, Bray GA, Despres J-P, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes. A meta-analysis. Diabetes Care. 2010;33(11):2477–83. doi:10.​2337/​dc10-1079.PubMedCentralPubMed
54.
go back to reference Van Dam RM, Willett WC, Manson JE, Hu FB. Coffee, caffeine, and risk of type 2 diabetes. Diabetes Care. 2006;29(2):398–403.PubMed Van Dam RM, Willett WC, Manson JE, Hu FB. Coffee, caffeine, and risk of type 2 diabetes. Diabetes Care. 2006;29(2):398–403.PubMed
55.
go back to reference Salazar-Martinez E, Willett WC, Ascherio A, et al. Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med. 2004;140:1–8.PubMed Salazar-Martinez E, Willett WC, Ascherio A, et al. Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med. 2004;140:1–8.PubMed
56.
go back to reference Bhupathiraju SN, Pan A, Manson JE, Willett WC, van Dam RM, Hu FB. Changes in coffee intake and subsequent risk of type 2 diabetes: three large cohorts of US men and women. Diabetologia. 2014. doi:10.1007/s00125-014-3235-7.PubMed Bhupathiraju SN, Pan A, Manson JE, Willett WC, van Dam RM, Hu FB. Changes in coffee intake and subsequent risk of type 2 diabetes: three large cohorts of US men and women. Diabetologia. 2014. doi:10.​1007/​s00125-014-3235-7.PubMed
57.
go back to reference Van Dam RM, Hu FB. Coffee consumption a systematic review. J Am Med Assoc. 2005;294(1):97–104. Van Dam RM, Hu FB. Coffee consumption a systematic review. J Am Med Assoc. 2005;294(1):97–104.
58.
go back to reference Huxley R, Man C, Lee Y, et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus. A systematic review with meta-analysis. Arch Intern Med. 2009;169(22):2053–63.PubMed Huxley R, Man C, Lee Y, et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus. A systematic review with meta-analysis. Arch Intern Med. 2009;169(22):2053–63.PubMed
59.•
go back to reference Ding M, Bhupathiraju SN, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care. 2014;37(February):569–86. doi:10.2337/dc13-1203. This updated meta-analysis demonstrates a dose-response relationship between increasing coffee consumption and lower risk of type 2 diabetes. Both caffeinated and decaffeinated coffee contributes to the decreased risk of diabetes.PubMed Ding M, Bhupathiraju SN, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care. 2014;37(February):569–86. doi:10.​2337/​dc13-1203. This updated meta-analysis demonstrates a dose-response relationship between increasing coffee consumption and lower risk of type 2 diabetes. Both caffeinated and decaffeinated coffee contributes to the decreased risk of diabetes.PubMed
60.
go back to reference Conigrave KM, Hu BF, Camargo CA, Stampfer MJ, Willett WC, Rimm EB. A prospective study of drinking patterns in relation to risk of type 2 diabetes among men. Diabetes. 2001;50(October):2390–5.PubMed Conigrave KM, Hu BF, Camargo CA, Stampfer MJ, Willett WC, Rimm EB. A prospective study of drinking patterns in relation to risk of type 2 diabetes among men. Diabetes. 2001;50(October):2390–5.PubMed
61.
go back to reference Stampfer MJ, Colditz GA, Willett WC, et al. A prospective study of moderate alcohol drinking and risk of diabetes in women. Am J Epidemiol. 1988;128(3):549–58.PubMed Stampfer MJ, Colditz GA, Willett WC, et al. A prospective study of moderate alcohol drinking and risk of diabetes in women. Am J Epidemiol. 1988;128(3):549–58.PubMed
62.
go back to reference Rimm EB, Chan J, Stampfer MJ, Colditz GA, Willett WC. Prospective study ofcigarette smoking, alcohol use, and the risk of diabetes in men. BMJ. 1995;310:555–9.PubMedCentralPubMed Rimm EB, Chan J, Stampfer MJ, Colditz GA, Willett WC. Prospective study ofcigarette smoking, alcohol use, and the risk of diabetes in men. BMJ. 1995;310:555–9.PubMedCentralPubMed
67.
go back to reference Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.PubMed Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.PubMed
68.
go back to reference Van Dam RM, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann Intern Med. 2002;136:201–9.PubMed Van Dam RM, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann Intern Med. 2002;136:201–9.PubMed
69.
go back to reference Liese AD, Nichols M, Sun X, D’Agostino RD, Haffner SM. Adherence to the DASH diet is inversely associated with incidence of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2009;32(June):1434–6. doi:10.2337/dc09-0228.PubMedCentralPubMed Liese AD, Nichols M, Sun X, D’Agostino RD, Haffner SM. Adherence to the DASH diet is inversely associated with incidence of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2009;32(June):1434–6. doi:10.​2337/​dc09-0228.PubMedCentralPubMed
71.
go back to reference Salas-Salvado J, Bullo M, Estruch R, et al. Original research prevention of diabetes with Mediterranean diets. Annal. 2014;160:1–11. Salas-Salvado J, Bullo M, Estruch R, et al. Original research prevention of diabetes with Mediterranean diets. Annal. 2014;160:1–11.
73.
go back to reference Schulze MB, Hoffmann K, Manson JE, et al. Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr. 2005;82:675–84.PubMedCentralPubMed Schulze MB, Hoffmann K, Manson JE, et al. Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr. 2005;82:675–84.PubMedCentralPubMed
77.••
go back to reference Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383:1999–2007. doi:10.1016/S0140-6736(14)60613-9. This comprehensive review examines the role of a multitude of dietary factors in the prevention and management of type 2 diabetes. It identifies research gaps and suggests future research directions and policy implications.PubMed Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383:1999–2007. doi:10.​1016/​S0140-6736(14)60613-9. This comprehensive review examines the role of a multitude of dietary factors in the prevention and management of type 2 diabetes. It identifies research gaps and suggests future research directions and policy implications.PubMed
78.•
go back to reference Grøntved A, Pan A, Mekary RA, et al. Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS Med. 2014;11(1):e1001587. doi:10.1371/journal.pmed.1001587. This study demonstrates an inverse association between muscle-strengthening and conditioning activities such as resistance training, yoga, stretching, and toning is associated with lower risk of type 2 diabetes in women. The combination of these activities and aerobic exercise is associated with the largest benefit.PubMedCentralPubMed Grøntved A, Pan A, Mekary RA, et al. Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS Med. 2014;11(1):e1001587. doi:10.​1371/​journal.​pmed.​1001587. This study demonstrates an inverse association between muscle-strengthening and conditioning activities such as resistance training, yoga, stretching, and toning is associated with lower risk of type 2 diabetes in women. The combination of these activities and aerobic exercise is associated with the largest benefit.PubMedCentralPubMed
79.
80.
go back to reference Sigal RJ, Rich-Edwards JW, Colditz GA, et al. Physical activity and risk of type 2 diabetes in women a prospective study. J Am Med Assoc. 1999;282(15):1433–9. Sigal RJ, Rich-Edwards JW, Colditz GA, et al. Physical activity and risk of type 2 diabetes in women a prospective study. J Am Med Assoc. 1999;282(15):1433–9.
81.
go back to reference Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. J Am Med Assoc. 2014;289(14):1785–91. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. J Am Med Assoc. 2014;289(14):1785–91.
83.
go back to reference Rimm EB, Manson JE, Stampfer MJ, et al. Cigarette smoking and the risk of diabetes in women. Am J Public Health. 1993;83:211–4.PubMedCentralPubMed Rimm EB, Manson JE, Stampfer MJ, et al. Cigarette smoking and the risk of diabetes in women. Am J Public Health. 1993;83:211–4.PubMedCentralPubMed
84.
go back to reference Luo J, Rossouw J, Tong E, et al. Smoking cessation, weight gain, and risk of type 2 diabetes mellitus among postmenopausal women. Arch Intern Med. 2012;172(5):438–40.PubMed Luo J, Rossouw J, Tong E, et al. Smoking cessation, weight gain, and risk of type 2 diabetes mellitus among postmenopausal women. Arch Intern Med. 2012;172(5):438–40.PubMed
86.
go back to reference Al-delaimy WK, Manson JE, Willett WC, Stampfer MJ, Hu FB. Snoring as a risk factor for type II diabetes mellitus: a prospective study. Am J Epidemiol. 2002;155(5):387–93.PubMed Al-delaimy WK, Manson JE, Willett WC, Stampfer MJ, Hu FB. Snoring as a risk factor for type II diabetes mellitus: a prospective study. Am J Epidemiol. 2002;155(5):387–93.PubMed
87.
go back to reference Ayas N, White D, Al-delaimy WK, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care. 2003;26(2):380–4.PubMed Ayas N, White D, Al-delaimy WK, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care. 2003;26(2):380–4.PubMed
89.
go back to reference Rimm EB, Manson JE, Stampfer MJ, et al. Oral contraceptive use and the risk of Type 2 (non-insulin-dependent) diabetes mellitus in a large prospective study of women. Diabetologia. 1992;2(35):967–72. Rimm EB, Manson JE, Stampfer MJ, et al. Oral contraceptive use and the risk of Type 2 (non-insulin-dependent) diabetes mellitus in a large prospective study of women. Diabetologia. 1992;2(35):967–72.
90.
go back to reference Taylor EN, Hu FB, Curhan GC. Antihypertensive medications and the risk of incident type 2 diabetes methods. Diabetes Care. 2006;29(5):1065–70. doi:10.2337/dc05-2366.PubMed Taylor EN, Hu FB, Curhan GC. Antihypertensive medications and the risk of incident type 2 diabetes methods. Diabetes Care. 2006;29(5):1065–70. doi:10.​2337/​dc05-2366.PubMed
92.
go back to reference Pan A, Lucas M, Sun Q, et al. Bidirectional association between depression and type 2 diabetes mellitus in women. Arch Intern Med. 2014;170(21):1884–91. Pan A, Lucas M, Sun Q, et al. Bidirectional association between depression and type 2 diabetes mellitus in women. Arch Intern Med. 2014;170(21):1884–91.
93.
94.
go back to reference Mandel EI, Curham GC, Hu BF, Salinardi T. Plasma bicarbonate and risk of type 2 diabetes mellitus. CMAJ. 2012;184(13):719–25. Mandel EI, Curham GC, Hu BF, Salinardi T. Plasma bicarbonate and risk of type 2 diabetes mellitus. CMAJ. 2012;184(13):719–25.
95.
go back to reference Sun Q, Wedick NM, Townsend MK, et al. Gut microbiota metabolites of dietary lignans and risk of type 2 diabetes: a prospective investigation in two cohorts of. Diabetes Care. 2014;37:1287–95. doi:10.2337/dc13-2513.PubMed Sun Q, Wedick NM, Townsend MK, et al. Gut microbiota metabolites of dietary lignans and risk of type 2 diabetes: a prospective investigation in two cohorts of. Diabetes Care. 2014;37:1287–95. doi:10.​2337/​dc13-2513.PubMed
96.
go back to reference Riet EV, Dekker JM, Sun Q, Nijpels G, Hu FB, van Dam RM. Role of adiposity and lifestyle in the relationship between family history of diabetes and 20-year incidence of type 2 diabetes in US women. Diabetes Care. 2010;33(4):763–7. doi:10.2337/dc09-1586. Riet EV, Dekker JM, Sun Q, Nijpels G, Hu FB, van Dam RM. Role of adiposity and lifestyle in the relationship between family history of diabetes and 20-year incidence of type 2 diabetes in US women. Diabetes Care. 2010;33(4):763–7. doi:10.​2337/​dc09-1586.
97.
98.
go back to reference Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2009;40(5):638–45. doi:10.1038/ng.120.Meta-analysis. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2009;40(5):638–45. doi:10.​1038/​ng.​120.​Meta-analysis.
99.
go back to reference Cornelis MC, Qi L, Zhang C, et al. Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. Men and Women of European Ancestry Marilyn. Ann Intern Med. 2009;150(8):541–50.PubMedCentralPubMed Cornelis MC, Qi L, Zhang C, et al. Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. Men and Women of European Ancestry Marilyn. Ann Intern Med. 2009;150(8):541–50.PubMedCentralPubMed
100.•
go back to reference Bao W, Hu FB, Rong S, et al. Systematic reviews and meta- and pooled analyses predicting risk of type 2 diabetes mellitus with genetic risk models on the basis of established genome-wide association markers: a systematic review. Am J Epidemiol. 2013;178(8):1197–207. doi:10.1093/aje/kwt123. This systematic review shows that the cumulative genetic risk score does not provide additional prediction of type 2 diabetes beyond traditional diabetes risk factors.PubMedCentralPubMed Bao W, Hu FB, Rong S, et al. Systematic reviews and meta- and pooled analyses predicting risk of type 2 diabetes mellitus with genetic risk models on the basis of established genome-wide association markers: a systematic review. Am J Epidemiol. 2013;178(8):1197–207. doi:10.​1093/​aje/​kwt123. This systematic review shows that the cumulative genetic risk score does not provide additional prediction of type 2 diabetes beyond traditional diabetes risk factors.PubMedCentralPubMed
104.
go back to reference Pasquale LR, Loomis SJ, Aschard H, et al. Exploring genome-wide - dietary heme iron intake interactions and the risk of type 2 diabetes. Front Genet. 2013;4(January):1–6. doi:10.3389/fgene.2013.00007. Pasquale LR, Loomis SJ, Aschard H, et al. Exploring genome-wide - dietary heme iron intake interactions and the risk of type 2 diabetes. Front Genet. 2013;4(January):1–6. doi:10.​3389/​fgene.​2013.​00007.
106.
go back to reference He M, Workalemahu T, Cornelis MC, Hu FB, Qi L. Genetic variants near the IRS1 gene, physical activity and type 2 diabetes in US men and women. Diabetologia. 2011;54(6):1579–82.PubMed He M, Workalemahu T, Cornelis MC, Hu FB, Qi L. Genetic variants near the IRS1 gene, physical activity and type 2 diabetes in US men and women. Diabetologia. 2011;54(6):1579–82.PubMed
108.
go back to reference Puett RC, Hart JE, Schwartz J, Hu FB, Liese AD, Laden F. Are particulate matter exposures associated with risk of type 2 diabetes? Environ Health Perspect. 2011;384(3):384–9. doi:10.1289/ehp.1002344. Puett RC, Hart JE, Schwartz J, Hu FB, Liese AD, Laden F. Are particulate matter exposures associated with risk of type 2 diabetes? Environ Health Perspect. 2011;384(3):384–9. doi:10.​1289/​ehp.​1002344.
109.
go back to reference Sun Q, Cornelis MC, Townsend MK, et al. Association of urinary concentrations of Bisphenol A and Phtalate metabolites with risk of type 2 diabetes: a prospective investiagrion in the Nurses’ Health Study (NHS) and NHSII Cohorts. Environ. Health Perspect. 2014;(March). Sun Q, Cornelis MC, Townsend MK, et al. Association of urinary concentrations of Bisphenol A and Phtalate metabolites with risk of type 2 diabetes: a prospective investiagrion in the Nurses’ Health Study (NHS) and NHSII Cohorts. Environ. Health Perspect. 2014;(March).
110.
go back to reference Wu H, Bertrand KA, Choi AL, et al. Review persistent organic pollutants and type 2 diabetes: a prospective analysis in the nurses’ health study and meta-analysis. Environ Health Perspect. 2013;121(2):153–61.PubMedCentralPubMed Wu H, Bertrand KA, Choi AL, et al. Review persistent organic pollutants and type 2 diabetes: a prospective analysis in the nurses’ health study and meta-analysis. Environ Health Perspect. 2013;121(2):153–61.PubMedCentralPubMed
111.
go back to reference Rich-Edwards JW, Colditz GA, Stampfer MJ, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med. 1999;130:278–84.PubMed Rich-Edwards JW, Colditz GA, Stampfer MJ, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med. 1999;130:278–84.PubMed
112.
go back to reference James-Todd TM, Karumanchi SA, Hibert EL, et al. Gestational age, infant birth weight, and subsequent risk of type 2 diabetes in mothers: nurses’ health study II. Prev Chronic Dis. 2013;10(5):1–11. James-Todd TM, Karumanchi SA, Hibert EL, et al. Gestational age, infant birth weight, and subsequent risk of type 2 diabetes in mothers: nurses’ health study II. Prev Chronic Dis. 2013;10(5):1–11.
114.
go back to reference Stuebe AM, Rich-Edwards JW, Willett WC, Manson JE, Michels KB. Duration of lactation and incidence of type 2 diabetes. J Am Med Assoc. 2005;294(20):2601–10. Stuebe AM, Rich-Edwards JW, Willett WC, Manson JE, Michels KB. Duration of lactation and incidence of type 2 diabetes. J Am Med Assoc. 2005;294(20):2601–10.
115.
go back to reference Pan X-R, Li G-W, Hu Y-H, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerace. Diabetes Care. 1997;20(4):537–44.PubMed Pan X-R, Li G-W, Hu Y-H, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerace. Diabetes Care. 1997;20(4):537–44.PubMed
116.
go back to reference Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet. 2008;371(9626):1783–9. doi:10.1016/S0140-6736(08)60766-7.PubMed Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet. 2008;371(9626):1783–9. doi:10.​1016/​S0140-6736(08)60766-7.PubMed
117.
go back to reference Tuomilehto J, Lindstrom J, Eriksson J, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with imparied glucose tolerance. N Engl J Med. 2001;344(18):1343–50.PubMed Tuomilehto J, Lindstrom J, Eriksson J, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with imparied glucose tolerance. N Engl J Med. 2001;344(18):1343–50.PubMed
118.
go back to reference Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. doi:10.1056/NEJMoa012512.PubMed Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. doi:10.​1056/​NEJMoa012512.PubMed
Metadata
Title
Diet, Lifestyle, and Genetic Risk Factors for Type 2 Diabetes: A Review from the Nurses’ Health Study, Nurses’ Health Study 2, and Health Professionals’ Follow-Up Study
Authors
Andres V. Ardisson Korat
Walter C. Willett
Frank B. Hu
Publication date
01-12-2014
Publisher
Springer US
Published in
Current Nutrition Reports / Issue 4/2014
Electronic ISSN: 2161-3311
DOI
https://doi.org/10.1007/s13668-014-0103-5

Other articles of this Issue 4/2014

Current Nutrition Reports 4/2014 Go to the issue

Public Health and Translational Medicine (PW Franks, Section Editor)

The Role of Protein and Carbohydrates for Long-Term Weight Control: Lessons from the Diogenes Trial

Diabetes and Obesity (MR Carnethon, Section Editor)

Dietary Management of Diabetic Chronic Kidney Disease

Public Health and Translational Medicine (PW Franks, Section Editor)

The Look AHEAD Trial: A Review and Discussion of Its Outcomes

Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.