Skip to main content
Top
Published in: Cellular Oncology 4/2020

01-08-2020 | Metastasis | Original paper

Effect of EphA2 knockdown on melanoma metastasis depends on intrinsic ephrinA1 level

Authors: Jing Mo, Xiulan Zhao, Xueyi Dong, Tieju Liu, Nan Zhao, Danfang Zhang, Wei Wang, Yanhui Zhang, Baocun Sun

Published in: Cellular Oncology | Issue 4/2020

Login to get access

Abstract

Purpose

Upregulation of receptor tyrosine kinase EphA2 has been found to be associated with a poor prognosis in many types of cancer and is considered an attractive therapeutic target. As yet, few efforts have been focused on its tumor suppressive activity triggered by its ligand, ephrinA1. Here, we aimed to determine the potential of ephrinA1 as an important player in melanoma metastasis.

Methods

Data from the Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE) were analyzed to explore the expression and prognostic implications of EphA2 and ephrinA1 in melanoma. Western blotting, shRNA, colony formation and immunofluorescence assays, as well as two in vivo xenograft models (subcutaneous and metastatic) were used to evaluate the role of EphA2 in melanoma progression. Akt inhibition and ephrinA1-Fc were used to confirm the influence of Akt activation and ephrinA1 levels on the EphA2 effects. Immunohistochemistry (IHC) was performed on xenograft and patient melanoma tissues.

Results

We found that high levels of ephrinA1, but not EphA2, were negatively correlated with melanoma metastasis. The expression levels of EphA2 and ephrinA1 were not correlated. After EphA2 downregulation, colony forming abilities and lung metastatic growth were reduced in melanoma cell lines with a low ephrinA1 expression, but were increased in melanoma cell lines with a high ephrinA1 expression. EphA2-mediated colony formation in EphA2-high/ephrinA1-low cells was found to be Akt-dependent and to be inhibited by the addition of ephrinA1-Fc. IHC staining of primary melanoma specimens revealed that EphA2-high/ephrinA1-low patients exhibited poorer outcomes than EphA2-high/ephrinA1-high patients.

Conclusions

From our data we conclude that evaluation of ephrinA1 levels may be helpful for the application of EphA2-targeted therapies and for prognostic predictions in melanoma patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference C.M. Balch, S.J. Soong, M.B. Atkins, A.C. Buzaid, N. Cascinelli, D.G. Coit, I.D. Fleming, J.E. Gershenwald, A. Houghton Jr., J.M. Kirkwood, K.M. McMasters, M.F. Mihm, D.L. Morton, D.S. Reintgen, M.I. Ross, A. Sober, J.A. Thompson, J.F. Thompson, An evidence-based staging system for cutaneous melanoma. CA Cancer J. Clin. 54(3), 131–149 (2004) quiz 182 – 134PubMedCrossRef C.M. Balch, S.J. Soong, M.B. Atkins, A.C. Buzaid, N. Cascinelli, D.G. Coit, I.D. Fleming, J.E. Gershenwald, A. Houghton Jr., J.M. Kirkwood, K.M. McMasters, M.F. Mihm, D.L. Morton, D.S. Reintgen, M.I. Ross, A. Sober, J.A. Thompson, J.F. Thompson, An evidence-based staging system for cutaneous melanoma. CA Cancer J. Clin. 54(3), 131–149 (2004) quiz 182 – 134PubMedCrossRef
2.
go back to reference S.P. Leong, J.E. Gershenwald, S.J. Soong, D. Schadendorf, A.A. Tarhini, S. Agarwala, A. Hauschild, C.W. Soon, A. Daud, M. Kashani-Sabet, Cutaneous melanoma: a model to study cancer metastasis. J Surg Oncol 103(6), 538–549; (2011)PubMedCrossRef S.P. Leong, J.E. Gershenwald, S.J. Soong, D. Schadendorf, A.A. Tarhini, S. Agarwala, A. Hauschild, C.W. Soon, A. Daud, M. Kashani-Sabet, Cutaneous melanoma: a model to study cancer metastasis. J Surg Oncol 103(6), 538–549; (2011)PubMedCrossRef
3.
go back to reference E.B. Pasquale, Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1), 38–52 (2008)PubMedCrossRef E.B. Pasquale, Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1), 38–52 (2008)PubMedCrossRef
4.
go back to reference T.T. Ma, L. Wang, J.L. Wang, Y.J. Liu, Y.C. Chen, H.J. He, Y. Song, Hypoxia-Induced cleavage of soluble ephrinA1 from cancer cells is mediated by MMP-2 and associates with angiogenesis in oral squamous cell carcinoma. OncoTargets Therapy 12, 8491–8499 (2019)PubMedCrossRef T.T. Ma, L. Wang, J.L. Wang, Y.J. Liu, Y.C. Chen, H.J. He, Y. Song, Hypoxia-Induced cleavage of soluble ephrinA1 from cancer cells is mediated by MMP-2 and associates with angiogenesis in oral squamous cell carcinoma. OncoTargets Therapy 12, 8491–8499 (2019)PubMedCrossRef
7.
go back to reference M. Nakamoto, A.D. Bergemann, Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc. Res. Tech. 59(1), 58–67 (2002)PubMedCrossRef M. Nakamoto, A.D. Bergemann, Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc. Res. Tech. 59(1), 58–67 (2002)PubMedCrossRef
8.
go back to reference C.W. Menges, D.J. McCance, Constitutive activation of the Raf-MAPK pathway causes negative feedback inhibition of Ras-PI3K-AKT and cellular arrest through the EphA2 receptor. Oncogene 27(20), 2934–2940 (2008)PubMedCrossRef C.W. Menges, D.J. McCance, Constitutive activation of the Raf-MAPK pathway causes negative feedback inhibition of Ras-PI3K-AKT and cellular arrest through the EphA2 receptor. Oncogene 27(20), 2934–2940 (2008)PubMedCrossRef
9.
go back to reference H. Miao, D.Q. Li, A. Mukherjee, H. Guo, A. Petty, J. Cutter, J.P. Basilion, J. Sedor, J. Wu, D. Danielpour, A.E. Sloan, M.L. Cohen, B. Wang, EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16(1), 9–20 (2009)PubMedPubMedCentralCrossRef H. Miao, D.Q. Li, A. Mukherjee, H. Guo, A. Petty, J. Cutter, J.P. Basilion, J. Sedor, J. Wu, D. Danielpour, A.E. Sloan, M.L. Cohen, B. Wang, EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16(1), 9–20 (2009)PubMedPubMedCentralCrossRef
10.
go back to reference A. Barquilla, E.B. Pasquale, Eph receptors and ephrins: therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 55, 465–487 (2015)PubMedCrossRef A. Barquilla, E.B. Pasquale, Eph receptors and ephrins: therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 55, 465–487 (2015)PubMedCrossRef
11.
go back to reference H. Miao, E. Burnett, M. Kinch, E. Simon, B. Wang, Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat. Cell Biol. 2(2), 62–69 (2000)PubMedCrossRef H. Miao, E. Burnett, M. Kinch, E. Simon, B. Wang, Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat. Cell Biol. 2(2), 62–69 (2000)PubMedCrossRef
12.
go back to reference Zhou Y., Yamada N., Tanaka T., Hori T., Yokoyama S., Hayakawa Y., Yano S., Fukuoka J., Koizumi K., Saiki I., Sakurai H. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat. Commun. 6:7679 (2015)PubMedPubMedCentralCrossRef Zhou Y., Yamada N., Tanaka T., Hori T., Yokoyama S., Hayakawa Y., Yano S., Fukuoka J., Koizumi K., Saiki I., Sakurai H. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat. Commun. 6:7679 (2015)PubMedPubMedCentralCrossRef
13.
go back to reference H. Guo, H. Miao, L. Gerber, J. Singh, M.F. Denning, A.C. Gilliam, B. Wang, Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res. 66(14), 7050–7058 (2006)PubMedCrossRef H. Guo, H. Miao, L. Gerber, J. Singh, M.F. Denning, A.C. Gilliam, B. Wang, Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res. 66(14), 7050–7058 (2006)PubMedCrossRef
14.
go back to reference B. Miao, Z. Ji, L. Tan, M. Taylor, J. Zhang, H.G. Choi, D.T. Frederick, R. Kumar, J.A. Wargo, K.T. Flaherty, N.S. Gray, H. Tsao, EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov. 5(3), 274–287 (2015)PubMedCrossRef B. Miao, Z. Ji, L. Tan, M. Taylor, J. Zhang, H.G. Choi, D.T. Frederick, R. Kumar, J.A. Wargo, K.T. Flaherty, N.S. Gray, H. Tsao, EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov. 5(3), 274–287 (2015)PubMedCrossRef
15.
go back to reference G. Zhuang, D.M. Brantley-Sieders, D. Vaught, J. Yu, L. Xie, S. Wells, D. Jackson, R. Muraoka-Cook, C. Arteaga, J. Chen, Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res. 70(1), 299–308 (2010)PubMedCrossRef G. Zhuang, D.M. Brantley-Sieders, D. Vaught, J. Yu, L. Xie, S. Wells, D. Jackson, R. Muraoka-Cook, C. Arteaga, J. Chen, Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res. 70(1), 299–308 (2010)PubMedCrossRef
16.
go back to reference K.R. Amato, S. Wang, L. Tan, A.K. Hastings, W. Song, C.M. Lovly, C.B. Meador, F. Ye, P. Lu, J.M. Balko, D.C. Colvin, J.M. Cates, W. Pao, N.S. Gray, J. Chen, EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 76(2), 305–318 (2016) K.R. Amato, S. Wang, L. Tan, A.K. Hastings, W. Song, C.M. Lovly, C.B. Meador, F. Ye, P. Lu, J.M. Balko, D.C. Colvin, J.M. Cates, W. Pao, N.S. Gray, J. Chen, EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 76(2), 305–318 (2016)
17.
go back to reference D. Vaught, J. Chen, D.M. Brantley-Sieders, Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol. Biol. Cell 20(10), 2572–2581 (2009)PubMedPubMedCentralCrossRef D. Vaught, J. Chen, D.M. Brantley-Sieders, Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol. Biol. Cell 20(10), 2572–2581 (2009)PubMedPubMedCentralCrossRef
18.
go back to reference D.P. Zelinski, N.D. Zantek, J.C. Stewart, A.R. Irizarry, M.S. Kinch, EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 61(5), 2301–2306 (2001)PubMed D.P. Zelinski, N.D. Zantek, J.C. Stewart, A.R. Irizarry, M.S. Kinch, EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 61(5), 2301–2306 (2001)PubMed
19.
go back to reference W. Song, Y. Hwang, V.M. Youngblood, R.S. Cook, J.M. Balko, J. Chen, D.M. Brantley-Sieders, Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene 36(40), 5620–5630 (2017)PubMedPubMedCentralCrossRef W. Song, Y. Hwang, V.M. Youngblood, R.S. Cook, J.M. Balko, J. Chen, D.M. Brantley-Sieders, Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene 36(40), 5620–5630 (2017)PubMedPubMedCentralCrossRef
20.
go back to reference J. Mo, B. Sun, X. Zhao, Q. Gu, X. Dong, Z. Liu, Y. Ma, N. Zhao, Y. Liu, J. Chi, R. Sun, The in-vitro spheroid culture induces a more highly differentiated but tumorigenic population from melanoma cell lines. Melanoma Res. 23(4), 254–263 (2013)PubMed J. Mo, B. Sun, X. Zhao, Q. Gu, X. Dong, Z. Liu, Y. Ma, N. Zhao, Y. Liu, J. Chi, R. Sun, The in-vitro spheroid culture induces a more highly differentiated but tumorigenic population from melanoma cell lines. Melanoma Res. 23(4), 254–263 (2013)PubMed
21.
go back to reference L. Deng, J. Sun, X. Chen, L. Liu, D. Wu, Nek2 augments sorafenib resistance by regulating the ubiquitination and localization of beta-catenin in hepatocellular carcinoma. J. Exp. Clin. Cancer Res.: CR 38(1), 316 (2019)PubMedCrossRef L. Deng, J. Sun, X. Chen, L. Liu, D. Wu, Nek2 augments sorafenib resistance by regulating the ubiquitination and localization of beta-catenin in hepatocellular carcinoma. J. Exp. Clin. Cancer Res.: CR 38(1), 316 (2019)PubMedCrossRef
22.
go back to reference T. Schatton, G.F. Murphy, N.Y. Frank, K. Yamaura, A.M. Waaga-Gasser, M. Gasser, Q. Zhan, S. Jordan, L.M. Duncan, C. Weishaupt, R.C. Fuhlbrigge, T.S. Kupper, M.H. Sayegh, M.H. Frank, Identification of cells initiating human melanomas. Nature 451(7176), 345–349 (2008)PubMedPubMedCentralCrossRef T. Schatton, G.F. Murphy, N.Y. Frank, K. Yamaura, A.M. Waaga-Gasser, M. Gasser, Q. Zhan, S. Jordan, L.M. Duncan, C. Weishaupt, R.C. Fuhlbrigge, T.S. Kupper, M.H. Sayegh, M.H. Frank, Identification of cells initiating human melanomas. Nature 451(7176), 345–349 (2008)PubMedPubMedCentralCrossRef
23.
go back to reference L. Li, J. Chen, J. Wang, D. Cai, Prevalence and risk factors of diabetic peripheral neuropathy in Type 2 diabetes mellitus patients with overweight/obese in Guangdong province, China. Primary care diabetes 9(3), 191–195 (2015) L. Li, J. Chen, J. Wang, D. Cai, Prevalence and risk factors of diabetic peripheral neuropathy in Type 2 diabetes mellitus patients with overweight/obese in Guangdong province, China. Primary care diabetes 9(3), 191–195 (2015)
24.
go back to reference A. Kassambara, C. Gourzones-Dmitriev, S. Sahota, T. Reme, J. Moreaux, H. Goldschmidt, A. Constantinou, P. Pasero, D. Hose, B. Klein, A DNA repair pathway score predicts survival in human multiple myeloma: the potential for therapeutic strategy. Oncotarget 5(9), 2487–2498 (2014)PubMedPubMedCentralCrossRef A. Kassambara, C. Gourzones-Dmitriev, S. Sahota, T. Reme, J. Moreaux, H. Goldschmidt, A. Constantinou, P. Pasero, D. Hose, B. Klein, A DNA repair pathway score predicts survival in human multiple myeloma: the potential for therapeutic strategy. Oncotarget 5(9), 2487–2498 (2014)PubMedPubMedCentralCrossRef
25.
go back to reference M. Macrae, R.M. Neve, P. Rodriguez-Viciana, C. Haqq, J. Yeh, C.R. Chen, J.W. Gray, F. McCormick, A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 8(2), 111–118 (2005)PubMedCrossRef M. Macrae, R.M. Neve, P. Rodriguez-Viciana, C. Haqq, J. Yeh, C.R. Chen, J.W. Gray, F. McCormick, A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 8(2), 111–118 (2005)PubMedCrossRef
26.
go back to reference O. Straume, L.A. Akslen, Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am. J. Pathol. 160(3), 1009–1019 (2002)PubMedPubMedCentralCrossRef O. Straume, L.A. Akslen, Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am. J. Pathol. 160(3), 1009–1019 (2002)PubMedPubMedCentralCrossRef
27.
go back to reference E. Wiedemann, S. Jellinghaus, G. Ende, A. Augstein, R. Sczech, B. Wielockx, S. Weinert, R.H. Strasser, D.M. Poitz, Regulation of endothelial migration and proliferation by ephrin-A1. Cell. Signal 29, 84–95 (2017) E. Wiedemann, S. Jellinghaus, G. Ende, A. Augstein, R. Sczech, B. Wielockx, S. Weinert, R.H. Strasser, D.M. Poitz, Regulation of endothelial migration and proliferation by ephrin-A1. Cell. Signal 29, 84–95 (2017)
28.
go back to reference X. Li, L. Wang, J.W. Gu, B. Li, W.P. Liu, Y.G. Wang, X. Zhang, H.N. Zhen, Z. Fei, Up-regulation of EphA2 and down-regulation of EphrinA1 are associated with the aggressive phenotype and poor prognosis of malignant glioma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 31(5), 477–488 (2010) X. Li, L. Wang, J.W. Gu, B. Li, W.P. Liu, Y.G. Wang, X. Zhang, H.N. Zhen, Z. Fei, Up-regulation of EphA2 and down-regulation of EphrinA1 are associated with the aggressive phenotype and poor prognosis of malignant glioma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 31(5), 477–488 (2010)
29.
go back to reference J. Wykosky, W. Debinski, The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol. Cancer Res.: MCR 6(12), 1795–1806 (2008)PubMedCrossRef J. Wykosky, W. Debinski, The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol. Cancer Res.: MCR 6(12), 1795–1806 (2008)PubMedCrossRef
30.
go back to reference K.H. Paraiso, M. Das Thakur, B. Fang, J.M. Koomen, I.V. Fedorenko, J.K. John, H. Tsao, K.T. Flaherty, V.K. Sondak, J.L. Messina, E.B. Pasquale, A. Villagra, U.N. Rao, J.M. Kirkwood, F. Meier, S. Sloot, G.T. Gibney, D. Stuart, H. Tawbi, K.S. Smalley, Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov. 5(3), 264–273 (2015)PubMedCrossRef K.H. Paraiso, M. Das Thakur, B. Fang, J.M. Koomen, I.V. Fedorenko, J.K. John, H. Tsao, K.T. Flaherty, V.K. Sondak, J.L. Messina, E.B. Pasquale, A. Villagra, U.N. Rao, J.M. Kirkwood, F. Meier, S. Sloot, G.T. Gibney, D. Stuart, H. Tawbi, K.S. Smalley, Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov. 5(3), 264–273 (2015)PubMedCrossRef
31.
go back to reference W.B. Fang, D.M. Brantley-Sieders, M.A. Parker, A.D. Reith, J. Chen, A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 24(53), 7859–7868 (2005)PubMedCrossRef W.B. Fang, D.M. Brantley-Sieders, M.A. Parker, A.D. Reith, J. Chen, A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 24(53), 7859–7868 (2005)PubMedCrossRef
32.
go back to reference K.R. Amato, S. Wang, A.K. Hastings, V.M. Youngblood, P.R. Santapuram, H. Chen, J.M. Cates, D.C. Colvin, F. Ye, D.M. Brantley-Sieders, R.S. Cook, L. Tan, N.S. Gray, J. Chen, Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J. Clin. Invest. 124(5), 2037–2049; (2014) K.R. Amato, S. Wang, A.K. Hastings, V.M. Youngblood, P.R. Santapuram, H. Chen, J.M. Cates, D.C. Colvin, F. Ye, D.M. Brantley-Sieders, R.S. Cook, L. Tan, N.S. Gray, J. Chen, Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J. Clin. Invest. 124(5), 2037–2049; (2014)
33.
go back to reference Y. Sheng, J. Wei, Y. Zhang, X. Gao, Z. Wang, J. Yang, S. Yan, Y. Zhu, Z. Zhang, D. Xu, C. Wang, Y. Zheng, Q. Dong, L. Qin, Mutated EPHA2 is a target for combating lymphatic metastasis in intrahepatic cholangiocarcinoma. Int. J. Cancer 144(10), 2440–2452 (2019) Y. Sheng, J. Wei, Y. Zhang, X. Gao, Z. Wang, J. Yang, S. Yan, Y. Zhu, Z. Zhang, D. Xu, C. Wang, Y. Zheng, Q. Dong, L. Qin, Mutated EPHA2 is a target for combating lymphatic metastasis in intrahepatic cholangiocarcinoma. Int. J. Cancer 144(10), 2440–2452 (2019)
34.
go back to reference D. Kiewlich, J. Zhang, C. Gross, W. Xia, B. Larsen, R.R. Cobb, S. Biroc, J.M. Gu, T. Sato, D.R. Light, T. Heitner, J. Willuda, D. Vogel, F. Monteclaro, A. Citkowicz, S.R. Roffler, D.A. Zajchowski, Anti-EphA2 antibodies decrease EphA2 protein levels in murine CT26 colorectal and human MDA-231 breast tumors but do not inhibit tumor growth. Neoplasia 8(1), 18–30 (2006)PubMedPubMedCentralCrossRef D. Kiewlich, J. Zhang, C. Gross, W. Xia, B. Larsen, R.R. Cobb, S. Biroc, J.M. Gu, T. Sato, D.R. Light, T. Heitner, J. Willuda, D. Vogel, F. Monteclaro, A. Citkowicz, S.R. Roffler, D.A. Zajchowski, Anti-EphA2 antibodies decrease EphA2 protein levels in murine CT26 colorectal and human MDA-231 breast tumors but do not inhibit tumor growth. Neoplasia 8(1), 18–30 (2006)PubMedPubMedCentralCrossRef
35.
go back to reference M. Ishikawa, R. Miyahara, M. Sonobe, M. Horiuchi, T. Mennju, E. Nakayama, M. Kobayashi, R. Kikuchi, J. Kitamura, N. Imamura, C.L. Huang, H. Date, Higher expression of EphA2 and ephrin-A1 is related to favorable clinicopathological features in pathological stage I non-small cell lung carcinoma. Lung cancer 76(3), 431–438 (2012) M. Ishikawa, R. Miyahara, M. Sonobe, M. Horiuchi, T. Mennju, E. Nakayama, M. Kobayashi, R. Kikuchi, J. Kitamura, N. Imamura, C.L. Huang, H. Date, Higher expression of EphA2 and ephrin-A1 is related to favorable clinicopathological features in pathological stage I non-small cell lung carcinoma. Lung cancer 76(3), 431–438 (2012)
36.
go back to reference M. Locard-Paulet, L. Lim, G. Veluscek, K. McMahon, J. Sinclair, A. van Weverwijk, J.D. Worboys, Y. Yuan, C.M. Isacke, C. Jorgensen, Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Sci. Signal. 9(414), ra15 (2016)PubMedPubMedCentralCrossRef M. Locard-Paulet, L. Lim, G. Veluscek, K. McMahon, J. Sinclair, A. van Weverwijk, J.D. Worboys, Y. Yuan, C.M. Isacke, C. Jorgensen, Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Sci. Signal. 9(414), ra15 (2016)PubMedPubMedCentralCrossRef
37.
go back to reference T. Tawadros, M.D. Brown, C.A. Hart, N.W. Clarke, Ligand-independent activation of EphA2 by arachidonic acid induces metastasis-like behaviour in prostate cancer cells. Brit. J. Cancer 107(10), 1737–1744 (2012) T. Tawadros, M.D. Brown, C.A. Hart, N.W. Clarke, Ligand-independent activation of EphA2 by arachidonic acid induces metastasis-like behaviour in prostate cancer cells. Brit. J. Cancer 107(10), 1737–1744 (2012)
38.
go back to reference U. Gopal, J.E. Bohonowych, C. Lema-Tome, A. Liu, E. Garrett-Mayer, B. Wang, J.S. Isaacs, A novel extracellular Hsp90 mediated co-receptor function for LRP1 regulates EphA2 dependent glioblastoma cell invasion. PloS one 6(3), e17649 (2011) U. Gopal, J.E. Bohonowych, C. Lema-Tome, A. Liu, E. Garrett-Mayer, B. Wang, J.S. Isaacs, A novel extracellular Hsp90 mediated co-receptor function for LRP1 regulates EphA2 dependent glioblastoma cell invasion. PloS one 6(3), e17649 (2011)
39.
go back to reference R. Leveque, C. Corbet, L. Aubert, M. Guilbert, C. Lagadec, E. Adriaenssens, J. Duval, P. Finetti, D. Birnbaum, N. Magne, V. Chopin, F. Bertucci, X. Le Bourhis, R.A. Toillon, ProNGF increases breast tumor aggressiveness through functional association of TrkA with EphA2. Cancer Lett. 449, 196–206 (2019)PubMedCrossRef R. Leveque, C. Corbet, L. Aubert, M. Guilbert, C. Lagadec, E. Adriaenssens, J. Duval, P. Finetti, D. Birnbaum, N. Magne, V. Chopin, F. Bertucci, X. Le Bourhis, R.A. Toillon, ProNGF increases breast tumor aggressiveness through functional association of TrkA with EphA2. Cancer Lett. 449, 196–206 (2019)PubMedCrossRef
40.
go back to reference M. De Robertis, L. Loiacono, C. Fusilli, M.L. Poeta, T. Mazza, M. Sanchez, L. Marchionni, E. Signori, G. Lamorte, A.L. Vescovi, J. Garcia-Foncillas, V.M. Fazio, Dysregulation of EGFR Pathway in EphA2 Cell Subpopulation Significantly Associates with Poor Prognosis in Colorectal Cancer. Clin Cancer Res 23(1), 159–170 (2017)PubMedCrossRef M. De Robertis, L. Loiacono, C. Fusilli, M.L. Poeta, T. Mazza, M. Sanchez, L. Marchionni, E. Signori, G. Lamorte, A.L. Vescovi, J. Garcia-Foncillas, V.M. Fazio, Dysregulation of EGFR Pathway in EphA2 Cell Subpopulation Significantly Associates with Poor Prognosis in Colorectal Cancer. Clin Cancer Res 23(1), 159–170 (2017)PubMedCrossRef
41.
go back to reference M. Tandon, S.V. Vemula, S.K. Mittal, Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets 15(1), 31–51 (2011) M. Tandon, S.V. Vemula, S.K. Mittal, Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets 15(1), 31–51 (2011)
42.
go back to reference H.M. Kluger, A.Z. Dudek, C. McCann, J. Ritacco, N. Southard, L.B. Jilaveanu, A. Molinaro, M. Sznol, A phase 2 trial of dasatinib in advanced melanoma. Cancer 117(10), 2202–2208 (2011)PubMedCrossRef H.M. Kluger, A.Z. Dudek, C. McCann, J. Ritacco, N. Southard, L.B. Jilaveanu, A. Molinaro, M. Sznol, A phase 2 trial of dasatinib in advanced melanoma. Cancer 117(10), 2202–2208 (2011)PubMedCrossRef
43.
go back to reference Y. Kaibori, Y. Saito, Y. Nakayama, EphA2 phosphorylation at Ser897 by the Cdk1/MEK/ERK/RSK pathway regulates M-phase progression via maintenance of cortical rigidity. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 33(4), 5334–5349 (2019) Y. Kaibori, Y. Saito, Y. Nakayama, EphA2 phosphorylation at Ser897 by the Cdk1/MEK/ERK/RSK pathway regulates M-phase progression via maintenance of cortical rigidity. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 33(4), 5334–5349 (2019)
Metadata
Title
Effect of EphA2 knockdown on melanoma metastasis depends on intrinsic ephrinA1 level
Authors
Jing Mo
Xiulan Zhao
Xueyi Dong
Tieju Liu
Nan Zhao
Danfang Zhang
Wei Wang
Yanhui Zhang
Baocun Sun
Publication date
01-08-2020
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2020
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-020-00511-x

Other articles of this Issue 4/2020

Cellular Oncology 4/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine