Skip to main content
Top
Published in: International Journal of Diabetes in Developing Countries 3/2017

01-09-2017 | Original Article

Regular exercise with an active lifestyle improves the lipid profile of individuals with diabetes mellitus

Published in: International Journal of Diabetes in Developing Countries | Issue 3/2017

Login to get access

Abstract

Incidence of diabetes with its associated morbidities is increasing worldwide and hence needs major lifestyle modifications. Hence, this study was designed to compare the effect of moderate intensity exercise for a shorter period of time with an active lifestyle to a low-intensity exercise for a longer period of time and sedentary lifestyle on the lipid profile of diabetic men. The outpatients of MV Hospital were screened using a structured questionnaire to evaluate their lifestyle and exercise pattern over a period of 12 months. The data of 293 men and women were divided into three groups based on their activity level. Group 1 led a totally sedentary lifestyle with no exercise. Group 2 included individuals who were active throughout the day and walked at moderate intensity for a period of 20–30 min, and group 3 exercised at a low intensity for a period of 45–60 min with a sedentary lifestyle. The anthropometric measurements and the lipid profiles of the three groups were compared. A total 41.8 % of the group which led an active lifestyle as well as a moderate intensity of exercise had good glycemic control. The non-HDL levels were 131 ± 38.4 which was significantly lower than the other groups. Hence, the group which led an active lifestyle with moderate intensity exercise fared better than the sedentary group. An active lifestyle throughout the day with an exercise schedule of moderate intensity maintains the lipid parameters more effectively than a low-intensity exercise for a much longer period of time.
Literature
1.
go back to reference Evangelia M, Kouidi N, Koutlianos N, Deligiannis A. Effects of long-term exercise training on cardiac baroreflex sensitivity in patients with coronary artery disease: a randomized controlled trial. ClinRehabil. 2010;0269215510380825. Evangelia M, Kouidi N, Koutlianos N, Deligiannis A. Effects of long-term exercise training on cardiac baroreflex sensitivity in patients with coronary artery disease: a randomized controlled trial. ClinRehabil. 2010;0269215510380825.
2.
go back to reference Nikam S, Nikam P, Joshi A, Viveki RG, Halappanavar B, Hungund B. Effect of regular physical exercise (among circus athletes) on lipid profile, lipid peroxidation and enzymatic antioxidants. Int J Biochem Res Rev. 2013;3(4):414–20.CrossRef Nikam S, Nikam P, Joshi A, Viveki RG, Halappanavar B, Hungund B. Effect of regular physical exercise (among circus athletes) on lipid profile, lipid peroxidation and enzymatic antioxidants. Int J Biochem Res Rev. 2013;3(4):414–20.CrossRef
3.
go back to reference Ardoyl DN, Artero EG, Ruiz JR, Labayen I, Sjostrom M, Castillo M, et al. Effects on adolescents’ lipid profile of a fitness-enhancing intervention in the school setting: the EDUFIT study. Nutr Hosp. 2013;28:119–26. Ardoyl DN, Artero EG, Ruiz JR, Labayen I, Sjostrom M, Castillo M, et al. Effects on adolescents’ lipid profile of a fitness-enhancing intervention in the school setting: the EDUFIT study. Nutr Hosp. 2013;28:119–26.
4.
go back to reference Bassuk SS, Manson JAE. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol. 2005;99:1193–204.CrossRefPubMed Bassuk SS, Manson JAE. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol. 2005;99:1193–204.CrossRefPubMed
5.
go back to reference Park SK, Park JH, Kwon YC, Kim HS, Yoon MS, Park HT. The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Hum Sci. 2003;22:129–35.CrossRef Park SK, Park JH, Kwon YC, Kim HS, Yoon MS, Park HT. The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Hum Sci. 2003;22:129–35.CrossRef
6.
go back to reference Hurley BF, Hagberg JM, Goldberg AP, Seals DR, Ehsani AA, Brennan RE, et al. Resistive training can reduce coronary risk factors without altering VO2max or percent body fat. Med Sci Sports Exerc. 1988;20:150–4.CrossRefPubMed Hurley BF, Hagberg JM, Goldberg AP, Seals DR, Ehsani AA, Brennan RE, et al. Resistive training can reduce coronary risk factors without altering VO2max or percent body fat. Med Sci Sports Exerc. 1988;20:150–4.CrossRefPubMed
7.
go back to reference Joseph LJ, Davey SL, Evans WJ, Campbell WW. Differential effect of resistance training on the body composition and lipoprotein-lipid profile in older men and women. Metabolism. 1999;48:1474–80.CrossRefPubMed Joseph LJ, Davey SL, Evans WJ, Campbell WW. Differential effect of resistance training on the body composition and lipoprotein-lipid profile in older men and women. Metabolism. 1999;48:1474–80.CrossRefPubMed
8.
go back to reference LeMura LM, von Duvillard SP, Andreacci J, Klebez JM, Chelland SA, Russo J. Lipid and lipoprotein profiles, cardiovascular fitness, body composition, and diet during and after resistance, aerobic and combination training in young women. Eur J ApplPhysiol. 2000;82:451–8. LeMura LM, von Duvillard SP, Andreacci J, Klebez JM, Chelland SA, Russo J. Lipid and lipoprotein profiles, cardiovascular fitness, body composition, and diet during and after resistance, aerobic and combination training in young women. Eur J ApplPhysiol. 2000;82:451–8.
9.
go back to reference Abby CK, William lH, Deborah RY, Roberta KO, Marcia lS. Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation. 1995;91:2596–604.CrossRef Abby CK, William lH, Deborah RY, Roberta KO, Marcia lS. Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation. 1995;91:2596–604.CrossRef
10.
go back to reference Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, Mccartney JS, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;34:1483–92.CrossRef Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, Mccartney JS, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;34:1483–92.CrossRef
11.
go back to reference Sandvei M, Jeppesen PB, Støen L, Litleskare S, Johansen E, Stensrud T, et al. Sprint interval running increases insulin sensitivity in young healthy subjects. Arch PhysiolBiochem. 2012;118(3):139–47. Sandvei M, Jeppesen PB, Støen L, Litleskare S, Johansen E, Stensrud T, et al. Sprint interval running increases insulin sensitivity in young healthy subjects. Arch PhysiolBiochem. 2012;118(3):139–47.
12.
go back to reference Hefferman, Andrew. All about your energy system experience life. The No-gimmicks No-hype Health and Fitness Magazine 2012 Hefferman, Andrew. All about your energy system experience life. The No-gimmicks No-hype Health and Fitness Magazine 2012
13.
go back to reference Duncan JJ, Gordon NF, Scott CB. Women walking for health and fitness: how much is enough? JAMA. 1991;266:3295–9.CrossRefPubMed Duncan JJ, Gordon NF, Scott CB. Women walking for health and fitness: how much is enough? JAMA. 1991;266:3295–9.CrossRefPubMed
14.
go back to reference Crouse SF, O’Brien BC, Grandjean PW, Lowe RC, Rohack JJ, Green JS, et al. Training intensity, blood, lipids, and apo lipoproteins in men with high cholesterol. J ApplPhysiol. 1997;82:270–7.CrossRef Crouse SF, O’Brien BC, Grandjean PW, Lowe RC, Rohack JJ, Green JS, et al. Training intensity, blood, lipids, and apo lipoproteins in men with high cholesterol. J ApplPhysiol. 1997;82:270–7.CrossRef
15.
go back to reference Sunami Y, Motoyama M, Kinoshita F, Mizooka Y, Sueta K, Matsunaga A, et al. Effects of low-intensity aerobic training on the high-density lipoprotein cholesterol concentration in healthy elderly subjects. Metabolism. 1999;48:984–8.CrossRefPubMed Sunami Y, Motoyama M, Kinoshita F, Mizooka Y, Sueta K, Matsunaga A, et al. Effects of low-intensity aerobic training on the high-density lipoprotein cholesterol concentration in healthy elderly subjects. Metabolism. 1999;48:984–8.CrossRefPubMed
16.
go back to reference Uma Maheswqari K, Vasudevan K, Balasubramaniam K, Yerrabelli D, Shanmugavel K, Nitin Ashok J. Effect of exercise intensity on lipid profile in sedentary adults. J Clin Diag Res. 2014;8(7):BC08–10. Uma Maheswqari K, Vasudevan K, Balasubramaniam K, Yerrabelli D, Shanmugavel K, Nitin Ashok J. Effect of exercise intensity on lipid profile in sedentary adults. J Clin Diag Res. 2014;8(7):BC08–10.
17.
go back to reference Mondon CE, Dolkas CB, Tobey T, Reaven GM. Causes of triglyceride lowering effect of exercise training in rats. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(5):1466–71.PubMed Mondon CE, Dolkas CB, Tobey T, Reaven GM. Causes of triglyceride lowering effect of exercise training in rats. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(5):1466–71.PubMed
18.
go back to reference Lira FS, Tavares FL, Yamashita AS, Koyama CH, Alves MJ, Caperuto EC, et al. Effect of endurance training upon lipid metabolism in the liver of cachectic tumour-bearing rats. Cell Biochem Funct. 2008;26(6):701–8.CrossRefPubMed Lira FS, Tavares FL, Yamashita AS, Koyama CH, Alves MJ, Caperuto EC, et al. Effect of endurance training upon lipid metabolism in the liver of cachectic tumour-bearing rats. Cell Biochem Funct. 2008;26(6):701–8.CrossRefPubMed
19.
go back to reference Chapados NA, Seelaender M, Levy E, Lavoie JM. Effects of exercise training on hepatic microsomal triglyceride transfer protein content in rats. Horm Metab Res. 2009;41(4):287–93.CrossRefPubMed Chapados NA, Seelaender M, Levy E, Lavoie JM. Effects of exercise training on hepatic microsomal triglyceride transfer protein content in rats. Horm Metab Res. 2009;41(4):287–93.CrossRefPubMed
20.
go back to reference Magkos F, Tsekouras YE, Prentzas KI, Basioukas KN, Matsama SG, Yanni AE, et al. Acute exercise induced changes in basal VLDL-triglyceride kinetics leading to hypotriglyceridemia manifest more readily after resistance than endurance exercise. J Appl Physiol. 2008;105(4):1228–36.CrossRefPubMed Magkos F, Tsekouras YE, Prentzas KI, Basioukas KN, Matsama SG, Yanni AE, et al. Acute exercise induced changes in basal VLDL-triglyceride kinetics leading to hypotriglyceridemia manifest more readily after resistance than endurance exercise. J Appl Physiol. 2008;105(4):1228–36.CrossRefPubMed
21.
go back to reference Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS. High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol- Endocrinol Metabol. 2008;295(4):E851–8.CrossRef Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS. High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol- Endocrinol Metabol. 2008;295(4):E851–8.CrossRef
22.
go back to reference Fisher RM, Coppack SW, Humphreys SM, Gibbons GF, Frayn KN. Human triacylglycerol-rich lipoprotein sub fractions as substrates for lipoprotein lipase. Clin Chimica Acta. 1995;236(1):7–17.CrossRef Fisher RM, Coppack SW, Humphreys SM, Gibbons GF, Frayn KN. Human triacylglycerol-rich lipoprotein sub fractions as substrates for lipoprotein lipase. Clin Chimica Acta. 1995;236(1):7–17.CrossRef
23.
go back to reference Perseghin G, Lattuada G, De Cobelli F, Ragogna F, Ntali G, Esposito A, et al. Habitual physical activity is associated with intrahepatic fat content in humans. Diabetes Care. 2007;30(3):683–8.CrossRefPubMed Perseghin G, Lattuada G, De Cobelli F, Ragogna F, Ntali G, Esposito A, et al. Habitual physical activity is associated with intrahepatic fat content in humans. Diabetes Care. 2007;30(3):683–8.CrossRefPubMed
24.
go back to reference Gauthier MS, Couturier K, Latour JG, Lavoie JM. Concurrent exercise prevents high-fat-diet-induced macro vesicular hepatic steatosis. J Appl Physiol. 2003;94(6):2127–34.CrossRefPubMed Gauthier MS, Couturier K, Latour JG, Lavoie JM. Concurrent exercise prevents high-fat-diet-induced macro vesicular hepatic steatosis. J Appl Physiol. 2003;94(6):2127–34.CrossRefPubMed
25.
go back to reference Rector RS, Thyfault JP, Morris RT, Laye MJ, Borengasser SJ, Booth FW, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima fatty rats. Am J Physiol. 2008;294(3):G619–26. Rector RS, Thyfault JP, Morris RT, Laye MJ, Borengasser SJ, Booth FW, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima fatty rats. Am J Physiol. 2008;294(3):G619–26.
26.
go back to reference Berglund ED, Kang L, Lee-Young RS, Hasenour CM, Lustig DG, Lynes SE, et al. Glucagon and interactions in the regulation of hepatic AMPK signaling and expression of PPARα and FGF21 transcripts in vivo. Am J Physiol-Endocrinol Metab. 2010;299(4):E607–14.CrossRefPubMedPubMedCentral Berglund ED, Kang L, Lee-Young RS, Hasenour CM, Lustig DG, Lynes SE, et al. Glucagon and interactions in the regulation of hepatic AMPK signaling and expression of PPARα and FGF21 transcripts in vivo. Am J Physiol-Endocrinol Metab. 2010;299(4):E607–14.CrossRefPubMedPubMedCentral
28.
go back to reference Galbo H, Holst JJ, Christensen NJ. The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiol Scand. 1979;107(1):19–32.CrossRefPubMed Galbo H, Holst JJ, Christensen NJ. The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiol Scand. 1979;107(1):19–32.CrossRefPubMed
Metadata
Title
Regular exercise with an active lifestyle improves the lipid profile of individuals with diabetes mellitus
Publication date
01-09-2017
Published in
International Journal of Diabetes in Developing Countries / Issue 3/2017
Print ISSN: 0973-3930
Electronic ISSN: 1998-3832
DOI
https://doi.org/10.1007/s13410-016-0482-9

Other articles of this Issue 3/2017

International Journal of Diabetes in Developing Countries 3/2017 Go to the issue