Skip to main content
Top
Published in: Cellular Oncology 4/2020

01-08-2020 | Metastasis | Review

Current insights into the metastasis of epithelial ovarian cancer - hopes and hurdles

Authors: Meysam Yousefi, Sadegh Dehghani, Rahim Nosrati, Mahmoud Ghanei, Arash Salmaninejad, Sara Rajaie, Malihe Hasanzadeh, Alireza Pasdar

Published in: Cellular Oncology | Issue 4/2020

Login to get access

Abstract

Background

Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of cancer-related mortality in women worldwide. Despite various attempts to improve the diagnosis and therapy of ovarian cancer patients, the survival rate for these patients is still dismal, mainly because most of them are diagnosed at a late stage. Up to 90% of ovarian cancers arise from neoplastic transformation of ovarian surface epithelial cells, and are usually referred to as epithelial ovarian cancer (EOC). Unlike most human cancers, which are disseminated through blood-borne metastatic routes, EOC has traditionally been thought to be disseminated through direct migration of ovarian tumor cells to the peritoneal cavity and omentum via peritoneal fluid. It has recently been shown, however, that EOC can also be disseminated through blood-borne metastatic routes, challenging previous thoughts about ovarian cancer metastasis.

Conclusions

Here, we review our current understanding of the most updated cellular and molecular mechanisms underlying EOC metastasis and discuss in more detail two main metastatic routes of EOC, i.e., transcoelomic metastasis and hematogenous metastasis. The emerging concept of blood-borne EOC metastasis has led to exploration of the significance of circulating tumor cells (CTCs) as novel and non-invasive prognostic markers in this daunting cancer. We also evaluate the role of tumor stroma, including cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs), endothelial cells, adipocytes, dendritic cells and extracellular matrix (ECM) components in EOC growth and metastasis. Lastly, we discuss therapeutic approaches for targeting EOC. Unraveling the mechanisms underlying EOC metastasis will open up avenues to the design of new therapeutic options. For instance, understanding the molecular mechanisms involved in the hematogenous metastasis of EOC, the biology of CTCs, and the detailed mechanisms through which EOC cells take advantage of stromal cells may help to find new opportunities for targeting EOC metastasis.
Literature
1.
go back to reference R.L. Siegel, K.D. Miller, A. Jemal, Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017)PubMed R.L. Siegel, K.D. Miller, A. Jemal, Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017)PubMed
3.
go back to reference L.H. Smith, C.R. Morris, S. Yasmeen, A. Parikh-Patel, R.D. Cress, P.S. Romano, Ovarian cancer: can we make the clinical diagnosis earlier? Cancer 104, 1398–1407 (2005)PubMed L.H. Smith, C.R. Morris, S. Yasmeen, A. Parikh-Patel, R.D. Cress, P.S. Romano, Ovarian cancer: can we make the clinical diagnosis earlier? Cancer 104, 1398–1407 (2005)PubMed
4.
go back to reference T.L. Yeung, C.S. Leung, K.P. Yip, C.L.A. Yeung, S.T. Wong, S.C. Mok, Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: cell and molecular processes in cancer metastasis. Am. J. Phys. Cell Phys. 309, C444–C456 (2015) T.L. Yeung, C.S. Leung, K.P. Yip, C.L.A. Yeung, S.T. Wong, S.C. Mok, Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: cell and molecular processes in cancer metastasis. Am. J. Phys. Cell Phys. 309, C444–C456 (2015)
5.
go back to reference N. Auersperg, A.S. Wong, K.C. Choi, S.K. Kang, P.C. Leung, Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev. 22, 255–288 (2001)PubMed N. Auersperg, A.S. Wong, K.C. Choi, S.K. Kang, P.C. Leung, Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev. 22, 255–288 (2001)PubMed
6.
go back to reference C.L. Chaffer, R.A. Weinberg, A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011)PubMed C.L. Chaffer, R.A. Weinberg, A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011)PubMed
7.
go back to reference M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell. Oncol. 40, 419–441 (2017) M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell. Oncol. 40, 419–441 (2017)
8.
go back to reference K.R. Hess, G.R. Varadhachary, S.H. Taylor, W. Wei, M.N. Raber, R. Lenzi, J.L. Abbruzzese, Metastatic patterns in adenocarcinoma. Cancer 106, 1624–1633 (2006)PubMed K.R. Hess, G.R. Varadhachary, S.H. Taylor, W. Wei, M.N. Raber, R. Lenzi, J.L. Abbruzzese, Metastatic patterns in adenocarcinoma. Cancer 106, 1624–1633 (2006)PubMed
9.
go back to reference J. Budczies, M. von Winterfeld, F. Klauschen, M. Bockmayr, J.K. Lennerz, C. Denkert, T. Wolf, A. Warth, M. Dietel, I. Anagnostopoulos, W. Weichert, D. Wittschieber, A. Stenzinger, The landscape of metastatic progression patterns across major human cancers. Oncotarget 6, 570–583 (2015)PubMed J. Budczies, M. von Winterfeld, F. Klauschen, M. Bockmayr, J.K. Lennerz, C. Denkert, T. Wolf, A. Warth, M. Dietel, I. Anagnostopoulos, W. Weichert, D. Wittschieber, A. Stenzinger, The landscape of metastatic progression patterns across major human cancers. Oncotarget 6, 570–583 (2015)PubMed
10.
11.
go back to reference O. Akin, E. Sala, C.S. Moskowitz, N. Ishill, R.A. Soslow, D.S. Chi, H. Hricak, Perihepatic metastases from ovarian cancer: sensitivity and specificity of CT for the detection of metastases with and those without liver parenchymal invasion. Radiology 248, 511–517 (2008)PubMed O. Akin, E. Sala, C.S. Moskowitz, N. Ishill, R.A. Soslow, D.S. Chi, H. Hricak, Perihepatic metastases from ovarian cancer: sensitivity and specificity of CT for the detection of metastases with and those without liver parenchymal invasion. Radiology 248, 511–517 (2008)PubMed
12.
go back to reference I.J. Fidler, G. Poste, The “seed and soil” hypothesis revisited. Lancet Oncol. 9, 808 (2008) I.J. Fidler, G. Poste, The “seed and soil” hypothesis revisited. Lancet Oncol. 9, 808 (2008)
13.
go back to reference R.R. Langley, I.J. Fidler, The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer 128, 2527–2535 (2011)PubMedPubMedCentral R.R. Langley, I.J. Fidler, The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer 128, 2527–2535 (2011)PubMedPubMedCentral
14.
go back to reference I.J. Fidler, The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003)PubMed I.J. Fidler, The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003)PubMed
15.
go back to reference N. Ribelles, A. Santonja, B. Pajares, C. Llácer, E. Alba, The seed and soil hypothesis revisited: Current state of knowledge of inherited genes on prognosis in breast cancer. Cancer Treat. Rev. 40, 293–299 (2014)PubMed N. Ribelles, A. Santonja, B. Pajares, C. Llácer, E. Alba, The seed and soil hypothesis revisited: Current state of knowledge of inherited genes on prognosis in breast cancer. Cancer Treat. Rev. 40, 293–299 (2014)PubMed
16.
go back to reference S. Pradeep, S.W. Kim, S.Y. Wu, M. Nishimura, P. Chaluvally-Raghavan, T. Miyake, C.V. Pecot, S.J. Kim, H.J. Choi, F.Z. Bischoff, J.A. Mayer, L. Huang, A.M. Nick, C.S. Hall, C. Rodriguez-Aguayo, B. Zand, H.J. Dalton, T. Arumugam, H.J. Lee, H.D. Han, M.S. Cho, R. Rupaimoole, L.S. Mangala, V. Sehgal, S.C. Oh, J. Liu, J.S. Lee, R.L. Coleman, P. Ram, G. Lopez-Berestein, I.J. Fidler, A.K. Sood, Hematogenous metastasis of ovarian cancer: rethinking mode of spread. Cancer Cell 26, 77–91 (2014)PubMedPubMedCentral S. Pradeep, S.W. Kim, S.Y. Wu, M. Nishimura, P. Chaluvally-Raghavan, T. Miyake, C.V. Pecot, S.J. Kim, H.J. Choi, F.Z. Bischoff, J.A. Mayer, L. Huang, A.M. Nick, C.S. Hall, C. Rodriguez-Aguayo, B. Zand, H.J. Dalton, T. Arumugam, H.J. Lee, H.D. Han, M.S. Cho, R. Rupaimoole, L.S. Mangala, V. Sehgal, S.C. Oh, J. Liu, J.S. Lee, R.L. Coleman, P. Ram, G. Lopez-Berestein, I.J. Fidler, A.K. Sood, Hematogenous metastasis of ovarian cancer: rethinking mode of spread. Cancer Cell 26, 77–91 (2014)PubMedPubMedCentral
17.
go back to reference K. Hibbs, K.M. Skubitz, S.E. Pambuccian, R.C. Casey, K.M. Burleson, T.R. Oegema, J.J. Thiele, S.M. Grindle, R.L. Bliss, A.P.N. Skubitz, Differential Gene Expression in Ovarian Carcinoma : Identification of Potential Biomarkers. Am. J. Pathol. 165, 397–414 (2004)PubMedPubMedCentral K. Hibbs, K.M. Skubitz, S.E. Pambuccian, R.C. Casey, K.M. Burleson, T.R. Oegema, J.J. Thiele, S.M. Grindle, R.L. Bliss, A.P.N. Skubitz, Differential Gene Expression in Ovarian Carcinoma : Identification of Potential Biomarkers. Am. J. Pathol. 165, 397–414 (2004)PubMedPubMedCentral
18.
go back to reference J. Bayani, J.D. Brenton, P.F. Macgregor, B. Beheshti, M. Albert, D. Nallainathan, J. Karaskova, B. Rosen, J. Murphy, S. Laframboise, B. Zanke, J.A. Squire, Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res. 62, 3466–3476 (2002)PubMed J. Bayani, J.D. Brenton, P.F. Macgregor, B. Beheshti, M. Albert, D. Nallainathan, J. Karaskova, B. Rosen, J. Murphy, S. Laframboise, B. Zanke, J.A. Squire, Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res. 62, 3466–3476 (2002)PubMed
19.
go back to reference A. Fishman, E. Shalom-Paz, M. Fejgin, E. Gaber, M. Altaras, A. Amiel, Comparing the genetic changes detected in the primary and secondary tumor sites of ovarian cancer using comparative genomic hybridization. Int. J. Gynecol. Cancer 15, 261–266 (2005)PubMed A. Fishman, E. Shalom-Paz, M. Fejgin, E. Gaber, M. Altaras, A. Amiel, Comparing the genetic changes detected in the primary and secondary tumor sites of ovarian cancer using comparative genomic hybridization. Int. J. Gynecol. Cancer 15, 261–266 (2005)PubMed
20.
go back to reference D. Caserta, M. Benkhalifa, M. Baldi, F. Fiorentino, M. Qumsiyeh, M. Moscarini, Genome profiling of ovarian adenocarcinomas using pangenomic BACs microarray comparative genomic hybridization. Mol. Cytogenet. 1, 10 (2008)PubMedPubMedCentral D. Caserta, M. Benkhalifa, M. Baldi, F. Fiorentino, M. Qumsiyeh, M. Moscarini, Genome profiling of ovarian adenocarcinomas using pangenomic BACs microarray comparative genomic hybridization. Mol. Cytogenet. 1, 10 (2008)PubMedPubMedCentral
21.
go back to reference D.S. Tan, R. Agarwal, S.B. Kaye, Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 7, 925–934 (2006)PubMed D.S. Tan, R. Agarwal, S.B. Kaye, Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 7, 925–934 (2006)PubMed
23.
go back to reference D. Tarin, J.E. Price, M.G. Kettlewell, R.G. Souter, A.C. Vass, B. Crossley, Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res. 44, 3584–3592 (1984)PubMed D. Tarin, J.E. Price, M.G. Kettlewell, R.G. Souter, A.C. Vass, B. Crossley, Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res. 44, 3584–3592 (1984)PubMed
24.
go back to reference K.M. Nieman, H.A. Kenny, C.V. Penicka, A. Ladanyi, R. Buell-Gutbrod, M.R. Zillhardt, I.L. Romero, M.S. Carey, G.B. Mills, G.S. Hotamisligil, S.D. Yamada, M.E. Peter, K. Gwin, E. Lengyel, Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498 (2011)PubMedPubMedCentral K.M. Nieman, H.A. Kenny, C.V. Penicka, A. Ladanyi, R. Buell-Gutbrod, M.R. Zillhardt, I.L. Romero, M.S. Carey, G.B. Mills, G.S. Hotamisligil, S.D. Yamada, M.E. Peter, K. Gwin, E. Lengyel, Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498 (2011)PubMedPubMedCentral
25.
go back to reference T.R. Adib, S. Henderson, C. Perrett, D. Hewitt, D. Bourmpoulia, J. Ledermann, C. Boshoff, Predicting biomarkers for ovarian cancer using gene-expression microarrays. Br. J. Cancer 90, 686–692 (2004)PubMedPubMedCentral T.R. Adib, S. Henderson, C. Perrett, D. Hewitt, D. Bourmpoulia, J. Ledermann, C. Boshoff, Predicting biomarkers for ovarian cancer using gene-expression microarrays. Br. J. Cancer 90, 686–692 (2004)PubMedPubMedCentral
26.
go back to reference J. Bayani, J.D. Brenton, P.F. Macgregor, B. Beheshti, M. Albert, D. Nallainathan, J. Karaskova, B. Rosen, J. Murphy, S. Laframboise, B. Zanke, J.A. Squire, Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res. 62, 3466–3476 (2002)PubMed J. Bayani, J.D. Brenton, P.F. Macgregor, B. Beheshti, M. Albert, D. Nallainathan, J. Karaskova, B. Rosen, J. Murphy, S. Laframboise, B. Zanke, J.A. Squire, Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res. 62, 3466–3476 (2002)PubMed
27.
go back to reference O. Israeli, W.H. Gotlieb, E. Friedman, J. Korach, E. Friedman, B. Goldman, A. Zeltser, G. Ben-Baruch, S. Rienstein, A. Aviram-Goldring, Genomic analyses of primary and metastatic serous epithelial ovarian cancer. Cancer Genet. Cytogenet. 154, 16–21 (2004)PubMed O. Israeli, W.H. Gotlieb, E. Friedman, J. Korach, E. Friedman, B. Goldman, A. Zeltser, G. Ben-Baruch, S. Rienstein, A. Aviram-Goldring, Genomic analyses of primary and metastatic serous epithelial ovarian cancer. Cancer Genet. Cytogenet. 154, 16–21 (2004)PubMed
28.
go back to reference A. Fishman, E. Shalom-Paz, M. Fejgin, E. Gaber, M. Altaras, A. Amiel, Comparing the genetic changes detected in the primary and secondary tumor sites of ovarian cancer using comparative genomic hybridization. Int. J. Gynecol. Cancer 15, 261–266 (2005)PubMed A. Fishman, E. Shalom-Paz, M. Fejgin, E. Gaber, M. Altaras, A. Amiel, Comparing the genetic changes detected in the primary and secondary tumor sites of ovarian cancer using comparative genomic hybridization. Int. J. Gynecol. Cancer 15, 261–266 (2005)PubMed
29.
go back to reference F. van Roy, G. Berx, The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65, 3756–3788 (2008)PubMed F. van Roy, G. Berx, The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65, 3756–3788 (2008)PubMed
30.
go back to reference M. Rosso, B. Majem, L. Devis, L. Lapyckyj, M.J. Besso, M. Llaurado, M.F. Abascal, M.L. Matos, L. Lanau, J. Castellvi, J.L. Sanchez, A. Perez Benavente, A. Gil-Moreno, J. Reventos, A. Santamaria Margalef, M. Rigau, M.H. Vazquez-Levin, E-cadherin: A determinant molecule associated with ovarian cancer progression, dissemination and aggressiveness. PLoS One 12, e0184439 (2017)PubMedPubMedCentral M. Rosso, B. Majem, L. Devis, L. Lapyckyj, M.J. Besso, M. Llaurado, M.F. Abascal, M.L. Matos, L. Lanau, J. Castellvi, J.L. Sanchez, A. Perez Benavente, A. Gil-Moreno, J. Reventos, A. Santamaria Margalef, M. Rigau, M.H. Vazquez-Levin, E-cadherin: A determinant molecule associated with ovarian cancer progression, dissemination and aggressiveness. PLoS One 12, e0184439 (2017)PubMedPubMedCentral
31.
go back to reference T. Imai, A. Horiuchi, C. Wang, K. Oka, S. Ohira, T. Nikaido, I. Konishi, Hypoxia attenuates the expression of E-Cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am. J. Pathol. 163, 1437–1447 (2003) T. Imai, A. Horiuchi, C. Wang, K. Oka, S. Ohira, T. Nikaido, I. Konishi, Hypoxia attenuates the expression of E-Cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am. J. Pathol. 163, 1437–1447 (2003)
32.
go back to reference C. Faleiro-Rodrigues, I. Macedo-Pinto, D. Pereira, V.M. Ferreira, C.S. Lopes, Association of E-cadherin and beta-catenin immunoexpression with clinicopathologic features in primary ovarian carcinomas. Hum. Pathol. 35, 663–669 (2004)PubMed C. Faleiro-Rodrigues, I. Macedo-Pinto, D. Pereira, V.M. Ferreira, C.S. Lopes, Association of E-cadherin and beta-catenin immunoexpression with clinicopathologic features in primary ovarian carcinomas. Hum. Pathol. 35, 663–669 (2004)PubMed
33.
go back to reference S. Heerboth, G. Housman, M. Leary, M. Longacre, S. Byler, K. Lapinska, A. Willbanks, S. Sarkar, EMT and tumor metastasis. Clin. Transl. Med. 4, 6 (2015) S. Heerboth, G. Housman, M. Leary, M. Longacre, S. Byler, K. Lapinska, A. Willbanks, S. Sarkar, EMT and tumor metastasis. Clin. Transl. Med. 4, 6 (2015)
34.
go back to reference S. Zhang, C. Balch, M.W. Chan, H.C. Lai, D. Matei, J.M. Schilder, P.S. Yan, T.H. Huang, K.P. Nephew, Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68, 4311–4320 (2008)PubMedPubMedCentral S. Zhang, C. Balch, M.W. Chan, H.C. Lai, D. Matei, J.M. Schilder, P.S. Yan, T.H. Huang, K.P. Nephew, Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68, 4311–4320 (2008)PubMedPubMedCentral
35.
go back to reference D. Vergara, B. Merlot, J.P. Lucot, P. Collinet, D. Vinatier, I. Fournier, M. Salzet, Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 291, 59–66 (2010)PubMed D. Vergara, B. Merlot, J.P. Lucot, P. Collinet, D. Vinatier, I. Fournier, M. Salzet, Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 291, 59–66 (2010)PubMed
36.
go back to reference A.N. Corps, H.M. Sowter, S.K. Smith, Hepatocyte growth factor stimulates motility, chemotaxis and mitogenesis in ovarian carcinoma cells expressing high levels of c-MET. Int. J. Cancer 73, 151–155 (1997)PubMed A.N. Corps, H.M. Sowter, S.K. Smith, Hepatocyte growth factor stimulates motility, chemotaxis and mitogenesis in ovarian carcinoma cells expressing high levels of c-MET. Int. J. Cancer 73, 151–155 (1997)PubMed
37.
go back to reference M. Korpal, Y. Kang, The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 5, 115–119 (2008)PubMed M. Korpal, Y. Kang, The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 5, 115–119 (2008)PubMed
38.
go back to reference C. Wu, J. Cipollone, S. Maines-Bandiera, C. Tan, A. Karsan, N. Auersperg, C.D. Roskelley, The morphogenic function of E-cadherin-mediated adherens junctions in epithelial ovarian carcinoma formation and progression. Differentiation 76, 193–205 (2008)PubMed C. Wu, J. Cipollone, S. Maines-Bandiera, C. Tan, A. Karsan, N. Auersperg, C.D. Roskelley, The morphogenic function of E-cadherin-mediated adherens junctions in epithelial ovarian carcinoma formation and progression. Differentiation 76, 193–205 (2008)PubMed
39.
go back to reference L. Seguin, J.S. Desgrosellier, S.M. Weis, D.A. Cheresh, Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 25, 234–240 (2015)PubMedPubMedCentral L. Seguin, J.S. Desgrosellier, S.M. Weis, D.A. Cheresh, Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 25, 234–240 (2015)PubMedPubMedCentral
40.
go back to reference N. Ahmed, F. Pansino, R. Clyde, P. Murthi, M.A. Quinn, G.E. Rice, M.V. Agrez, S. Mok, M.S. Baker, Overexpression of alpha(v)beta6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade. Carcinogenesis 23, 237–244 (2002)PubMed N. Ahmed, F. Pansino, R. Clyde, P. Murthi, M.A. Quinn, G.E. Rice, M.V. Agrez, S. Mok, M.S. Baker, Overexpression of alpha(v)beta6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade. Carcinogenesis 23, 237–244 (2002)PubMed
41.
go back to reference R.P. Czekay, D.J. Loskutoff, Unexpected role of plasminogen activator inhibitor 1 in cell adhesion and detachment. Exp. Biol. Med. (Maywood) 229, 1090–1096 (2004) R.P. Czekay, D.J. Loskutoff, Unexpected role of plasminogen activator inhibitor 1 in cell adhesion and detachment. Exp. Biol. Med. (Maywood) 229, 1090–1096 (2004)
42.
go back to reference C.P. Carmignani, T.A. Sugarbaker, C.M. Bromley, P.H. Sugarbaker, Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer Metastasis Rev. 22, 465–472 (2003)PubMed C.P. Carmignani, T.A. Sugarbaker, C.M. Bromley, P.H. Sugarbaker, Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer Metastasis Rev. 22, 465–472 (2003)PubMed
43.
go back to reference L. Xu, J. Yoneda, C. Herrera, J. Wood, J.J. Killion, I.J. Fidler, Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Int. J. Oncol. 16, 445–454 (2000)PubMed L. Xu, J. Yoneda, C. Herrera, J. Wood, J.J. Killion, I.J. Fidler, Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Int. J. Oncol. 16, 445–454 (2000)PubMed
44.
go back to reference D. Belotti, P. Paganoni, L. Manenti, A. Garofalo, S. Marchini, G. Taraboletti, R. Giavazzi, Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res. 63, 5224–5229 (2003)PubMed D. Belotti, P. Paganoni, L. Manenti, A. Garofalo, S. Marchini, G. Taraboletti, R. Giavazzi, Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res. 63, 5224–5229 (2003)PubMed
45.
go back to reference R.C. Casey, A.P. Skubitz, CD44 and beta1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clin. Exp. Metastasis 18, 67–75 (2000)PubMed R.C. Casey, A.P. Skubitz, CD44 and beta1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clin. Exp. Metastasis 18, 67–75 (2000)PubMed
46.
go back to reference F. Balkwill, Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004)PubMed F. Balkwill, Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004)PubMed
47.
go back to reference K. Gawrychowski, G. Szewczyk, E. Skopińska-Różewska, M. Małecki, E. Barcz, P. Kamiński, M. Miedzińska-Maciejewska, W. Śmiertka, D. Szukiewicz, P. Skopiński, the angiogenic activity of ascites in the course of ovarian cancer as a marker of disease progression. Dis. Markers 2014, 683757 (2014) K. Gawrychowski, G. Szewczyk, E. Skopińska-Różewska, M. Małecki, E. Barcz, P. Kamiński, M. Miedzińska-Maciejewska, W. Śmiertka, D. Szukiewicz, P. Skopiński, the angiogenic activity of ascites in the course of ovarian cancer as a marker of disease progression. Dis. Markers 2014, 683757 (2014)
48.
go back to reference N. Ahmed, K.L. Stenvers, Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front. Oncol. 3, 256 (2013)PubMedPubMedCentral N. Ahmed, K.L. Stenvers, Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front. Oncol. 3, 256 (2013)PubMedPubMedCentral
49.
go back to reference J.C. Pease, M. Brewer, J.S. Tirnauer, Spontaneous spheroid budding from monolayers: a potential contribution to ovarian cancer dissemination. Biol. Open 1, 622–628 (2012) J.C. Pease, M. Brewer, J.S. Tirnauer, Spontaneous spheroid budding from monolayers: a potential contribution to ovarian cancer dissemination. Biol. Open 1, 622–628 (2012)
50.
go back to reference K.M. Burleson, R.C. Casey, K.M. Skubitz, S.E. Pambuccian, T.R. Oegema Jr., A.P. Skubitz, Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol. Oncol. 93, 170–181 (2004)PubMed K.M. Burleson, R.C. Casey, K.M. Skubitz, S.E. Pambuccian, T.R. Oegema Jr., A.P. Skubitz, Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol. Oncol. 93, 170–181 (2004)PubMed
51.
go back to reference M. Wintzell, E. Hjerpe, E. Avall Lundqvist, M. Shoshan, Protein markers of cancer-associated fibroblasts and tumor-initiating cells reveal subpopulations in freshly isolated ovarian cancer ascites. BMC Cancer 12, 359 (2012)PubMedPubMedCentral M. Wintzell, E. Hjerpe, E. Avall Lundqvist, M. Shoshan, Protein markers of cancer-associated fibroblasts and tumor-initiating cells reveal subpopulations in freshly isolated ovarian cancer ascites. BMC Cancer 12, 359 (2012)PubMedPubMedCentral
52.
53.
go back to reference E.K. Colvin, Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front. Oncol. 4, 137 (2014)PubMedPubMedCentral E.K. Colvin, Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front. Oncol. 4, 137 (2014)PubMedPubMedCentral
54.
go back to reference V.M. Abrahams, S.L. Straszewski, M. Kamsteeg, B. Hanczaruk, P.E. Schwartz, T.J. Rutherford, G. Mor, Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res. 63, 5573–5581 (2003)PubMed V.M. Abrahams, S.L. Straszewski, M. Kamsteeg, B. Hanczaruk, P.E. Schwartz, T.J. Rutherford, G. Mor, Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res. 63, 5573–5581 (2003)PubMed
55.
go back to reference A. Frankel, R. Buckman, R.S. Kerbel, Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res. 57, 2388–2393 (1997)PubMed A. Frankel, R. Buckman, R.S. Kerbel, Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res. 57, 2388–2393 (1997)PubMed
56.
go back to reference Q. Cai, L. Yan, Y. Xu, Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. Oncogene 34, 3315–3324 (2015)PubMed Q. Cai, L. Yan, Y. Xu, Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. Oncogene 34, 3315–3324 (2015)PubMed
57.
go back to reference A. Tajbakhsh, M. Rivandi, S. Abedini, A. Pasdar, A. Sahebkar, Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Crit. Rev. Oncol. Hematol. 140, 17–27 (2019)PubMed A. Tajbakhsh, M. Rivandi, S. Abedini, A. Pasdar, A. Sahebkar, Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Crit. Rev. Oncol. Hematol. 140, 17–27 (2019)PubMed
58.
go back to reference K.W. Cheng, J.P. Lahad, W.-l. Kuo, A. Lapuk, K. Yamada, N. Auersperg, J. Liu, K. Smith-McCune, K.H. Lu, D. Fishman, J.W. Gray, G.B. Mills, The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat. Med. 10, 1251 (2004)PubMed K.W. Cheng, J.P. Lahad, W.-l. Kuo, A. Lapuk, K. Yamada, N. Auersperg, J. Liu, K. Smith-McCune, K.H. Lu, D. Fishman, J.W. Gray, G.B. Mills, The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat. Med. 10, 1251 (2004)PubMed
59.
go back to reference S. Salceda, T. Tang, M. Kmet, A. Munteanu, M. Ghosh, R. Macina, W. Liu, G. Pilkington, J. Papkoff, The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp. Cell Res. 306, 128–141 (2005)PubMed S. Salceda, T. Tang, M. Kmet, A. Munteanu, M. Ghosh, R. Macina, W. Liu, G. Pilkington, J. Papkoff, The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp. Cell Res. 306, 128–141 (2005)PubMed
60.
go back to reference C.A. Witz, I.A. Montoya-Rodriguez, S. Cho, V.E. Centonze, L.F. Bonewald, R.S. Schenken, Composition of the extracellular matrix of the peritoneum. J. Soc. Gynecol. Investig. 8, 299–304 (2001)PubMed C.A. Witz, I.A. Montoya-Rodriguez, S. Cho, V.E. Centonze, L.F. Bonewald, R.S. Schenken, Composition of the extracellular matrix of the peritoneum. J. Soc. Gynecol. Investig. 8, 299–304 (2001)PubMed
61.
go back to reference K. Sawada, A.K. Mitra, A.R. Radjabi, V. Bhaskar, E.O. Kistner, M. Tretiakova, S. Jagadeeswaran, A. Montag, A. Becker, H.A. Kenny, M.E. Peter, V. Ramakrishnan, S.D. Yamada, E. Lengyel, Loss of E-Cadherin promotes ovarian cancer metastasis via α(5)-integrin, which is a therapeutic target. Cancer Res. 68, 2329–2339 (2008)PubMedPubMedCentral K. Sawada, A.K. Mitra, A.R. Radjabi, V. Bhaskar, E.O. Kistner, M. Tretiakova, S. Jagadeeswaran, A. Montag, A. Becker, H.A. Kenny, M.E. Peter, V. Ramakrishnan, S.D. Yamada, E. Lengyel, Loss of E-Cadherin promotes ovarian cancer metastasis via α(5)-integrin, which is a therapeutic target. Cancer Res. 68, 2329–2339 (2008)PubMedPubMedCentral
62.
go back to reference A.A. Kamat, M. Fletcher, L.M. Gruman, P. Mueller, A. Lopez, C.N. Landen Jr., L. Han, D.M. Gershenson, A.K. Sood, The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer. Clin. Cancer Res. 12, 1707–1714 (2006)PubMedPubMedCentral A.A. Kamat, M. Fletcher, L.M. Gruman, P. Mueller, A. Lopez, C.N. Landen Jr., L. Han, D.M. Gershenson, A.K. Sood, The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer. Clin. Cancer Res. 12, 1707–1714 (2006)PubMedPubMedCentral
63.
go back to reference M. Egeblad, Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002)PubMed M. Egeblad, Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002)PubMed
64.
go back to reference H.A. Kenny, S. Kaur, L.M. Coussens, E. Lengyel, The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Invest. 118, 1367–1379 (2008)PubMedPubMedCentral H.A. Kenny, S. Kaur, L.M. Coussens, E. Lengyel, The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Invest. 118, 1367–1379 (2008)PubMedPubMedCentral
65.
go back to reference A. Rump, Y. Morikawa, M. Tanaka, S. Minami, N. Umesaki, M. Takeuchi, A. Miyajima, Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem. 279, 9190–9198 (2004)PubMed A. Rump, Y. Morikawa, M. Tanaka, S. Minami, N. Umesaki, M. Takeuchi, A. Miyajima, Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem. 279, 9190–9198 (2004)PubMed
66.
go back to reference X. Fang, M. Schummer, M. Mao, S. Yu, F.H. Tabassam, R. Swaby, Y. Hasegawa, J.L. Tanyi, R. LaPushin, A. Eder, R. Jaffe, J. Erickson, G.B. Mills, Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim. Biophys. Acta 1582, 257–264 (2002)PubMed X. Fang, M. Schummer, M. Mao, S. Yu, F.H. Tabassam, R. Swaby, Y. Hasegawa, J.L. Tanyi, R. LaPushin, A. Eder, R. Jaffe, J. Erickson, G.B. Mills, Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim. Biophys. Acta 1582, 257–264 (2002)PubMed
67.
go back to reference D.A. Fishman, Y. Liu, S.M. Ellerbroek, M.S. Stack, Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 61, 3194–3199 (2001)PubMed D.A. Fishman, Y. Liu, S.M. Ellerbroek, M.S. Stack, Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 61, 3194–3199 (2001)PubMed
68.
go back to reference T.B. Pustilnik, V. Estrella, J.R. Wiener, M. Mao, A. Eder, M.A. Watt, R.C. Bast Jr., G.B. Mills, Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin. Cancer Res. 5, 3704–3710 (1999)PubMed T.B. Pustilnik, V. Estrella, J.R. Wiener, M. Mao, A. Eder, M.A. Watt, R.C. Bast Jr., G.B. Mills, Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin. Cancer Res. 5, 3704–3710 (1999)PubMed
69.
go back to reference D. Bian, S. Su, C. Mahanivong, R.K. Cheng, Q. Han, Z.K. Pan, P. Sun, S. Huang, Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res. 64, 4209–4217 (2004)PubMed D. Bian, S. Su, C. Mahanivong, R.K. Cheng, Q. Han, Z.K. Pan, P. Sun, S. Huang, Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res. 64, 4209–4217 (2004)PubMed
70.
go back to reference R. Agarwal, T. D'Souza, P.J. Morin, Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res. 65, 7378–7385 (2005)PubMed R. Agarwal, T. D'Souza, P.J. Morin, Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res. 65, 7378–7385 (2005)PubMed
71.
go back to reference T. Yagyu, H. Kobayashi, H. Matsuzaki, K. Wakahara, T. Kondo, N. Kurita, H. Sekino, K. Inagaki, Enhanced spontaneous metastasis in bikunin-deficient mice. Int. J. Cancer 118, 2322–2328 (2006)PubMed T. Yagyu, H. Kobayashi, H. Matsuzaki, K. Wakahara, T. Kondo, N. Kurita, H. Sekino, K. Inagaki, Enhanced spontaneous metastasis in bikunin-deficient mice. Int. J. Cancer 118, 2322–2328 (2006)PubMed
72.
go back to reference S. Cai, P. Zhang, S. Dong, L. Li, J. Cai, M. Xu, Downregulation of SPINK13 Promotes Metastasis by Regulating uPA in Ovarian Cancer Cells. Cell. Physiol. Biochem. 45, 1061–1071 (2018)PubMed S. Cai, P. Zhang, S. Dong, L. Li, J. Cai, M. Xu, Downregulation of SPINK13 Promotes Metastasis by Regulating uPA in Ovarian Cancer Cells. Cell. Physiol. Biochem. 45, 1061–1071 (2018)PubMed
73.
go back to reference X.Y. Zhang, R. Pettengell, N. Nasiri, V. Kalia, A.G. Dalgleish, D.P. Barton, Characteristics and growth patterns of human peritoneal mesothelial cells: comparison between advanced epithelial ovarian cancer and non-ovarian cancer sources. J. Soc. Gynecol. Investig. 6, 333–340 (1999)PubMed X.Y. Zhang, R. Pettengell, N. Nasiri, V. Kalia, A.G. Dalgleish, D.P. Barton, Characteristics and growth patterns of human peritoneal mesothelial cells: comparison between advanced epithelial ovarian cancer and non-ovarian cancer sources. J. Soc. Gynecol. Investig. 6, 333–340 (1999)PubMed
74.
go back to reference A.K. Mitra, C.Y. Chiang, P. Tiwari, S. Tomar, K.M. Watters, M.E. Peter, E. Lengyel, Microenvironment-induced downregulation of miR-193b drives ovarian cancer metastasis. Oncogene 34, 5923–5932 (2015)PubMedPubMedCentral A.K. Mitra, C.Y. Chiang, P. Tiwari, S. Tomar, K.M. Watters, M.E. Peter, E. Lengyel, Microenvironment-induced downregulation of miR-193b drives ovarian cancer metastasis. Oncogene 34, 5923–5932 (2015)PubMedPubMedCentral
75.
go back to reference S. Tomar, J.P. Plotnik, J. Haley, J. Scantland, S. Dasari, Z. Sheikh, R. Emerson, D. Lenz, P.C. Hollenhorst, A.K. Mitra, ETS1 induction by the microenvironment promotes ovarian cancer metastasis through focal adhesion kinase. Cancer Lett. 414, 190–204 (2018)PubMed S. Tomar, J.P. Plotnik, J. Haley, J. Scantland, S. Dasari, Z. Sheikh, R. Emerson, D. Lenz, P.C. Hollenhorst, A.K. Mitra, ETS1 induction by the microenvironment promotes ovarian cancer metastasis through focal adhesion kinase. Cancer Lett. 414, 190–204 (2018)PubMed
76.
go back to reference R.S. Freedman, M. Deavers, J. Liu, E. Wang, Peritoneal inflammation – A microenvironment for Epithelial Ovarian Cancer (EOC). J. Transl. Med. 2, 23 (2004) R.S. Freedman, M. Deavers, J. Liu, E. Wang, Peritoneal inflammation – A microenvironment for Epithelial Ovarian Cancer (EOC). J. Transl. Med. 2, 23 (2004)
77.
go back to reference A. Feki, P. Berardi, G. Bellingan, A. Major, K.H. Krause, P. Petignat, R. Zehra, S. Pervaiz, I. Irminger-Finger, Dissemination of intraperitoneal ovarian cancer: Discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit. Rev. Oncol. Hematol. 72, 1–9 (2009)PubMed A. Feki, P. Berardi, G. Bellingan, A. Major, K.H. Krause, P. Petignat, R. Zehra, S. Pervaiz, I. Irminger-Finger, Dissemination of intraperitoneal ovarian cancer: Discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit. Rev. Oncol. Hematol. 72, 1–9 (2009)PubMed
78.
go back to reference G. Balbi, M.A. Manganaro, A. Monteverde, I. Landino, C. Franzese, F. Gioia, Ovarian cancer: lymph node metastases. European J. Gynaecol. Oncol. 30, 289–291 (2009) G. Balbi, M.A. Manganaro, A. Monteverde, I. Landino, C. Franzese, F. Gioia, Ovarian cancer: lymph node metastases. European J. Gynaecol. Oncol. 30, 289–291 (2009)
79.
go back to reference S.S. Chen, Survival of ovarian carcinoma with or without lymph node metastasis. Gynecol. Oncol. 27, 368–372 (1987)PubMed S.S. Chen, Survival of ovarian carcinoma with or without lymph node metastasis. Gynecol. Oncol. 27, 368–372 (1987)PubMed
80.
go back to reference C. Bachmann, R. Bachmann, F. Fend, D. Wallwiener, Incidence and impact of lymph node metastases in advanced ovarian cancer: Implications for surgical treatment. J. Cancer 7, 2241–2246 (2016) C. Bachmann, R. Bachmann, F. Fend, D. Wallwiener, Incidence and impact of lymph node metastases in advanced ovarian cancer: Implications for surgical treatment. J. Cancer 7, 2241–2246 (2016)
81.
go back to reference K. Matsuo, T.B. Sheridan, K. Yoshino, T. Miyake, K.E. Hew, D.D. Im, N.B. Rosenshein, S. Mabuchi, T. Enomoto, T. Kimura, A.K. Sood, L.D. Roman, Significance of lymphovascular space invasion in epithelial ovarian cancer. Cancer Med. 1, 156–164 (2012)PubMedPubMedCentral K. Matsuo, T.B. Sheridan, K. Yoshino, T. Miyake, K.E. Hew, D.D. Im, N.B. Rosenshein, S. Mabuchi, T. Enomoto, T. Kimura, A.K. Sood, L.D. Roman, Significance of lymphovascular space invasion in epithelial ovarian cancer. Cancer Med. 1, 156–164 (2012)PubMedPubMedCentral
82.
go back to reference M. Chen, Y. Jin, Y. Bi, Y. Li, Y. Shan, L. Pan, Prognostic significance of lymphovascular space invasion in epithelial ovarian cancer. J. Cancer 6, 412–419 (2015)PubMedPubMedCentral M. Chen, Y. Jin, Y. Bi, Y. Li, Y. Shan, L. Pan, Prognostic significance of lymphovascular space invasion in epithelial ovarian cancer. J. Cancer 6, 412–419 (2015)PubMedPubMedCentral
83.
go back to reference P. Wimberger, S. Hauch, M. Lustig, R. Kimmig, S. Kasimir-Bauer, Detection and molecular profiling of circulating tumor cells in patients with primary ovarian cancer. Cancer Res. 68, 965 (2008) P. Wimberger, S. Hauch, M. Lustig, R. Kimmig, S. Kasimir-Bauer, Detection and molecular profiling of circulating tumor cells in patients with primary ovarian cancer. Cancer Res. 68, 965 (2008)
84.
go back to reference K.G. Phillips, C.R. Velasco, J. Li, A. Kolatkar, M. Luttgen, K. Bethel, B. Duggan, P. Kuhn, O.J. McCarty, Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front. Oncol. 2, 72 (2012)PubMedPubMedCentral K.G. Phillips, C.R. Velasco, J. Li, A. Kolatkar, M. Luttgen, K. Bethel, B. Duggan, P. Kuhn, O.J. McCarty, Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front. Oncol. 2, 72 (2012)PubMedPubMedCentral
85.
go back to reference L. Cui, J. Kwong, C.C. Wang, Prognostic value of circulating tumor cells and disseminated tumor cells in patients with ovarian cancer: a systematic review and meta-analysis. J Ovarian Res. 8, 38 (2015)PubMedPubMedCentral L. Cui, J. Kwong, C.C. Wang, Prognostic value of circulating tumor cells and disseminated tumor cells in patients with ovarian cancer: a systematic review and meta-analysis. J Ovarian Res. 8, 38 (2015)PubMedPubMedCentral
86.
go back to reference M.C. Lim, S. Kang, K.S. Lee, S.S. Han, S.J. Park, S.S. Seo, S.Y. Park, The clinical significance of hepatic parenchymal metastasis in patients with primary epithelial ovarian cancer. Gynecol. Oncol. 112, 28–34 (2009)PubMed M.C. Lim, S. Kang, K.S. Lee, S.S. Han, S.J. Park, S.S. Seo, S.Y. Park, The clinical significance of hepatic parenchymal metastasis in patients with primary epithelial ovarian cancer. Gynecol. Oncol. 112, 28–34 (2009)PubMed
87.
go back to reference L.G. Coffman, D. Burgos-Ojeda, R. Wu, K. Cho, S. Bai, R.J. Buckanovich, New models of hematogenous ovarian cancer metastasis demonstrate preferential spread to the ovary and a requirement for the ovary for abdominal dissemination. Transl. Res. 175, 92–102.e2 (2016) L.G. Coffman, D. Burgos-Ojeda, R. Wu, K. Cho, S. Bai, R.J. Buckanovich, New models of hematogenous ovarian cancer metastasis demonstrate preferential spread to the ovary and a requirement for the ovary for abdominal dissemination. Transl. Res. 175, 92–102.e2 (2016)
88.
go back to reference P.C. Bailey, S.S. Martin, Insights on CTC biology and clinical impact emerging from advances in capture technology. Cells 8, pii: E553 (2019) P.C. Bailey, S.S. Martin, Insights on CTC biology and clinical impact emerging from advances in capture technology. Cells 8, pii: E553 (2019)
89.
go back to reference M. Yousefi, P. Ghaffari, R. Nosrati, S. Dehghani, A. Salmaninejad, Y.J. Abarghan, S.H. Ghaffari, Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol. 43, 31–49 (2020) M. Yousefi, P. Ghaffari, R. Nosrati, S. Dehghani, A. Salmaninejad, Y.J. Abarghan, S.H. Ghaffari, Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol. 43, 31–49 (2020)
90.
go back to reference S.A. Joosse, T.M. Gorges, K. Pantel, Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol. Med. 7, 1–11 (2015)PubMed S.A. Joosse, T.M. Gorges, K. Pantel, Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol. Med. 7, 1–11 (2015)PubMed
91.
go back to reference M. Yousefi, R. Nosrati, A. Salmaninejad, S. Dehghani, A. Shahryari, A. Saberi, Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol. 41, 123–140 (2018) M. Yousefi, R. Nosrati, A. Salmaninejad, S. Dehghani, A. Shahryari, A. Saberi, Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol. 41, 123–140 (2018)
92.
go back to reference Y. Wang, Y. Zhou, Z. Hu, The functions of circulating tumor cells in early diagnosis and surveillance during cancer advancement. J. Trans. Intern Med. 5, 135–138 (2017) Y. Wang, Y. Zhou, Z. Hu, The functions of circulating tumor cells in early diagnosis and surveillance during cancer advancement. J. Trans. Intern Med. 5, 135–138 (2017)
93.
go back to reference C. Paoletti, D.F. Hayes, Circulating tumor cells. Adv. Exp. Med. Biol. 882, 235–258 (2016) C. Paoletti, D.F. Hayes, Circulating tumor cells. Adv. Exp. Med. Biol. 882, 235–258 (2016)
94.
go back to reference M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L.W. Terstappen, D.F. Hayes, Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004)PubMed M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L.W. Terstappen, D.F. Hayes, Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004)PubMed
95.
go back to reference M.C. Miller, G.V. Doyle, L.W. Terstappen, Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J. Oncol. 2010, 617421 (2010) M.C. Miller, G.V. Doyle, L.W. Terstappen, Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J. Oncol. 2010, 617421 (2010)
96.
go back to reference D.T. Miyamoto, L.V. Sequist, R.J. Lee, Circulating tumour cells-monitoring treatment response in prostate cancer. Nat. Rev. Clin. Oncol. 11, 401–412 (2014)PubMed D.T. Miyamoto, L.V. Sequist, R.J. Lee, Circulating tumour cells-monitoring treatment response in prostate cancer. Nat. Rev. Clin. Oncol. 11, 401–412 (2014)PubMed
97.
go back to reference B. Aktas, S. Kasimir-Bauer, M. Heubner, R. Kimmig, P. Wimberger, Molecular profiling and prognostic relevance of circulating tumor cells in the blood of ovarian cancer patients at primary diagnosis and after platinum-based chemotherapy. Int. J. Gynecol. Cancer 21, 822–830 (2011)PubMed B. Aktas, S. Kasimir-Bauer, M. Heubner, R. Kimmig, P. Wimberger, Molecular profiling and prognostic relevance of circulating tumor cells in the blood of ovarian cancer patients at primary diagnosis and after platinum-based chemotherapy. Int. J. Gynecol. Cancer 21, 822–830 (2011)PubMed
98.
go back to reference E. Obermayr, D.C. Castillo-Tong, D. Pils, P. Speiser, I. Braicu, T. Van Gorp, S. Mahner, J. Sehouli, I. Vergote, R. Zeillinger, Molecular characterization of circulating tumor cells in patients with ovarian cancer improves their prognostic significance -- a study of the OVCAD consortium. Gynecol. Oncol. 128, 15–21 (2013)PubMed E. Obermayr, D.C. Castillo-Tong, D. Pils, P. Speiser, I. Braicu, T. Van Gorp, S. Mahner, J. Sehouli, I. Vergote, R. Zeillinger, Molecular characterization of circulating tumor cells in patients with ovarian cancer improves their prognostic significance -- a study of the OVCAD consortium. Gynecol. Oncol. 128, 15–21 (2013)PubMed
99.
go back to reference M. Sang, X. Wu, X. Fan, M. Sang, X. Zhou, N. Zhou, Multiple MAGE-A genes as surveillance marker for the detection of circulating tumor cells in patients with ovarian cancer. Biomarkers 19, 34–42 (2014)PubMed M. Sang, X. Wu, X. Fan, M. Sang, X. Zhou, N. Zhou, Multiple MAGE-A genes as surveillance marker for the detection of circulating tumor cells in patients with ovarian cancer. Biomarkers 19, 34–42 (2014)PubMed
100.
go back to reference A.K. Mitra, Ovarian cancer metastasis: a unique mechanism of dissemination (InTech, Tumor Metastasis, 2016) A.K. Mitra, Ovarian cancer metastasis: a unique mechanism of dissemination (InTech, Tumor Metastasis, 2016)
101.
go back to reference D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012)PubMed D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012)PubMed
102.
go back to reference P. Nilendu, S. C. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G. S. Sarode, J. K. Pal, N. K. Sharma. Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance. Cell. Oncol. 41, 353–67 (2018) P. Nilendu, S. C. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G. S. Sarode, J. K. Pal, N. K. Sharma. Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance. Cell. Oncol. 41, 353–67 (2018)
103.
go back to reference M.A. Swartz, N. Iida, E.W. Roberts, S. Sangaletti, M.H. Wong, F.E. Yull, L.M. Coussens, Y.A. DeClerck, Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 72, 2473–2480 (2012)PubMedPubMedCentral M.A. Swartz, N. Iida, E.W. Roberts, S. Sangaletti, M.H. Wong, F.E. Yull, L.M. Coussens, Y.A. DeClerck, Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 72, 2473–2480 (2012)PubMedPubMedCentral
104.
go back to reference A. Ghoneum, H. Afify, Z. Salih, M. Kelly, N. Said. Role of tumor microenvironment in the pathobiology of ovarian cancer: Insights and therapeutic opportunities. Cancer Med. 10, 5047-5056 (2018) A. Ghoneum, H. Afify, Z. Salih, M. Kelly, N. Said. Role of tumor microenvironment in the pathobiology of ovarian cancer: Insights and therapeutic opportunities. Cancer Med. 10, 5047-5056 (2018)
105.
go back to reference J.A. Joyce, Therapeutic targeting of the tumor microenvironment. Cancer Cell 7, 513–520 (2005)PubMed J.A. Joyce, Therapeutic targeting of the tumor microenvironment. Cancer Cell 7, 513–520 (2005)PubMed
106.
go back to reference P. Cirri, P. Chiarugi, Cancer associated fibroblasts: the dark side of the coin. Am. J. Cancer Res. 1, 482–497 (2011)PubMedPubMedCentral P. Cirri, P. Chiarugi, Cancer associated fibroblasts: the dark side of the coin. Am. J. Cancer Res. 1, 482–497 (2011)PubMedPubMedCentral
107.
go back to reference N. Eiro, L. Gonzalez, A. Martinez-Ordonez, B. Fernandez-Garcia, L. O. Gonzalez, S. Cid, F. Dominguez, R. Perez-Fernandez, F. J. Vizoso. Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell. Oncol. 41, 369–78 (2018) N. Eiro, L. Gonzalez, A. Martinez-Ordonez, B. Fernandez-Garcia, L. O. Gonzalez, S. Cid, F. Dominguez, R. Perez-Fernandez, F. J. Vizoso. Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell. Oncol. 41, 369–78 (2018)
108.
go back to reference A. Orimo, R.A. Weinberg, Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006)PubMed A. Orimo, R.A. Weinberg, Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006)PubMed
109.
go back to reference I.G. Schauer, A.K. Sood, S. Mok, J. Liu, Cancer-associated fibroblasts and their putative role in potentiating the initiation and development of epithelial ovarian cancer. Neoplasia (New York, NY) 13, 393–405 (2011) I.G. Schauer, A.K. Sood, S. Mok, J. Liu, Cancer-associated fibroblasts and their putative role in potentiating the initiation and development of epithelial ovarian cancer. Neoplasia (New York, NY) 13, 393–405 (2011)
110.
go back to reference R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006)PubMed R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006)PubMed
111.
go back to reference M. Yanez-Mo, E. Lara-Pezzi, R. Selgas, M. Ramirez-Huesca, C. Dominguez-Jimenez, J.A. Jimenez-Heffernan, A. Aguilera, J.A. Sanchez-Tomero, M.A. Bajo, V. Alvarez, M.A. Castro, G. del Peso, A. Cirujeda, C. Gamallo, F. Sanchez-Madrid, M. Lopez-Cabrera, Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348, 403–413 (2003)PubMed M. Yanez-Mo, E. Lara-Pezzi, R. Selgas, M. Ramirez-Huesca, C. Dominguez-Jimenez, J.A. Jimenez-Heffernan, A. Aguilera, J.A. Sanchez-Tomero, M.A. Bajo, V. Alvarez, M.A. Castro, G. del Peso, A. Cirujeda, C. Gamallo, F. Sanchez-Madrid, M. Lopez-Cabrera, Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348, 403–413 (2003)PubMed
112.
go back to reference P. Sandoval, J.A. Jimenez-Heffernan, A. Rynne-Vidal, M.L. Perez-Lozano, A. Gilsanz, V. Ruiz-Carpio, R. Reyes, J. Garcia-Bordas, K. Stamatakis, J. Dotor, P.L. Majano, M. Fresno, C. Cabanas, M. Lopez-Cabrera, Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J. Pathol. 231, 517–531 (2013) P. Sandoval, J.A. Jimenez-Heffernan, A. Rynne-Vidal, M.L. Perez-Lozano, A. Gilsanz, V. Ruiz-Carpio, R. Reyes, J. Garcia-Bordas, K. Stamatakis, J. Dotor, P.L. Majano, M. Fresno, C. Cabanas, M. Lopez-Cabrera, Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J. Pathol. 231, 517–531 (2013)
113.
go back to reference A. Rynne-Vidal, C. L. Au-Yeung, J. A. Jimenez-Heffernan, M. L. Perez-Lozano, L. Cremades-Jimeno, C. Barcena, I. Cristobal-Garcia, C. Fernandez-Chacon, T. L. Yeung, S. C. Mok, P. Sandoval. Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J Pathol. 242, 140–51 (2017) A. Rynne-Vidal, C. L. Au-Yeung, J. A. Jimenez-Heffernan, M. L. Perez-Lozano, L. Cremades-Jimeno, C. Barcena, I. Cristobal-Garcia, C. Fernandez-Chacon, T. L. Yeung, S. C. Mok, P. Sandoval. Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J Pathol. 242, 140–51 (2017)
114.
go back to reference B. Dirat, L. Bochet, M. Dabek, D. Daviaud, S. Dauvillier, B. Majed, Y.Y. Wang, A. Meulle, B. Salles, S. Le Gonidec, I. Garrido, G. Escourrou, P. Valet, C. Muller, Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011)PubMed B. Dirat, L. Bochet, M. Dabek, D. Daviaud, S. Dauvillier, B. Majed, Y.Y. Wang, A. Meulle, B. Salles, S. Le Gonidec, I. Garrido, G. Escourrou, P. Valet, C. Muller, Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011)PubMed
115.
go back to reference L. Bochet, C. Lehuede, S. Dauvillier, Y.Y. Wang, B. Dirat, V. Laurent, C. Dray, R. Guiet, I. Maridonneau-Parini, S. Le Gonidec, B. Couderc, G. Escourrou, P. Valet, C. Muller, Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013)PubMed L. Bochet, C. Lehuede, S. Dauvillier, Y.Y. Wang, B. Dirat, V. Laurent, C. Dray, R. Guiet, I. Maridonneau-Parini, S. Le Gonidec, B. Couderc, G. Escourrou, P. Valet, C. Muller, Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013)PubMed
116.
go back to reference E. Zoico, E. Darra, V. Rizzatti, S. Budui, G. Franceschetti, G. Mazzali, A.P. Rossi, F. Fantin, M. Menegazzi, S. Cinti, M. Zamboni, Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment. Oncotarget 7, 20223–20235 (2016)PubMedPubMedCentral E. Zoico, E. Darra, V. Rizzatti, S. Budui, G. Franceschetti, G. Mazzali, A.P. Rossi, F. Fantin, M. Menegazzi, S. Cinti, M. Zamboni, Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment. Oncotarget 7, 20223–20235 (2016)PubMedPubMedCentral
117.
go back to reference H.M. Lawler, C.M. Underkofler, P.A. Kern, C. Erickson, B. Bredbeck, N. Rasouli, Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. J. Clin. Endocrinol. Metab. 101, 1422–1428 (2016) H.M. Lawler, C.M. Underkofler, P.A. Kern, C. Erickson, B. Bredbeck, N. Rasouli, Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. J. Clin. Endocrinol. Metab. 101, 1422–1428 (2016)
118.
go back to reference J. Cai, H. Tang, L. Xu, X. Wang, C. Yang, S. Ruan, J. Guo, S. Hu, Z. Wang, Fibroblasts in omentum activated by tumor cells promote ovarian cancer growth, adhesion and invasiveness. Carcinogenesis 33, 20–29 (2012)PubMed J. Cai, H. Tang, L. Xu, X. Wang, C. Yang, S. Ruan, J. Guo, S. Hu, Z. Wang, Fibroblasts in omentum activated by tumor cells promote ovarian cancer growth, adhesion and invasiveness. Carcinogenesis 33, 20–29 (2012)PubMed
119.
go back to reference A. Ghoneum, H. Afify, Z. Salih, M. Kelly, N. Said, Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget 9, 22832–22849 (2018)PubMedPubMedCentral A. Ghoneum, H. Afify, Z. Salih, M. Kelly, N. Said, Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget 9, 22832–22849 (2018)PubMedPubMedCentral
120.
go back to reference T. Dong, D. Yang, R. Li, L. Zhang, H. Zhao, Y. Shen, X. Zhang, B. Kong, L. Wang, PGRN promotes migration and invasion of epithelial ovarian cancer cells through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp. Mol. Pathol. 100, 17–25 (2016)PubMed T. Dong, D. Yang, R. Li, L. Zhang, H. Zhao, Y. Shen, X. Zhang, B. Kong, L. Wang, PGRN promotes migration and invasion of epithelial ovarian cancer cells through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp. Mol. Pathol. 100, 17–25 (2016)PubMed
121.
go back to reference M. Di Francesco, S. D'Ascenzo, M.G. Palmerini, G. Macchiarelli, G. Carta, V. Dolo, Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior AU - Giusti. Ilaria. Cancer Biology & Therapy 19, 722–734 (2018) M. Di Francesco, S. D'Ascenzo, M.G. Palmerini, G. Macchiarelli, G. Carta, V. Dolo, Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior AU - Giusti. Ilaria. Cancer Biology & Therapy 19, 722–734 (2018)
122.
go back to reference V. Sundararajan, F.H. Sarkar, T.S. Ramasamy, The multifaceted role of exosomes in cancer progression: diagnostic and therapeutic implications [corrected]. Cell. Oncol. 41, 223–252 (2018) V. Sundararajan, F.H. Sarkar, T.S. Ramasamy, The multifaceted role of exosomes in cancer progression: diagnostic and therapeutic implications [corrected]. Cell. Oncol. 41, 223–252 (2018)
123.
go back to reference A.K. Mitra, M. Zillhardt, Y. Hua, P. Tiwari, A.E. Murmann, M.E. Peter, E. Lengyel, MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2, 1100–1108 (2012) A.K. Mitra, M. Zillhardt, Y. Hua, P. Tiwari, A.E. Murmann, M.E. Peter, E. Lengyel, MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2, 1100–1108 (2012)
124.
go back to reference Y. Zhang, H. Tang, J. Cai, T. Zhang, J. Guo, D. Feng, Z. Wang, Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Lett. 303, 47–55 (2011)PubMed Y. Zhang, H. Tang, J. Cai, T. Zhang, J. Guo, D. Feng, Z. Wang, Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Lett. 303, 47–55 (2011)PubMed
125.
go back to reference S. Liekens, D. Schols, S. Hatse, CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr. Pharm. Des. 16, 3903–3920 (2010)PubMed S. Liekens, D. Schols, S. Hatse, CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr. Pharm. Des. 16, 3903–3920 (2010)PubMed
126.
go back to reference T.L. Yeung, C.S. Leung, K.K. Wong, G. Samimi, M.S. Thompson, J. Liu, T.M. Zaid, S. Ghosh, M.J. Birrer, S.C. Mok, TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 73, 5016–5028 (2013)PubMedPubMedCentral T.L. Yeung, C.S. Leung, K.K. Wong, G. Samimi, M.S. Thompson, J. Liu, T.M. Zaid, S. Ghosh, M.J. Birrer, S.C. Mok, TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 73, 5016–5028 (2013)PubMedPubMedCentral
127.
go back to reference A. Salmaninejad, S.F. Valilou, A. Soltani, S. Ahmadi, Y.J. Abarghan, R.J. Rosengren, A. Sahebkar, Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell. Oncol. 42, 591–608 (2019) A. Salmaninejad, S.F. Valilou, A. Soltani, S. Ahmadi, Y.J. Abarghan, R.J. Rosengren, A. Sahebkar, Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell. Oncol. 42, 591–608 (2019)
128.
go back to reference A. Mantovani, P. Allavena, A. Sica, F. Balkwill, Cancer-related inflammation. Nature 454, 436–444 (2008)PubMed A. Mantovani, P. Allavena, A. Sica, F. Balkwill, Cancer-related inflammation. Nature 454, 436–444 (2008)PubMed
129.
go back to reference K. Kawamura, Y. Komohara, K. Takaishi, H. Katabuchi, M. Takeya, Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol. Int. 59, 300–305 (2009)PubMed K. Kawamura, Y. Komohara, K. Takaishi, H. Katabuchi, M. Takeya, Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol. Int. 59, 300–305 (2009)PubMed
130.
go back to reference E. Schutyser, S. Struyf, P. Proost, G. Opdenakker, G. Laureys, B. Verhasselt, L. Peperstraete, I. Van de Putte, A. Saccani, P. Allavena, A. Mantovani, J. Van Damme, Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J. Biol. Chem. 277, 24584–24593 (2002)PubMed E. Schutyser, S. Struyf, P. Proost, G. Opdenakker, G. Laureys, B. Verhasselt, L. Peperstraete, I. Van de Putte, A. Saccani, P. Allavena, A. Mantovani, J. Van Damme, Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J. Biol. Chem. 277, 24584–24593 (2002)PubMed
131.
go back to reference L.S. Ojalvo, C.A. Whittaker, J.S. Condeelis, J.W. Pollard, Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J. Immunol. 184, 702–712 (2010)PubMed L.S. Ojalvo, C.A. Whittaker, J.S. Condeelis, J.W. Pollard, Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J. Immunol. 184, 702–712 (2010)PubMed
132.
go back to reference M. Torroella-Kouri, R. Silvera, D. Rodriguez, R. Caso, A. Shatry, S. Opiela, D. Ilkovitch, R.A. Schwendener, V. Iragavarapu-Charyulu, Y. Cardentey, N. Strbo, D.M. Lopez, Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res. 69, 4800–4809 (2009)PubMed M. Torroella-Kouri, R. Silvera, D. Rodriguez, R. Caso, A. Shatry, S. Opiela, D. Ilkovitch, R.A. Schwendener, V. Iragavarapu-Charyulu, Y. Cardentey, N. Strbo, D.M. Lopez, Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res. 69, 4800–4809 (2009)PubMed
133.
go back to reference S.K. Biswas, L. Gangi, S. Paul, T. Schioppa, A. Saccani, M. Sironi, B. Bottazzi, A. Doni, B. Vincenzo, F. Pasqualini, L. Vago, M. Nebuloni, A. Mantovani, A. Sica, A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006)PubMed S.K. Biswas, L. Gangi, S. Paul, T. Schioppa, A. Saccani, M. Sironi, B. Bottazzi, A. Doni, B. Vincenzo, F. Pasqualini, L. Vago, M. Nebuloni, A. Mantovani, A. Sica, A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006)PubMed
134.
go back to reference L.S. Ojalvo, W. King, D. Cox, J.W. Pollard, High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am. J. Pathol. 174, 1048–1064 (2009)PubMedPubMedCentral L.S. Ojalvo, W. King, D. Cox, J.W. Pollard, High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am. J. Pathol. 174, 1048–1064 (2009)PubMedPubMedCentral
135.
136.
go back to reference D. Hambardzumyan, D.H. Gutmann, H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20 (2015) D. Hambardzumyan, D.H. Gutmann, H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20 (2015)
137.
go back to reference V. Kumar, P. Cheng, T. Condamine, S. Mony, L.R. Languino, J.C. McCaffrey, N. Hockstein, M. Guarino, G. Masters, E. Penman, F. Denstman, X. Xu, D.C. Altieri, H. Du, C. Yan, D.I. Gabrilovich, CD45 phosphatase inhibits STAT3 transcriptionfFactor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 44, 303–315 (2016) V. Kumar, P. Cheng, T. Condamine, S. Mony, L.R. Languino, J.C. McCaffrey, N. Hockstein, M. Guarino, G. Masters, E. Penman, F. Denstman, X. Xu, D.C. Altieri, H. Du, C. Yan, D.I. Gabrilovich, CD45 phosphatase inhibits STAT3 transcriptionfFactor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 44, 303–315 (2016)
138.
go back to reference A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, P. Allavena, Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017)PubMedPubMedCentral A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, P. Allavena, Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017)PubMedPubMedCentral
139.
go back to reference S.K. Biswas, A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010)PubMed S.K. Biswas, A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010)PubMed
140.
go back to reference R. Clark, V. Krishnan, M. Schoof, I. Rodriguez, B. Theriault, M. Chekmareva, C. Rinker-Schaeffer, Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models. Am. J. Pathol. 183, 576–591 (2013)PubMedPubMedCentral R. Clark, V. Krishnan, M. Schoof, I. Rodriguez, B. Theriault, M. Chekmareva, C. Rinker-Schaeffer, Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models. Am. J. Pathol. 183, 576–591 (2013)PubMedPubMedCentral
141.
go back to reference T.M. Robinson-Smith, I. Isaacsohn, C.A. Mercer, M. Zhou, N. Van Rooijen, N. Husseinzadeh, M.M. McFarland-Mancini, A.F. Drew, Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res. 67, 5708–5716 (2007)PubMed T.M. Robinson-Smith, I. Isaacsohn, C.A. Mercer, M. Zhou, N. Van Rooijen, N. Husseinzadeh, M.M. McFarland-Mancini, A.F. Drew, Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res. 67, 5708–5716 (2007)PubMed
142.
go back to reference J. Liu, X. Geng, Y. Li, Milky spots: omental functional units and hotbeds for peritoneal cancer metastasis. Tumour Biol. 37, 5715–5726 (2016) J. Liu, X. Geng, Y. Li, Milky spots: omental functional units and hotbeds for peritoneal cancer metastasis. Tumour Biol. 37, 5715–5726 (2016)
143.
go back to reference X. Yuan, J. Zhang, D. Li, Y. Mao, F. Mo, W. Du, X. Ma, Prognostic significance of tumor-associated macrophages in ovarian cancer: A meta-analysis. Gynecol. Oncol. 147, 181–187 (2017)PubMed X. Yuan, J. Zhang, D. Li, Y. Mao, F. Mo, W. Du, X. Ma, Prognostic significance of tumor-associated macrophages in ovarian cancer: A meta-analysis. Gynecol. Oncol. 147, 181–187 (2017)PubMed
144.
go back to reference L.S. Ojalvo, E.D. Thompson, T.L. Wang, A.K. Meeker, I.M. Shih, A.N. Fader, A. Cimino-Mathews, L.A. Emens, Tumor-associated macrophages and the tumor immune microenvironment of primary and recurrent epithelial ovarian cancer. Hum. Pathol. 74, 135–147 (2018) L.S. Ojalvo, E.D. Thompson, T.L. Wang, A.K. Meeker, I.M. Shih, A.N. Fader, A. Cimino-Mathews, L.A. Emens, Tumor-associated macrophages and the tumor immune microenvironment of primary and recurrent epithelial ovarian cancer. Hum. Pathol. 74, 135–147 (2018)
145.
go back to reference S. Huang, M. Van Arsdall, S. Tedjarati, M. McCarty, W. Wu, R. Langley, I.J. Fidler, Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J. Natl. Cancer Inst. 94, 1134–1142 (2002)PubMed S. Huang, M. Van Arsdall, S. Tedjarati, M. McCarty, W. Wu, R. Langley, I.J. Fidler, Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J. Natl. Cancer Inst. 94, 1134–1142 (2002)PubMed
146.
go back to reference X. Wang, M. Deavers, R. Patenia, R.L. Bassett Jr., P. Mueller, Q. Ma, E. Wang, R.S. Freedman, Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. J. Transl. Med. 4, 30 (2006)PubMedPubMedCentral X. Wang, M. Deavers, R. Patenia, R.L. Bassett Jr., P. Mueller, Q. Ma, E. Wang, R.S. Freedman, Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. J. Transl. Med. 4, 30 (2006)PubMedPubMedCentral
147.
go back to reference S.F. Schoppmann, A. Fenzl, K. Nagy, S. Unger, G. Bayer, S. Geleff, M. Gnant, R. Horvat, R. Jakesz, P. Birner, VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery 139, 839–846 (2006)PubMed S.F. Schoppmann, A. Fenzl, K. Nagy, S. Unger, G. Bayer, S. Geleff, M. Gnant, R. Horvat, R. Jakesz, P. Birner, VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery 139, 839–846 (2006)PubMed
148.
go back to reference L. Liu, X. Wang, X. Li, X. Wu, M. Tang, X. Wang, Upregulation of IGF1 by tumor-associated macrophages promotes the proliferation and migration of epithelial ovarian cancer cells. Oncol. Rep. 39, 818–826 (2018)PubMed L. Liu, X. Wang, X. Li, X. Wu, M. Tang, X. Wang, Upregulation of IGF1 by tumor-associated macrophages promotes the proliferation and migration of epithelial ovarian cancer cells. Oncol. Rep. 39, 818–826 (2018)PubMed
149.
go back to reference N. Nishida, H. Yano, T. Nishida, T. Kamura, M. Kojiro, Angiogenesis in cancer. Vasc. Health Risk Manag. 2, 213–219 (2006)PubMedPubMedCentral N. Nishida, H. Yano, T. Nishida, T. Kamura, M. Kojiro, Angiogenesis in cancer. Vasc. Health Risk Manag. 2, 213–219 (2006)PubMedPubMedCentral
150.
151.
go back to reference T. Tonini, F. Rossi, P.P. Claudio, Molecular basis of angiogenesis and cancer. Oncogene 22, 6549–6556 (2003)PubMed T. Tonini, F. Rossi, P.P. Claudio, Molecular basis of angiogenesis and cancer. Oncogene 22, 6549–6556 (2003)PubMed
152.
go back to reference A.K. Olsson, A. Dimberg, J. Kreuger, L. Claesson-Welsh, VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006)PubMed A.K. Olsson, A. Dimberg, J. Kreuger, L. Claesson-Welsh, VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006)PubMed
153.
go back to reference S. Dehghani, R. Nosrati, M. Yousefi, A. Nezami, F. Soltani, S.M. Taghdisi, K. Abnous, M. Alibolandi, M. Ramezani, Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Biosens. Bioelectron. 110, 23–37 (2018)PubMed S. Dehghani, R. Nosrati, M. Yousefi, A. Nezami, F. Soltani, S.M. Taghdisi, K. Abnous, M. Alibolandi, M. Ramezani, Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Biosens. Bioelectron. 110, 23–37 (2018)PubMed
154.
go back to reference M.J. Birrer, M.E. Johnson, K. Hao, K.K. Wong, D.C. Park, A. Bell, W.R. Welch, R.S. Berkowitz, S.C. Mok, Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J. Clin. Oncol. 25, 2281–2287 (2007)PubMed M.J. Birrer, M.E. Johnson, K. Hao, K.K. Wong, D.C. Park, A. Bell, W.R. Welch, R.S. Berkowitz, S.C. Mok, Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J. Clin. Oncol. 25, 2281–2287 (2007)PubMed
155.
go back to reference T.M. Zaid, T.L. Yeung, M.S. Thompson, C.S. Leung, T. Harding, N.N. Co, R.S. Schmandt, S.Y. Kwan, C. Rodriguez-Aguay, G. Lopez-Berestein, A.K. Sood, K.K. Wong, M.J. Birrer, S.C. Mok, Identification of FGFR4 as a potential therapeutic target for advanced-stage, high-grade serous ovarian cancer. Clin. Cancer Res. 19, 809–820 (2013)PubMedPubMedCentral T.M. Zaid, T.L. Yeung, M.S. Thompson, C.S. Leung, T. Harding, N.N. Co, R.S. Schmandt, S.Y. Kwan, C. Rodriguez-Aguay, G. Lopez-Berestein, A.K. Sood, K.K. Wong, M.J. Birrer, S.C. Mok, Identification of FGFR4 as a potential therapeutic target for advanced-stage, high-grade serous ovarian cancer. Clin. Cancer Res. 19, 809–820 (2013)PubMedPubMedCentral
156.
go back to reference W. Wei, S.C. Mok, E. Oliva, S.H. Kim, G. Mohapatra, M.J. Birrer, FGF18 as a prognostic and therapeutic biomarker in ovarian cancer. J. Clin. Invest. 123, 4435–4448 (2013)PubMedPubMedCentral W. Wei, S.C. Mok, E. Oliva, S.H. Kim, G. Mohapatra, M.J. Birrer, FGF18 as a prognostic and therapeutic biomarker in ovarian cancer. J. Clin. Invest. 123, 4435–4448 (2013)PubMedPubMedCentral
157.
go back to reference L. Hu, L. Cong, Fibroblast growth factor 19 is correlated with an unfavorable prognosis and promotes progression by activating fibroblast growth factor receptor 4 in advanced-stage serous ovarian cancer. Oncol. Rep. 34, 2683–2691 (2015)PubMed L. Hu, L. Cong, Fibroblast growth factor 19 is correlated with an unfavorable prognosis and promotes progression by activating fibroblast growth factor receptor 4 in advanced-stage serous ovarian cancer. Oncol. Rep. 34, 2683–2691 (2015)PubMed
158.
go back to reference X. Wang, Q. Zhu, Y. Lin, L. Wu, X. Wu, K. Wang, Q. He, C. Xu, X. Wan, X. Wang, Crosstalk between TEMs and endothelial cells modulates angiogenesis and metastasis via IGF1-IGF1R signalling in epithelial ovarian cancer. Br. J. Cancer 117, 1371–1382 (2017)PubMedPubMedCentral X. Wang, Q. Zhu, Y. Lin, L. Wu, X. Wu, K. Wang, Q. He, C. Xu, X. Wan, X. Wang, Crosstalk between TEMs and endothelial cells modulates angiogenesis and metastasis via IGF1-IGF1R signalling in epithelial ovarian cancer. Br. J. Cancer 117, 1371–1382 (2017)PubMedPubMedCentral
159.
go back to reference J. Yang, Y. Wang, Z. Zeng, L. Qiao, L. Zhuang, Q. Gao, D. Ma, X. Huang, Smad4 deletion in blood vessel endothelial cells promotes ovarian cancer metastasis. Int. J. Oncol. 50, 1693–1700 (2017)PubMed J. Yang, Y. Wang, Z. Zeng, L. Qiao, L. Zhuang, Q. Gao, D. Ma, X. Huang, Smad4 deletion in blood vessel endothelial cells promotes ovarian cancer metastasis. Int. J. Oncol. 50, 1693–1700 (2017)PubMed
160.
go back to reference M. Yin, H.J. Zhou, J. Zhang, C. Lin, H. Li, X. Li, Y. Li, H. Zhang, D.G. Breckenridge, W. Ji, W. Min, ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis. JCI Insight 2 (2017) M. Yin, H.J. Zhou, J. Zhang, C. Lin, H. Li, X. Li, Y. Li, H. Zhang, D.G. Breckenridge, W. Ji, W. Min, ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis. JCI Insight 2 (2017)
161.
go back to reference J. Hoarau-Vechot, C. Touboul, N. Halabi, M. Blot-Dupin, R. Lis, C. Abi Khalil, S. Rafii, A. Rafii, J. Pasquier, Akt-activated endothelium promotes ovarian cancer proliferation through notch activation. J. Transl. Med. 17, 194 (2019)PubMedPubMedCentral J. Hoarau-Vechot, C. Touboul, N. Halabi, M. Blot-Dupin, R. Lis, C. Abi Khalil, S. Rafii, A. Rafii, J. Pasquier, Akt-activated endothelium promotes ovarian cancer proliferation through notch activation. J. Transl. Med. 17, 194 (2019)PubMedPubMedCentral
162.
go back to reference A. Nowicka, F.C. Marini, T.N. Solley, P.B. Elizondo, Y. Zhang, H.J. Sharp, R. Broaddus, M. Kolonin, S.C. Mok, M.S. Thompson, W.A. Woodward, K. Lu, B. Salimian, D. Nagrath, A.H. Klopp, Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance. PLoS One 8, e81859 (2013)PubMedPubMedCentral A. Nowicka, F.C. Marini, T.N. Solley, P.B. Elizondo, Y. Zhang, H.J. Sharp, R. Broaddus, M. Kolonin, S.C. Mok, M.S. Thompson, W.A. Woodward, K. Lu, B. Salimian, D. Nagrath, A.H. Klopp, Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance. PLoS One 8, e81859 (2013)PubMedPubMedCentral
163.
go back to reference P. Sartipy, D.J. Loskutoff, Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 100, 7265–7270 (2003)PubMedPubMedCentral P. Sartipy, D.J. Loskutoff, Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 100, 7265–7270 (2003)PubMedPubMedCentral
164.
go back to reference G.K. Reeves, K. Pirie, V. Beral, J. Green, E. Spencer, D. Bull, Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. Bmj 335, 1134 (2007)PubMedPubMedCentral G.K. Reeves, K. Pirie, V. Beral, J. Green, E. Spencer, D. Bull, Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. Bmj 335, 1134 (2007)PubMedPubMedCentral
165.
go back to reference A. Ghasemi, J. Saeidi, M. Azimi-Nejad, S. I. Hashemy. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell. Oncol. 42, 243–60 (2019) A. Ghasemi, J. Saeidi, M. Azimi-Nejad, S. I. Hashemy. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell. Oncol. 42, 243–60 (2019)
166.
go back to reference A.G. Renehan, M. Tyson, M. Egger, R.F. Heller, M. Zwahlen, Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008)PubMed A.G. Renehan, M. Tyson, M. Egger, R.F. Heller, M. Zwahlen, Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008)PubMed
167.
go back to reference E.E. Calle, C. Rodriguez, K. Walker-Thurmond, M.J. Thun, Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. New Eng. J. Med. 348, 1625–1638 (2003) E.E. Calle, C. Rodriguez, K. Walker-Thurmond, M.J. Thun, Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. New Eng. J. Med. 348, 1625–1638 (2003)
168.
go back to reference E.S. Trombetta, I. Mellman, Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005)PubMed E.S. Trombetta, I. Mellman, Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005)PubMed
169.
170.
go back to reference E. Segura, S. Amigorena, Inflammatory dendritic cells in mice and humans. Trends Immunol. 34, 440–445 (2013)PubMed E. Segura, S. Amigorena, Inflammatory dendritic cells in mice and humans. Trends Immunol. 34, 440–445 (2013)PubMed
171.
go back to reference E. Daro, B. Pulendran, K. Brasel, M. Teepe, D. Pettit, D.H. Lynch, D. Vremec, L. Robb, K. Shortman, H.J. McKenna, C.R. Maliszewski, E. Maraskovsky, Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J. Immunol. 165, 49–58 (2000)PubMed E. Daro, B. Pulendran, K. Brasel, M. Teepe, D. Pettit, D.H. Lynch, D. Vremec, L. Robb, K. Shortman, H.J. McKenna, C.R. Maliszewski, E. Maraskovsky, Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J. Immunol. 165, 49–58 (2000)PubMed
172.
go back to reference S. Menezes, D. Melandri, G. Anselmi, T. Perchet, J. Loschko, J. Dubrot, R. Patel, E.L. Gautier, S. Hugues, M.P. Longhi, J.Y. Henry, S.A. Quezada, G. Lauvau, A.M. Lennon-Dumenil, E. Gutierrez-Martinez, A. Bessis, E. Gomez-Perdiguero, C.E. Jacome-Galarza, H. Garner, F. Geissmann, R. Golub, M.C. Nussenzweig, P. Guermonprez, The heterogeneity of Ly6C(hi) monocytes controls their differentiation into iNOS(+) macrophages or monocyte-derived dendritic cells. Immunity 45, 1205–1218 (2016)PubMedPubMedCentral S. Menezes, D. Melandri, G. Anselmi, T. Perchet, J. Loschko, J. Dubrot, R. Patel, E.L. Gautier, S. Hugues, M.P. Longhi, J.Y. Henry, S.A. Quezada, G. Lauvau, A.M. Lennon-Dumenil, E. Gutierrez-Martinez, A. Bessis, E. Gomez-Perdiguero, C.E. Jacome-Galarza, H. Garner, F. Geissmann, R. Golub, M.C. Nussenzweig, P. Guermonprez, The heterogeneity of Ly6C(hi) monocytes controls their differentiation into iNOS(+) macrophages or monocyte-derived dendritic cells. Immunity 45, 1205–1218 (2016)PubMedPubMedCentral
173.
go back to reference S. Kuhn, E.J. Hyde, J. Yang, F.J. Rich, J.L. Harper, J.R. Kirman, F. Ronchese, Increased numbers of monocyte-derived dendritic cells during successful tumor immunotherapy with immune-activating agents. J. Immunol. 191, 1984–1992 (2013)PubMed S. Kuhn, E.J. Hyde, J. Yang, F.J. Rich, J.L. Harper, J.R. Kirman, F. Ronchese, Increased numbers of monocyte-derived dendritic cells during successful tumor immunotherapy with immune-activating agents. J. Immunol. 191, 1984–1992 (2013)PubMed
174.
go back to reference E. Segura, M. Touzot, A. Bohineust, A. Cappuccio, G. Chiocchia, A. Hosmalin, M. Dalod, V. Soumelis, S. Amigorena, Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38, 336–348 (2013)PubMed E. Segura, M. Touzot, A. Bohineust, A. Cappuccio, G. Chiocchia, A. Hosmalin, M. Dalod, V. Soumelis, S. Amigorena, Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38, 336–348 (2013)PubMed
175.
go back to reference B. Ruffell, D. Chang-Strachan, V. Chan, A. Rosenbusch, C.M. Ho, N. Pryer, D. Daniel, E.S. Hwang, H.S. Rugo, L.M. Coussens, Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 26, 623–637 (2014)PubMedPubMedCentral B. Ruffell, D. Chang-Strachan, V. Chan, A. Rosenbusch, C.M. Ho, N. Pryer, D. Daniel, E.S. Hwang, H.S. Rugo, L.M. Coussens, Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 26, 623–637 (2014)PubMedPubMedCentral
176.
go back to reference A. Salmaninejad, S.F. Valilou, A.G. Shabgah, S. Aslani, M. Alimardani, A. Pasdar, A. Sahebkar, PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J. Cell. Physiol. 234, 16824–16837 (2019)PubMed A. Salmaninejad, S.F. Valilou, A.G. Shabgah, S. Aslani, M. Alimardani, A. Pasdar, A. Sahebkar, PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J. Cell. Physiol. 234, 16824–16837 (2019)PubMed
177.
go back to reference H. Salmon, J. Idoyaga, A. Rahman, M. Leboeuf, R. Remark, S. Jordan, M. Casanova-Acebes, M. Khudoynazarova, J. Agudo, N. Tung, S. Chakarov, C. Rivera, B. Hogstad, M. Bosenberg, D. Hashimoto, S. Gnjatic, N. Bhardwaj, A.K. Palucka, B.D. Brown, J. Brody, F. Ginhoux, M. Merad, Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016) H. Salmon, J. Idoyaga, A. Rahman, M. Leboeuf, R. Remark, S. Jordan, M. Casanova-Acebes, M. Khudoynazarova, J. Agudo, N. Tung, S. Chakarov, C. Rivera, B. Hogstad, M. Bosenberg, D. Hashimoto, S. Gnjatic, N. Bhardwaj, A.K. Palucka, B.D. Brown, J. Brody, F. Ginhoux, M. Merad, Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016)
178.
go back to reference D.L. Herber, W. Cao, Y. Nefedova, S.V. Novitskiy, S. Nagaraj, V.A. Tyurin, A. Corzo, H.I. Cho, E. Celis, B. Lennox, S.C. Knight, T. Padhya, T.V. McCaffrey, J.C. McCaffrey, S. Antonia, M. Fishman, R.L. Ferris, V.E. Kagan, D.I. Gabrilovich, Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16, 880–886 (2010)PubMedPubMedCentral D.L. Herber, W. Cao, Y. Nefedova, S.V. Novitskiy, S. Nagaraj, V.A. Tyurin, A. Corzo, H.I. Cho, E. Celis, B. Lennox, S.C. Knight, T. Padhya, T.V. McCaffrey, J.C. McCaffrey, S. Antonia, M. Fishman, R.L. Ferris, V.E. Kagan, D.I. Gabrilovich, Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16, 880–886 (2010)PubMedPubMedCentral
179.
go back to reference J.R. Cubillos-Ruiz, P.C. Silberman, M.R. Rutkowski, S. Chopra, A. Perales-Puchalt, M. Song, S. Zhang, S.E. Bettigole, D. Gupta, K. Holcomb, L.H. Ellenson, T. Caputo, A.-H. Lee, J.R. Conejo-Garcia, L.H. Glimcher, ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015) J.R. Cubillos-Ruiz, P.C. Silberman, M.R. Rutkowski, S. Chopra, A. Perales-Puchalt, M. Song, S. Zhang, S.E. Bettigole, D. Gupta, K. Holcomb, L.H. Ellenson, T. Caputo, A.-H. Lee, J.R. Conejo-Garcia, L.H. Glimcher, ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015)
180.
go back to reference K. Dass, A. Ahmad, A.S. Azmi, S.H. Sarkar, F.H. Sarkar, Evolving role of uPA/uPAR system in human cancers. Cancer Treat. Rev. 34, 122–136 (2008)PubMed K. Dass, A. Ahmad, A.S. Azmi, S.H. Sarkar, F.H. Sarkar, Evolving role of uPA/uPAR system in human cancers. Cancer Treat. Rev. 34, 122–136 (2008)PubMed
181.
go back to reference L. Wang, M.C. Madigan, H. Chen, F. Liu, K.I. Patterson, J. Beretov, P.M. O'Brien, Y. Li, Expression of urokinase plasminogen activator and its receptor in advanced epithelial ovarian cancer patients. Gynecol. Oncol. 114, 265–272 (2009)PubMed L. Wang, M.C. Madigan, H. Chen, F. Liu, K.I. Patterson, J. Beretov, P.M. O'Brien, Y. Li, Expression of urokinase plasminogen activator and its receptor in advanced epithelial ovarian cancer patients. Gynecol. Oncol. 114, 265–272 (2009)PubMed
182.
go back to reference J. Dorn, N. Harbeck, R. Kates, A. Gkazepis, A. Scorilas, A. Soosaipillai, E. Diamandis, M. Kiechle, B. Schmalfeldt, M. Schmitt, Impact of expression differences of kallikrein-related peptidases and of uPA and PAI-1 between primary tumor and omentum metastasis in advanced ovarian cancer. Ann. Oncol. 22, 877–883 (2011)PubMed J. Dorn, N. Harbeck, R. Kates, A. Gkazepis, A. Scorilas, A. Soosaipillai, E. Diamandis, M. Kiechle, B. Schmalfeldt, M. Schmitt, Impact of expression differences of kallikrein-related peptidases and of uPA and PAI-1 between primary tumor and omentum metastasis in advanced ovarian cancer. Ann. Oncol. 22, 877–883 (2011)PubMed
183.
go back to reference C. Alberti, P. Pinciroli, B. Valeri, R. Ferri, A. Ditto, K. Umezawa, M. Sensi, S. Canevari, A. Tomassetti, Ligand-dependent EGFR activation induces the co-expression of IL-6 and PAI-1 via the NFkB pathway in advanced-stage epithelial ovarian cancer. Oncogene 31, 4139–4149 (2012)PubMed C. Alberti, P. Pinciroli, B. Valeri, R. Ferri, A. Ditto, K. Umezawa, M. Sensi, S. Canevari, A. Tomassetti, Ligand-dependent EGFR activation induces the co-expression of IL-6 and PAI-1 via the NFkB pathway in advanced-stage epithelial ovarian cancer. Oncogene 31, 4139–4149 (2012)PubMed
184.
go back to reference P.A. van Dam, A. Coelho, C. Rolfo, Is there a role for urokinase-type plasminogen activator inhibitors as maintenance therapy in patients with ovarian cancer? Eur. J. Surg. Oncol. 43, 252–257 (2017)PubMed P.A. van Dam, A. Coelho, C. Rolfo, Is there a role for urokinase-type plasminogen activator inhibitors as maintenance therapy in patients with ovarian cancer? Eur. J. Surg. Oncol. 43, 252–257 (2017)PubMed
185.
go back to reference B. Schmalfeldt, D. Prechtel, K. Harting, K. Spathe, S. Rutke, E. Konik, R. Fridman, U. Berger, M. Schmitt, W. Kuhn, E. Lengyel, Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin. Cancer Res. 7, 2396–2404 (2001)PubMed B. Schmalfeldt, D. Prechtel, K. Harting, K. Spathe, S. Rutke, E. Konik, R. Fridman, U. Berger, M. Schmitt, W. Kuhn, E. Lengyel, Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin. Cancer Res. 7, 2396–2404 (2001)PubMed
186.
go back to reference M. Maatta, M. Santala, Y. Soini, A. Talvensaari-Mattila, T. Turpeenniemi-Hujanen, Matrix metalloproteinases 2 and 9 and their tissue inhibitors in low malignant potential ovarian tumors. Tumour Biol. 25, 188–192 (2004)PubMed M. Maatta, M. Santala, Y. Soini, A. Talvensaari-Mattila, T. Turpeenniemi-Hujanen, Matrix metalloproteinases 2 and 9 and their tissue inhibitors in low malignant potential ovarian tumors. Tumour Biol. 25, 188–192 (2004)PubMed
187.
go back to reference S. Sillanpaa, M. Anttila, K. Voutilainen, K. Ropponen, T. Turpeenniemi-Hujanen, U. Puistola, R. Tammi, M. Tammi, R. Sironen, S. Saarikoski, V.M. Kosma, Prognostic significance of matrix metalloproteinase-9 (MMP-9) in epithelial ovarian cancer. Gynecol. Oncol. 104, 296–303 (2007)PubMed S. Sillanpaa, M. Anttila, K. Voutilainen, K. Ropponen, T. Turpeenniemi-Hujanen, U. Puistola, R. Tammi, M. Tammi, R. Sironen, S. Saarikoski, V.M. Kosma, Prognostic significance of matrix metalloproteinase-9 (MMP-9) in epithelial ovarian cancer. Gynecol. Oncol. 104, 296–303 (2007)PubMed
188.
go back to reference H. Nishikawa, Y. Ozaki, T. Nakanishi, K. Blomgren, T. Tada, A. Arakawa, K. Suzumori, The role of cathepsin B and cystatin C in the mechanisms of invasion by ovarian cancer. Gynecol. Oncol. 92, 881–886 (2004)PubMed H. Nishikawa, Y. Ozaki, T. Nakanishi, K. Blomgren, T. Tada, A. Arakawa, K. Suzumori, The role of cathepsin B and cystatin C in the mechanisms of invasion by ovarian cancer. Gynecol. Oncol. 92, 881–886 (2004)PubMed
189.
go back to reference J.L. Brun, A. Cortez, F. Commo, S. Uzan, R. Rouzier, E. Darai, Serous and mucinous ovarian tumors express different profiles of MMP-2, −7, −9, MT1-MMP, and TIMP-1 and -2. Int. J. Oncol. 33, 1239–1246 (2008)PubMed J.L. Brun, A. Cortez, F. Commo, S. Uzan, R. Rouzier, E. Darai, Serous and mucinous ovarian tumors express different profiles of MMP-2, −7, −9, MT1-MMP, and TIMP-1 and -2. Int. J. Oncol. 33, 1239–1246 (2008)PubMed
190.
go back to reference Z.S. Wu, Q. Wu, J.H. Yang, H.Q. Wang, X.D. Ding, F. Yang, X.C. Xu, Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int. J. Cancer 122, 2050–2056 (2008)PubMed Z.S. Wu, Q. Wu, J.H. Yang, H.Q. Wang, X.D. Ding, F. Yang, X.C. Xu, Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int. J. Cancer 122, 2050–2056 (2008)PubMed
191.
go back to reference L.S. Downs Jr., P.H. Lima, R.L. Bliss, C.H. Blomquist, Cathepsins B and D activity and activity ratios in normal ovaries, benign ovarian neoplasms, and epithelial ovarian cancer. J. Soc. Gynecol. Investig. 12, 539–544 (2005)PubMed L.S. Downs Jr., P.H. Lima, R.L. Bliss, C.H. Blomquist, Cathepsins B and D activity and activity ratios in normal ovaries, benign ovarian neoplasms, and epithelial ovarian cancer. J. Soc. Gynecol. Investig. 12, 539–544 (2005)PubMed
192.
go back to reference Q. Pan, S. Yang, Y. Wei, F. Sun, Z. Li, SP1 acts as a key factor, contributes to upregulation of ADAM23 expression under serum deprivation. Biochem. Biophys. Res. Commun. 401, 306–312 (2010)PubMed Q. Pan, S. Yang, Y. Wei, F. Sun, Z. Li, SP1 acts as a key factor, contributes to upregulation of ADAM23 expression under serum deprivation. Biochem. Biophys. Res. Commun. 401, 306–312 (2010)PubMed
193.
go back to reference C. Bret, D. Hose, T. Reme, A. Kassambara, A. Seckinger, T. Meissner, J.F. Schved, T. Kanouni, H. Goldschmidt, B. Klein, Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp. Hematol. 39, 546–57.e8 (2011)PubMed C. Bret, D. Hose, T. Reme, A. Kassambara, A. Seckinger, T. Meissner, J.F. Schved, T. Kanouni, H. Goldschmidt, B. Klein, Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp. Hematol. 39, 546–57.e8 (2011)PubMed
194.
go back to reference J. Lin, J. Luo, C. Redies, Differential regional expression of multiple ADAMs during feather bud formation. Dev. Dyn. 240, 2142–2152 (2011)PubMed J. Lin, J. Luo, C. Redies, Differential regional expression of multiple ADAMs during feather bud formation. Dev. Dyn. 240, 2142–2152 (2011)PubMed
195.
go back to reference R. Ma, Z. Tang, K. Sun, X. Ye, H. Cheng, X. Chang, H. Cui, Low levels of ADAM23 expression in epithelial ovarian cancer are associated with poor survival. Pathol. Res. Pract. 214, 1115–1122 (2018)PubMed R. Ma, Z. Tang, K. Sun, X. Ye, H. Cheng, X. Chang, H. Cui, Low levels of ADAM23 expression in epithelial ovarian cancer are associated with poor survival. Pathol. Res. Pract. 214, 1115–1122 (2018)PubMed
196.
go back to reference G. Pampalakis, G. Sotiropoulou, Tissue kallikrein proteolytic cascade pathways in normal physiology and cancer. Biochim. Biophys. Acta 1776, 22–31 (2007)PubMed G. Pampalakis, G. Sotiropoulou, Tissue kallikrein proteolytic cascade pathways in normal physiology and cancer. Biochim. Biophys. Acta 1776, 22–31 (2007)PubMed
197.
go back to reference A. Psyrri, P. Kountourakis, A. Scorilas, S. Markakis, R. Camp, D. Kowalski, E.P. Diamandis, M.A. Dimopoulos, Human tissue kallikrein 7, a novel biomarker for advanced ovarian carcinoma using a novel in situ quantitative method of protein expression. Ann. Oncol. 19, 1271–1277 (2008)PubMed A. Psyrri, P. Kountourakis, A. Scorilas, S. Markakis, R. Camp, D. Kowalski, E.P. Diamandis, M.A. Dimopoulos, Human tissue kallikrein 7, a novel biomarker for advanced ovarian carcinoma using a novel in situ quantitative method of protein expression. Ann. Oncol. 19, 1271–1277 (2008)PubMed
198.
go back to reference C. Caubet, N. Jonca, M. Brattsand, M. Guerrin, D. Bernard, R. Schmidt, T. Egelrud, M. Simon, G. Serre, Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J. Invest. Dermatol. 122, 1235–1244 (2004)PubMed C. Caubet, N. Jonca, M. Brattsand, M. Guerrin, D. Bernard, R. Schmidt, T. Egelrud, M. Simon, G. Serre, Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J. Invest. Dermatol. 122, 1235–1244 (2004)PubMed
199.
go back to reference Y. Dong, O.L. Tan, D. Loessner, C. Stephens, C. Walpole, G.M. Boyle, P.G. Parsons, J.A. Clements, Kallikrein-related peptidase 7 promotes multicellular aggregation via the alpha(5)beta(1) integrin pathway and paclitaxel chemoresistance in serous epithelial ovarian carcinoma. Cancer Res. 70, 2624–2633 (2010)PubMed Y. Dong, O.L. Tan, D. Loessner, C. Stephens, C. Walpole, G.M. Boyle, P.G. Parsons, J.A. Clements, Kallikrein-related peptidase 7 promotes multicellular aggregation via the alpha(5)beta(1) integrin pathway and paclitaxel chemoresistance in serous epithelial ovarian carcinoma. Cancer Res. 70, 2624–2633 (2010)PubMed
200.
go back to reference Y. Cui, Y. Wang, H. Li, Q. Li, Y. Yu, X. Xu, B. Xu, T. Liu, Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition and analysis of their phosphorylation signaling pathways. Oncotarget 7, 34356–34370 (2016)PubMedPubMedCentral Y. Cui, Y. Wang, H. Li, Q. Li, Y. Yu, X. Xu, B. Xu, T. Liu, Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition and analysis of their phosphorylation signaling pathways. Oncotarget 7, 34356–34370 (2016)PubMedPubMedCentral
201.
go back to reference P. Guo, Z. Zhu, Z. Sun, Z. Wang, X. Zheng, H. Xu, Expression of legumain correlates with prognosis and metastasis in gastric carcinoma. PLoS One 8, e73090 (2013)PubMedPubMedCentral P. Guo, Z. Zhu, Z. Sun, Z. Wang, X. Zheng, H. Xu, Expression of legumain correlates with prognosis and metastasis in gastric carcinoma. PLoS One 8, e73090 (2013)PubMedPubMedCentral
202.
go back to reference Y. Lin, Y. Qiu, C. Xu, Q. Liu, B. Peng, G.F. Kaufmann, X. Chen, B. Lan, C. Wei, D. Lu, Y. Zhang, Y. Guo, Z. Lu, B. Jiang, T.S. Edgington, F. Guo, Functional role of asparaginyl endopeptidase ubiquitination by TRAF6 in tumor invasion and metastasis. J. Natl. Cancer Inst. 106, dju012 (2014)PubMed Y. Lin, Y. Qiu, C. Xu, Q. Liu, B. Peng, G.F. Kaufmann, X. Chen, B. Lan, C. Wei, D. Lu, Y. Zhang, Y. Guo, Z. Lu, B. Jiang, T.S. Edgington, F. Guo, Functional role of asparaginyl endopeptidase ubiquitination by TRAF6 in tumor invasion and metastasis. J. Natl. Cancer Inst. 106, dju012 (2014)PubMed
203.
go back to reference M.H. Haugen, K. Boye, J.M. Nesland, S.J. Pettersen, E.V. Egeland, T. Tamhane, K. Brix, G.M. Maelandsmo, K. Flatmark, High expression of the cysteine proteinase legumain in colorectal cancer - implications for therapeutic targeting. Eur. J. Cancer 51, 9–17 (2015)PubMed M.H. Haugen, K. Boye, J.M. Nesland, S.J. Pettersen, E.V. Egeland, T. Tamhane, K. Brix, G.M. Maelandsmo, K. Flatmark, High expression of the cysteine proteinase legumain in colorectal cancer - implications for therapeutic targeting. Eur. J. Cancer 51, 9–17 (2015)PubMed
204.
go back to reference Q. Zhu, M. Tang, X. Wang, The expression of asparaginyl endopeptidase promotes growth potential in epithelial ovarian cancer. Cancer Biol. Ther. 18, 222–228 (2017) Q. Zhu, M. Tang, X. Wang, The expression of asparaginyl endopeptidase promotes growth potential in epithelial ovarian cancer. Cancer Biol. Ther. 18, 222–228 (2017)
205.
go back to reference J. Cheng, M. Su, Y. Jin, Q. Xi, Y. Deng, J. Chen, W. Wang, Y. Chen, L. Chen, N. Shi, G. Mao, Upregulation of SENP3/SMT3IP1 promotes epithelial ovarian cancer progression and forecasts poor prognosis. Tumour Biol. 39, 1010428317694543 (2017)PubMed J. Cheng, M. Su, Y. Jin, Q. Xi, Y. Deng, J. Chen, W. Wang, Y. Chen, L. Chen, N. Shi, G. Mao, Upregulation of SENP3/SMT3IP1 promotes epithelial ovarian cancer progression and forecasts poor prognosis. Tumour Biol. 39, 1010428317694543 (2017)PubMed
206.
go back to reference Y. Klymenko, O. Kim, E. Loughran, J. Yang, R. Lombard, M. Alber, M.S. Stack, Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene 36, 5840–5851 (2017)PubMedPubMedCentral Y. Klymenko, O. Kim, E. Loughran, J. Yang, R. Lombard, M. Alber, M.S. Stack, Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene 36, 5840–5851 (2017)PubMedPubMedCentral
207.
go back to reference V. Azimian-Zavareh, G. Hossein, M. Ebrahimi, Z. Dehghani-Ghobadi, Wnt11 alters integrin and cadherin expression by ovarian cancer spheroids and inhibits tumorigenesis and metastasis. Exp. Cell Res. 369, 90–104 (2018)PubMed V. Azimian-Zavareh, G. Hossein, M. Ebrahimi, Z. Dehghani-Ghobadi, Wnt11 alters integrin and cadherin expression by ovarian cancer spheroids and inhibits tumorigenesis and metastasis. Exp. Cell Res. 369, 90–104 (2018)PubMed
208.
go back to reference X. Li, M. Tang, Q. Zhu, X. Wang, Y. Lin, X. Wang. The exosomal integrin α5β1/AEP complex derived from epithelial ovarian cancer cells promotes peritoneal metastasis through regulating mesothelial cell proliferation and migration. Cell. Oncol. 43, 263-277 (2020) X. Li, M. Tang, Q. Zhu, X. Wang, Y. Lin, X. Wang. The exosomal integrin α5β1/AEP complex derived from epithelial ovarian cancer cells promotes peritoneal metastasis through regulating mesothelial cell proliferation and migration. Cell. Oncol. 43, 263-277 (2020)
209.
go back to reference C.H. Chen, S.H. Wang, C.H. Liu, Y.L. Wu, W.J. Wang, J. Huang, J.S. Hung, I.R. Lai, J.T. Liang, M.C. Huang, beta-1,4-Galactosyltransferase III suppresses beta1 integrin-mediated invasive phenotypes and negatively correlates with metastasis in colorectal cancer. Carcinogenesis 35, 1258–1266 (2014)PubMed C.H. Chen, S.H. Wang, C.H. Liu, Y.L. Wu, W.J. Wang, J. Huang, J.S. Hung, I.R. Lai, J.T. Liang, M.C. Huang, beta-1,4-Galactosyltransferase III suppresses beta1 integrin-mediated invasive phenotypes and negatively correlates with metastasis in colorectal cancer. Carcinogenesis 35, 1258–1266 (2014)PubMed
210.
go back to reference Q. Li, S. Liu, B. Lin, L. Yan, Y. Wang, C. Wang, S. Zhang, Expression and correlation of Lewis y antigen and integrins alpha5 and beta1 in ovarian serous and mucinous carcinoma. Int. J. Gynecol. Cancer 20, 1482–1489 (2010)PubMed Q. Li, S. Liu, B. Lin, L. Yan, Y. Wang, C. Wang, S. Zhang, Expression and correlation of Lewis y antigen and integrins alpha5 and beta1 in ovarian serous and mucinous carcinoma. Int. J. Gynecol. Cancer 20, 1482–1489 (2010)PubMed
211.
go back to reference J.K. Slack-Davis, K.A. Atkins, C. Harrer, E.D. Hershey, M. Conaway, Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Res. 69, 1469–1476 (2009)PubMed J.K. Slack-Davis, K.A. Atkins, C. Harrer, E.D. Hershey, M. Conaway, Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Res. 69, 1469–1476 (2009)PubMed
212.
go back to reference W.M. Hsu, M.I. Che, Y.F. Liao, H.H. Chang, C.H. Chen, Y.M. Huang, Y.M. Jeng, J. Huang, M.J. Quon, H. Lee, H.C. Huang, M.C. Huang, B4GALNT3 expression predicts a favorable prognosis and suppresses cell migration and invasion via beta(1) integrin signaling in neuroblastoma. Am. J. Pathol. 179, 1394–1404 (2011)PubMedPubMedCentral W.M. Hsu, M.I. Che, Y.F. Liao, H.H. Chang, C.H. Chen, Y.M. Huang, Y.M. Jeng, J. Huang, M.J. Quon, H. Lee, H.C. Huang, M.C. Huang, B4GALNT3 expression predicts a favorable prognosis and suppresses cell migration and invasion via beta(1) integrin signaling in neuroblastoma. Am. J. Pathol. 179, 1394–1404 (2011)PubMedPubMedCentral
213.
go back to reference C.H. Chen, S.W. Wang, C.W. Chen, M.R. Huang, J.S. Hung, H.C. Huang, H.H. Lin, R.J. Chen, M.K. Shyu, M.C. Huang, MUC20 overexpression predicts poor prognosis and enhances EGF-induced malignant phenotypes via activation of the EGFR-STAT3 pathway in endometrial cancer. Gynecol. Oncol. 128, 560–567 (2013)PubMed C.H. Chen, S.W. Wang, C.W. Chen, M.R. Huang, J.S. Hung, H.C. Huang, H.H. Lin, R.J. Chen, M.K. Shyu, M.C. Huang, MUC20 overexpression predicts poor prognosis and enhances EGF-induced malignant phenotypes via activation of the EGFR-STAT3 pathway in endometrial cancer. Gynecol. Oncol. 128, 560–567 (2013)PubMed
214.
go back to reference C.H. Chou, M.J. Huang, C.H. Chen, M.K. Shyu, J. Huang, J.S. Hung, C.S. Huang, M.C. Huang, Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway. Oncotarget 6, 6123–6135 (2015)PubMedPubMedCentral C.H. Chou, M.J. Huang, C.H. Chen, M.K. Shyu, J. Huang, J.S. Hung, C.S. Huang, M.C. Huang, Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway. Oncotarget 6, 6123–6135 (2015)PubMedPubMedCentral
215.
go back to reference M. Yousefi, S. Dehghani, R. Nosrati, H. Zare, M. Evazalipour, J. Mosafer, B.S. Tehrani, A. Pasdar, A. Mokhtarzadeh, M. Ramezani, Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens. Bioelectron. 130, 1–19 (2019)PubMed M. Yousefi, S. Dehghani, R. Nosrati, H. Zare, M. Evazalipour, J. Mosafer, B.S. Tehrani, A. Pasdar, A. Mokhtarzadeh, M. Ramezani, Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens. Bioelectron. 130, 1–19 (2019)PubMed
216.
go back to reference Y.F. He, M.Y. Zhang, X. Wu, X.J. Sun, T. Xu, Q.Z. He, W. Di, High MUC2 expression in ovarian cancer is inversely associated with the M1/M2 ratio of tumor-associated macrophages and patient survival time. PLoS One 8, e79769 (2013)PubMedPubMedCentral Y.F. He, M.Y. Zhang, X. Wu, X.J. Sun, T. Xu, Q.Z. He, W. Di, High MUC2 expression in ovarian cancer is inversely associated with the M1/M2 ratio of tumor-associated macrophages and patient survival time. PLoS One 8, e79769 (2013)PubMedPubMedCentral
217.
go back to reference M.P. Ponnusamy, I. Lakshmanan, M. Jain, S. Das, S. Chakraborty, P. Dey, S.K. Batra, MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 29, 5741–5754 (2010)PubMedPubMedCentral M.P. Ponnusamy, I. Lakshmanan, M. Jain, S. Das, S. Chakraborty, P. Dey, S.K. Batra, MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 29, 5741–5754 (2010)PubMedPubMedCentral
218.
go back to reference C.H. Chen, M.K. Shyu, S.W. Wang, C.H. Chou, M.J. Huang, T.C. Lin, S.T. Chen, H.H. Lin, M.C. Huang, MUC20 promotes aggressive phenotypes of epithelial ovarian cancer cells via activation of the integrin beta1 pathway. Gynecol. Oncol. 140, 131–137 (2016)PubMed C.H. Chen, M.K. Shyu, S.W. Wang, C.H. Chou, M.J. Huang, T.C. Lin, S.T. Chen, H.H. Lin, M.C. Huang, MUC20 promotes aggressive phenotypes of epithelial ovarian cancer cells via activation of the integrin beta1 pathway. Gynecol. Oncol. 140, 131–137 (2016)PubMed
219.
go back to reference T. Motohara, K. Masuda, M. Morotti, Y. Zheng, S. El-Sahhar, K.Y. Chong, N. Wietek, A. Alsaadi, M. Karaminejadranjbar, Z. Hu, M. Artibani, L.S. Gonzalez, H. Katabuchi, H. Saya, A.A. Ahmed, An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 38, 2885–2898 (2019)PubMed T. Motohara, K. Masuda, M. Morotti, Y. Zheng, S. El-Sahhar, K.Y. Chong, N. Wietek, A. Alsaadi, M. Karaminejadranjbar, Z. Hu, M. Artibani, L.S. Gonzalez, H. Katabuchi, H. Saya, A.A. Ahmed, An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 38, 2885–2898 (2019)PubMed
220.
go back to reference R.L. Anderson, T. Balasas, J. Callaghan, R.C. Coombes, J. Evans, J.A. Hall, S. Kinrade, D. Jones, P.S. Jones, R. Jones, J.F. M+*arshall, M.B. Panico, J.A. Shaw, P.S. Steeg, M. Sullivan, W. Tong, A.D. Westwell, J.W.A. Ritchie, U. K. on behalf of the Cancer Research, C. R. C. A. M. W. G. Cancer Therapeutics, A framework for the development of effective anti-metastatic agents. Nature Rev. Clin. Oncol. 16, 185–204 (2019) R.L. Anderson, T. Balasas, J. Callaghan, R.C. Coombes, J. Evans, J.A. Hall, S. Kinrade, D. Jones, P.S. Jones, R. Jones, J.F. M+*arshall, M.B. Panico, J.A. Shaw, P.S. Steeg, M. Sullivan, W. Tong, A.D. Westwell, J.W.A. Ritchie, U. K. on behalf of the Cancer Research, C. R. C. A. M. W. G. Cancer Therapeutics, A framework for the development of effective anti-metastatic agents. Nature Rev. Clin. Oncol. 16, 185–204 (2019)
221.
go back to reference U.H. Weidle, F. Birzele, G. Kollmorgen, R. Rueger, Mechanisms and targets involved in dissemination of ovarian cancer. Cancer Genomics-Proteomics 13, 407–423 (2016)PubMed U.H. Weidle, F. Birzele, G. Kollmorgen, R. Rueger, Mechanisms and targets involved in dissemination of ovarian cancer. Cancer Genomics-Proteomics 13, 407–423 (2016)PubMed
222.
go back to reference M.H. Vetter, J.L. Hays, Use of targeted therapeutics in epithelial ovarian cancer: a review of current literature and future directions. Clin. Ther. 40, 361–371 (2018)PubMed M.H. Vetter, J.L. Hays, Use of targeted therapeutics in epithelial ovarian cancer: a review of current literature and future directions. Clin. Ther. 40, 361–371 (2018)PubMed
223.
go back to reference B.A. Jones, S. Varambally, R.C. Arend, Histone methyltransferase EZH2: a therapeutic target for ovarian Cancer. Mol. Cancer Ther. 17, 591–602 (2018)PubMedPubMedCentral B.A. Jones, S. Varambally, R.C. Arend, Histone methyltransferase EZH2: a therapeutic target for ovarian Cancer. Mol. Cancer Ther. 17, 591–602 (2018)PubMedPubMedCentral
224.
go back to reference A. F. Chambers, I. C. MacDonald, E. E. Schmidt, V. L. Morris, A. C. Groom. Clinical targets for anti-metastasis therapy. Adv. Cancer Res. 79, 91-121. (2000) A. F. Chambers, I. C. MacDonald, E. E. Schmidt, V. L. Morris, A. C. Groom. Clinical targets for anti-metastasis therapy. Adv. Cancer Res. 79, 91-121. (2000)
225.
go back to reference J.O. van Baal, C.J. van Noorden, R. Nieuwland, K.K. Van de Vijver, A. Sturk, W.J. van Driel, G.G. Kenter, C.A. Lok, Development of peritoneal carcinomatosis in epithelial ovarian cancer: a review. J. Histochem. Cytochem. 66, 67–83 (2018)PubMed J.O. van Baal, C.J. van Noorden, R. Nieuwland, K.K. Van de Vijver, A. Sturk, W.J. van Driel, G.G. Kenter, C.A. Lok, Development of peritoneal carcinomatosis in epithelial ovarian cancer: a review. J. Histochem. Cytochem. 66, 67–83 (2018)PubMed
226.
go back to reference G.-T. Park, K.-C. Choi, Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy. Oncotarget 7, 58684 (2016)PubMedPubMedCentral G.-T. Park, K.-C. Choi, Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy. Oncotarget 7, 58684 (2016)PubMedPubMedCentral
227.
go back to reference V. Conteduca, B. Kopf, S.L. Burgio, E. Bianchi, D. Amadori, U. De Giorgi, The emerging role of anti-angiogenic therapy in ovarian cancer. Int. J. Oncol. 44, 1417–1424 (2014)PubMed V. Conteduca, B. Kopf, S.L. Burgio, E. Bianchi, D. Amadori, U. De Giorgi, The emerging role of anti-angiogenic therapy in ovarian cancer. Int. J. Oncol. 44, 1417–1424 (2014)PubMed
228.
go back to reference M. Barbolina, Molecular Mechanisms Regulating Organ-Specific Metastases in Epithelial Ovarian Carcinoma. Cancers 10, 444 (2018)PubMedCentral M. Barbolina, Molecular Mechanisms Regulating Organ-Specific Metastases in Epithelial Ovarian Carcinoma. Cancers 10, 444 (2018)PubMedCentral
229.
go back to reference Á. Áyen, Y. Jimenez Martinez, J. Marchal, H. Boulaiz, Recent Progress in gene therapy for ovarian Cancer. Int. J. Mol. Sci. 19, 1930 (2018)PubMedCentral Á. Áyen, Y. Jimenez Martinez, J. Marchal, H. Boulaiz, Recent Progress in gene therapy for ovarian Cancer. Int. J. Mol. Sci. 19, 1930 (2018)PubMedCentral
230.
go back to reference X. Chen, L. S. Mangala, L. Mooberry, E. Bayraktar, S. K. Dasari, S. Ma, C. Ivan, K. A. Court, C. Rodriguez-Aguayo, R. Bayraktar. Identifying and targeting angiogenesis-related microRNAs in ovarian cancer. Oncogene 38, 6095-61081 (2019) X. Chen, L. S. Mangala, L. Mooberry, E. Bayraktar, S. K. Dasari, S. Ma, C. Ivan, K. A. Court, C. Rodriguez-Aguayo, R. Bayraktar. Identifying and targeting angiogenesis-related microRNAs in ovarian cancer. Oncogene 38, 6095-61081 (2019)
231.
go back to reference U.H. Weidle, F. Birzele, G. Kollmorgen, A. Nopora, Potential microRNA-related targets for therapeutic intervention with ovarian cancer metastasis. Cancer Genomics-Proteomics 15, 1–15 (2018)PubMed U.H. Weidle, F. Birzele, G. Kollmorgen, A. Nopora, Potential microRNA-related targets for therapeutic intervention with ovarian cancer metastasis. Cancer Genomics-Proteomics 15, 1–15 (2018)PubMed
232.
go back to reference B. Wang, X. Li, G. Zhao, H. Yan, P. Dong, H. Watari, M. Sims, W. Li, L.M. Pfeffer, Y. Guo, miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway. J. Exp. Clin. Cancer Res. 37, 235 (2018)PubMedPubMedCentral B. Wang, X. Li, G. Zhao, H. Yan, P. Dong, H. Watari, M. Sims, W. Li, L.M. Pfeffer, Y. Guo, miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway. J. Exp. Clin. Cancer Res. 37, 235 (2018)PubMedPubMedCentral
233.
go back to reference X. Zhou, Y. Hu, L. Dai, Y. Wang, J. Zhou, W. Wang, W. Di, L. Qiu. MicroRNA-7 inhibits tumor metastasis and reverses epithelial-mesenchymal transition through AKT/ERK1/2 inactivation by targeting EGFR in epithelial ovarian cancer. PLoS One 9, (2014) X. Zhou, Y. Hu, L. Dai, Y. Wang, J. Zhou, W. Wang, W. Di, L. Qiu. MicroRNA-7 inhibits tumor metastasis and reverses epithelial-mesenchymal transition through AKT/ERK1/2 inactivation by targeting EGFR in epithelial ovarian cancer. PLoS One 9, (2014)
234.
go back to reference M. Lee, E.J. Kim, Y. Cho, S. Kim, H.H. Chung, N.H. Park, Y.-S. Song, Predictive value of circulating tumor cells (CTCs) captured by microfluidic device in patients with epithelial ovarian cancer. Gynecol. Oncol. 145, 361–365 (2017)PubMed M. Lee, E.J. Kim, Y. Cho, S. Kim, H.H. Chung, N.H. Park, Y.-S. Song, Predictive value of circulating tumor cells (CTCs) captured by microfluidic device in patients with epithelial ovarian cancer. Gynecol. Oncol. 145, 361–365 (2017)PubMed
235.
go back to reference T. Fan, Q. Zhao, J.J. Chen, W.T. Chen, M.L. Pearl, Clinical significance of circulating tumor cells detected by an invasion assay in peripheral blood of patients with ovarian cancer. Gynecol. Oncol. 112, 185–191 (2009)PubMed T. Fan, Q. Zhao, J.J. Chen, W.T. Chen, M.L. Pearl, Clinical significance of circulating tumor cells detected by an invasion assay in peripheral blood of patients with ovarian cancer. Gynecol. Oncol. 112, 185–191 (2009)PubMed
236.
go back to reference A. Poveda, S.B. Kaye, R. McCormack, S. Wang, T. Parekh, D. Ricci, C.A. Lebedinsky, J.C. Tercero, P. Zintl, B.J. Monk, Circulating tumor cells predict progression free survival and overall survival in patients with relapsed/recurrent advanced ovarian cancer. Gynecol. Oncol. 122, 567–572 (2011)PubMed A. Poveda, S.B. Kaye, R. McCormack, S. Wang, T. Parekh, D. Ricci, C.A. Lebedinsky, J.C. Tercero, P. Zintl, B.J. Monk, Circulating tumor cells predict progression free survival and overall survival in patients with relapsed/recurrent advanced ovarian cancer. Gynecol. Oncol. 122, 567–572 (2011)PubMed
237.
go back to reference J.D. Kuhlmann, P. Wimberger, A. Bankfalvi, T. Keller, S. Schöler, B. Aktas, P. Buderath, S. Hauch, F. Otterbach, R. Kimmig, S. Kasimir-Bauer, <em>ERCC1</em>-Positive circulating tumor cells in the blood of ovarian cancer patients as a predictive biomarker for platinum resistance. Clin. Chem. 60, 1282–1289 (2014)PubMed J.D. Kuhlmann, P. Wimberger, A. Bankfalvi, T. Keller, S. Schöler, B. Aktas, P. Buderath, S. Hauch, F. Otterbach, R. Kimmig, S. Kasimir-Bauer, <em>ERCC1</em>-Positive circulating tumor cells in the blood of ovarian cancer patients as a predictive biomarker for platinum resistance. Clin. Chem. 60, 1282–1289 (2014)PubMed
238.
go back to reference M.L. Pearl, Q. Zhao, J. Yang, H. Dong, S. Tulley, Q. Zhang, M. Golightly, S. Zucker, W.T. Chen, Prognostic analysis of invasive circulating tumor cells (iCTCs) in epithelial ovarian cancer. Gynecol. Oncol. 134, 581–590 (2014)PubMedPubMedCentral M.L. Pearl, Q. Zhao, J. Yang, H. Dong, S. Tulley, Q. Zhang, M. Golightly, S. Zucker, W.T. Chen, Prognostic analysis of invasive circulating tumor cells (iCTCs) in epithelial ovarian cancer. Gynecol. Oncol. 134, 581–590 (2014)PubMedPubMedCentral
239.
go back to reference G. Gebauer, M.J. Banys-Paluchowski, H. Neubauer, N. Krawczyk, A. Kaczerowski, P. Paluchowski, F. Meier-Stiegen, A. Abdel-Kawi, T.N. Fehm, Clinical relevance of circulating tumor cells in ovarian, fallopian tube and peritoneal cancer. J. Clin. Oncol. 35, e17080–e1708e (2017) G. Gebauer, M.J. Banys-Paluchowski, H. Neubauer, N. Krawczyk, A. Kaczerowski, P. Paluchowski, F. Meier-Stiegen, A. Abdel-Kawi, T.N. Fehm, Clinical relevance of circulating tumor cells in ovarian, fallopian tube and peritoneal cancer. J. Clin. Oncol. 35, e17080–e1708e (2017)
240.
go back to reference X. Zhang, H. Li, X. Yu, S. Li, Z. Lei, C. Li, Q. Zhang, Q. Han, Y. Li, K. Zhang, Y. Wang, C. Liu, Y. Mao, X. Wang, D.M. Irwin, H. Guo, G. Niu, H. Tan, Analysis of circulating tumor cells in ovarian cancer and their clinical value as a biomarker. Cell. Physiol. Biochem. 48, 1983–1994 (2018)PubMed X. Zhang, H. Li, X. Yu, S. Li, Z. Lei, C. Li, Q. Zhang, Q. Han, Y. Li, K. Zhang, Y. Wang, C. Liu, Y. Mao, X. Wang, D.M. Irwin, H. Guo, G. Niu, H. Tan, Analysis of circulating tumor cells in ovarian cancer and their clinical value as a biomarker. Cell. Physiol. Biochem. 48, 1983–1994 (2018)PubMed
241.
go back to reference E. Lou, R.I. Vogel, D. Teoh, S. Hoostal, A. Grad, M. Gerber, M. Monu, T. Łukaszewski, J. Deshpande, M.A. Linden, M.A. Geller, Assessment of circulating tumor cells as a predictive biomarker of histology in women with suspected ovarian cancer. Lab. Med. 49, 134–139 (2018)PubMedPubMedCentral E. Lou, R.I. Vogel, D. Teoh, S. Hoostal, A. Grad, M. Gerber, M. Monu, T. Łukaszewski, J. Deshpande, M.A. Linden, M.A. Geller, Assessment of circulating tumor cells as a predictive biomarker of histology in women with suspected ovarian cancer. Lab. Med. 49, 134–139 (2018)PubMedPubMedCentral
242.
go back to reference L. Zuo, W. Niu, A. Li, Isolation of circulating tumor cells of ovarian cancer by transferrin immunolipid magnetic spheres and its preliminary clinical application. Nano LIFE 09, 1940001 (2019) L. Zuo, W. Niu, A. Li, Isolation of circulating tumor cells of ovarian cancer by transferrin immunolipid magnetic spheres and its preliminary clinical application. Nano LIFE 09, 1940001 (2019)
Metadata
Title
Current insights into the metastasis of epithelial ovarian cancer - hopes and hurdles
Authors
Meysam Yousefi
Sadegh Dehghani
Rahim Nosrati
Mahmoud Ghanei
Arash Salmaninejad
Sara Rajaie
Malihe Hasanzadeh
Alireza Pasdar
Publication date
01-08-2020
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2020
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-020-00513-9

Other articles of this Issue 4/2020

Cellular Oncology 4/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine