Skip to main content
Top
Published in: Cellular Oncology 1/2018

01-02-2018 | Original Paper

Diterpenoid natural compound C4 (Crassin) exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species

Authors: Cathy E. Richards, Sri H. Vellanki, Yvonne E. Smith, Ann M. Hopkins

Published in: Cellular Oncology | Issue 1/2018

Login to get access

Abstract

Purpose

Triple-negative breast cancers (TNBC) lack expression of three common cell surface receptors, i.e., estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2). Accordingly, TNBCs are associated with fewer treatment options and a relatively poor prognosis. Having screened a National Cancer Institute natural compound library, the purpose of this study was to investigate the bioactivity of compound C4 (Crassin) in TNBC cells.

Methods

Cell viability assays were performed in two TNBC cell lines, MDA-MB-231 and 4T1, following C4 treatment in the presence or absence of the antioxidant N-acetyl-L-cysteine (NAC). Phosphorylation of Akt and ERK was assessed by Western blotting. Apoptosis, necrosis, autophagy, necroptosis, ferroptosis and cytostasis assays were performed to explain viability deficits resulting from C4 exposure.

Results

We found that the viability of the TNBC cells tested decreased in a concentration- and time-dependent fashion following C4 treatment. This decrease coincided with an unexpected increase in the expression of the cell survival effectors pAkt and pERK. In addition, we found that both the decreased cell viability and the increased pAkt/pERK levels could be rescued by the antioxidant NAC, suggesting a central role for reactive oxygen species (ROS) in the mechanism of action of C4. Necrosis, apoptosis, necroptosis and ferroptosis could be ruled out as cell death mechanisms. Instead, we found that C4 induced cytostasis downstream of ROS activation. Finally, we observed a synergistic effect between C4 and the chemotherapeutic drug doxorubicin in TNBC cells.

Conclusions

From our in vitro data we conclude that C4 exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species. Its potential value in combination with cytotoxic therapies merits deeper investigation in pre-clinical models.
Appendix
Available only for authorised users
Literature
2.
go back to reference W.D. Foulkes, I.E. Smith, J.S. Reis-Filho, Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010)CrossRefPubMed W.D. Foulkes, I.E. Smith, J.S. Reis-Filho, Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010)CrossRefPubMed
5.
go back to reference M.C. Wani, H.L. Taylor, M.E. Wall, P. Coggon, A.T. McPhail, Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971)CrossRefPubMed M.C. Wani, H.L. Taylor, M.E. Wall, P. Coggon, A.T. McPhail, Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971)CrossRefPubMed
6.
7.
go back to reference C. Khanna, M. Rosenberg, D.M. Vail, A review of paclitaxel and novel formulations including those suitable for use in dogs. J. Vet. Intern. Med. 29, 1006–1012 (2015)CrossRefPubMedPubMedCentral C. Khanna, M. Rosenberg, D.M. Vail, A review of paclitaxel and novel formulations including those suitable for use in dogs. J. Vet. Intern. Med. 29, 1006–1012 (2015)CrossRefPubMedPubMedCentral
8.
go back to reference Q.Q. Yuan, S. Tang, W.B. Song, W.Q. Wang, M. Huang, L.J. Xuan, A.-H. Crassins, Diterpenoids from the roots of croton crassifolius. J. Nat. Prod. 80, 254–260 (2017)CrossRefPubMed Q.Q. Yuan, S. Tang, W.B. Song, W.Q. Wang, M. Huang, L.J. Xuan, A.-H. Crassins, Diterpenoids from the roots of croton crassifolius. J. Nat. Prod. 80, 254–260 (2017)CrossRefPubMed
9.
go back to reference S. Donatello, L. Hudson, D.C. Cottell, A. Blanco, I. Aurrekoetxea, M.J. Shelly, P.A. Dervan, M.R. Kell, M. Stokes, A.D. Hill, A.M. Hopkins, An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models. J. Exp. Clin. Cancer Res. 30, 45 (2011)CrossRefPubMedPubMedCentral S. Donatello, L. Hudson, D.C. Cottell, A. Blanco, I. Aurrekoetxea, M.J. Shelly, P.A. Dervan, M.R. Kell, M. Stokes, A.D. Hill, A.M. Hopkins, An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models. J. Exp. Clin. Cancer Res. 30, 45 (2011)CrossRefPubMedPubMedCentral
10.
go back to reference S. Nobili, D. Lippi, E. Witort, M. Donnini, L. Bausi, E. Mini, S. Capaccioli, Natural compounds for cancer treatment and prevention. Pharmacol. Res. 59, 365–378 (2009)CrossRefPubMed S. Nobili, D. Lippi, E. Witort, M. Donnini, L. Bausi, E. Mini, S. Capaccioli, Natural compounds for cancer treatment and prevention. Pharmacol. Res. 59, 365–378 (2009)CrossRefPubMed
11.
go back to reference N. Hasima, L.I. Aun, M.N. Azmi, A.N. Aziz, E. Thirthagiri, H. Ibrahim, K. Awang, 1′S-1′-acetoxyeugenol acetate: a new chemotherapeutic natural compound against MCF-7 human breast cancer cells. Phytomedicine 17, 935–939 (2010)CrossRefPubMed N. Hasima, L.I. Aun, M.N. Azmi, A.N. Aziz, E. Thirthagiri, H. Ibrahim, K. Awang, 1′S-1′-acetoxyeugenol acetate: a new chemotherapeutic natural compound against MCF-7 human breast cancer cells. Phytomedicine 17, 935–939 (2010)CrossRefPubMed
12.
go back to reference A.J. Robles, L. Du, R.H. Cichewicz, S.L. Mooberry, D.N.A. Maximiscin induces damage, activates DNA damage response pathways, and has selective cytotoxic activity against a subtype of triple-negative breast cancer. J. Nat. Prod. 79, 1822–1827 (2016) A.J. Robles, L. Du, R.H. Cichewicz, S.L. Mooberry, D.N.A. Maximiscin induces damage, activates DNA damage response pathways, and has selective cytotoxic activity against a subtype of triple-negative breast cancer. J. Nat. Prod. 79, 1822–1827 (2016)
13.
go back to reference E.J. Kim, S.Y. Park, J.Y. Lee, J.H. Park, Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 10, 96 (2010)CrossRefPubMedPubMedCentral E.J. Kim, S.Y. Park, J.Y. Lee, J.H. Park, Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 10, 96 (2010)CrossRefPubMedPubMedCentral
14.
go back to reference H. Yamaguchi, H.G. Wang, The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20, 7779–7786 (2001)CrossRefPubMed H. Yamaguchi, H.G. Wang, The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20, 7779–7786 (2001)CrossRefPubMed
15.
go back to reference G. Song, G. Ouyang, S. Bao, The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59–71 (2005)CrossRefPubMed G. Song, G. Ouyang, S. Bao, The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59–71 (2005)CrossRefPubMed
16.
go back to reference S.R. Datta, A. Brunet, M.E. Greenberg, Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999)CrossRefPubMed S.R. Datta, A. Brunet, M.E. Greenberg, Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999)CrossRefPubMed
17.
go back to reference A. Brunet, A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, M.E. Greenberg, Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999)CrossRefPubMed A. Brunet, A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, M.E. Greenberg, Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999)CrossRefPubMed
18.
go back to reference I. Dolado, A.R. Nebreda, AKT and oxidative stress team up to kill cancer cells. Cancer Cell 14, 427–429 (2008)CrossRefPubMed I. Dolado, A.R. Nebreda, AKT and oxidative stress team up to kill cancer cells. Cancer Cell 14, 427–429 (2008)CrossRefPubMed
19.
go back to reference Y.Q. Hou, Y. Yao, Y.L. Bao, Z.B. Song, C. Yang, X.L. Gao, W.J. Zhang, L.G. Sun, C.L. Yu, Y.X. Huang, G.N. Wang, Y.X. Li, Juglanthraquinone C induces intracellular ROS increase and apoptosis by activating the Akt/foxo signal pathway in HCC cells. Oxidative Med. Cell. Longev. 2016, 4941623 (2016) Y.Q. Hou, Y. Yao, Y.L. Bao, Z.B. Song, C. Yang, X.L. Gao, W.J. Zhang, L.G. Sun, C.L. Yu, Y.X. Huang, G.N. Wang, Y.X. Li, Juglanthraquinone C induces intracellular ROS increase and apoptosis by activating the Akt/foxo signal pathway in HCC cells. Oxidative Med. Cell. Longev. 2016, 4941623 (2016)
20.
go back to reference Q. Liu, J. Qiu, M. Liang, J. Golinski, K. van Leyen, J.E. Jung, Z. You, E.H. Lo, A. Degterev, M.J. Whalen, Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis. 5, e1084 (2014)CrossRefPubMedPubMedCentral Q. Liu, J. Qiu, M. Liang, J. Golinski, K. van Leyen, J.E. Jung, Z. You, E.H. Lo, A. Degterev, M.J. Whalen, Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis. 5, e1084 (2014)CrossRefPubMedPubMedCentral
21.
go back to reference C. Peyssonnaux, A. Eychene, The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell. 93, 53–62 (2001)CrossRefPubMed C. Peyssonnaux, A. Eychene, The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell. 93, 53–62 (2001)CrossRefPubMed
22.
go back to reference D.G. Kirsch, A. Doseff, B.N. Chau, D.S. Lim, N.C. de Souza-Pinto, R. Hansford, M.B. Kastan, Y.A. Lazebnik, J.M. Hardwick, Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J. Biol. Chem. 274, 21155–21161 (1999)CrossRefPubMed D.G. Kirsch, A. Doseff, B.N. Chau, D.S. Lim, N.C. de Souza-Pinto, R. Hansford, M.B. Kastan, Y.A. Lazebnik, J.M. Hardwick, Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J. Biol. Chem. 274, 21155–21161 (1999)CrossRefPubMed
23.
go back to reference A.G. Porter, R.U. Janicke, Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6, 99–104 (1999)CrossRefPubMed A.G. Porter, R.U. Janicke, Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6, 99–104 (1999)CrossRefPubMed
24.
go back to reference S.J. Dixon, B.R. Stockwell, The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9–17 (2014)CrossRefPubMed S.J. Dixon, B.R. Stockwell, The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9–17 (2014)CrossRefPubMed
25.
27.
go back to reference S. Fulda, Regulation of necroptosis signaling and cell death by reactive oxygen species. Biol. Chem. 397, 657–660 (2016)PubMed S. Fulda, Regulation of necroptosis signaling and cell death by reactive oxygen species. Biol. Chem. 397, 657–660 (2016)PubMed
28.
go back to reference H.A. Wahba, H.A. El-Hadaad, Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med. 12, 106–116 (2015) H.A. Wahba, H.A. El-Hadaad, Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med. 12, 106–116 (2015)
29.
go back to reference G.C. Guo, J.X. Wang, M.L. Han, L.P. Zhang, L. Li, microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Cell. Oncol. 40, 157–166 (2017) G.C. Guo, J.X. Wang, M.L. Han, L.P. Zhang, L. Li, microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Cell. Oncol. 40, 157–166 (2017)
30.
go back to reference E. Robles-Escajeda, U. Das, N.M. Ortega, K. Parra, G. Francia, J.R. Dimmock, A. Varela-Ramirez, R.J. Aguilera, A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell. Oncol. 39, 265–277 (2016) E. Robles-Escajeda, U. Das, N.M. Ortega, K. Parra, G. Francia, J.R. Dimmock, A. Varela-Ramirez, R.J. Aguilera, A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell. Oncol. 39, 265–277 (2016)
31.
go back to reference I. Fkih, M.P. M’hamed, F. Ponelle, F. Penault-Llorca, A. Kenani, Y.-J. Bignon, Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell. Oncol. 38, 433–442 (2015) I. Fkih, M.P. M’hamed, F. Ponelle, F. Penault-Llorca, A. Kenani, Y.-J. Bignon, Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell. Oncol. 38, 433–442 (2015)
32.
go back to reference T.F. Franke, C.P. Hornik, L. Segev, G.A. Shostak, C. Sugimoto, PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983–8998 (2003)CrossRefPubMed T.F. Franke, C.P. Hornik, L. Segev, G.A. Shostak, C. Sugimoto, PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983–8998 (2003)CrossRefPubMed
33.
go back to reference H. Zhou, X.M. Li, J. Meinkoth, R.N. Pittman, Akt regulates cell survival and apoptosis at a postmitochondrial level. J. Cell Biol. 151, 483–494 (2000)CrossRefPubMedPubMedCentral H. Zhou, X.M. Li, J. Meinkoth, R.N. Pittman, Akt regulates cell survival and apoptosis at a postmitochondrial level. J. Cell Biol. 151, 483–494 (2000)CrossRefPubMedPubMedCentral
34.
go back to reference P.D. Ray, B.W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012)CrossRefPubMedPubMedCentral P.D. Ray, B.W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012)CrossRefPubMedPubMedCentral
35.
go back to reference Y. Son, Y.K. Cheong, N.H. Kim, H.T. Chung, D.G. Kang, H.O. Pae, Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal. Transduct. 2011, 792639 (2011) Y. Son, Y.K. Cheong, N.H. Kim, H.T. Chung, D.G. Kang, H.O. Pae, Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal. Transduct. 2011, 792639 (2011)
36.
go back to reference S. Cagnol, J.C. Chambard, ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J. 277, 2–21 (2010)CrossRefPubMed S. Cagnol, J.C. Chambard, ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J. 277, 2–21 (2010)CrossRefPubMed
37.
go back to reference R.S. Keshari, A. Verma, M.K. Barthwal, M. Dikshit, Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J. Cell. Biochem. 114, 532–540 (2013)CrossRefPubMed R.S. Keshari, A. Verma, M.K. Barthwal, M. Dikshit, Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J. Cell. Biochem. 114, 532–540 (2013)CrossRefPubMed
38.
go back to reference V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev. 4, 118–126 (2010)CrossRefPubMedPubMedCentral V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev. 4, 118–126 (2010)CrossRefPubMedPubMedCentral
40.
go back to reference A. Valencia, J. Moran, Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic. Biol. Med. 36, 1112–1125 (2004)CrossRefPubMed A. Valencia, J. Moran, Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic. Biol. Med. 36, 1112–1125 (2004)CrossRefPubMed
41.
go back to reference F. Ciardiello, R. Caputo, R. Bianco, V. Damiano, G. Pomatico, S. De Placido, A.R. Bianco, G. Tortora, Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res. 6, 2053–2063 (2000)PubMed F. Ciardiello, R. Caputo, R. Bianco, V. Damiano, G. Pomatico, S. De Placido, A.R. Bianco, G. Tortora, Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res. 6, 2053–2063 (2000)PubMed
42.
go back to reference M. Villasana, G. Ochoa, S. Aguilar, Modeling and optimization of combined cytostatic and cytotoxic cancer chemotherapy. Artif. Intell. Med. 50, 163–173 (2010)CrossRefPubMed M. Villasana, G. Ochoa, S. Aguilar, Modeling and optimization of combined cytostatic and cytotoxic cancer chemotherapy. Artif. Intell. Med. 50, 163–173 (2010)CrossRefPubMed
43.
go back to reference S.S. Bacus, A.V. Gudkov, M. Lowe, L. Lyass, Y. Yung, A.P. Komarov, K. Keyomarsi, Y. Yarden, R. Seger, Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20, 147–155 (2001)CrossRefPubMed S.S. Bacus, A.V. Gudkov, M. Lowe, L. Lyass, Y. Yung, A.P. Komarov, K. Keyomarsi, Y. Yarden, R. Seger, Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20, 147–155 (2001)CrossRefPubMed
44.
go back to reference Y.H. Choi, Y.H. Yoo, Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncol. Rep. 28, 2163–2169 (2012)CrossRefPubMed Y.H. Choi, Y.H. Yoo, Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncol. Rep. 28, 2163–2169 (2012)CrossRefPubMed
Metadata
Title
Diterpenoid natural compound C4 (Crassin) exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species
Authors
Cathy E. Richards
Sri H. Vellanki
Yvonne E. Smith
Ann M. Hopkins
Publication date
01-02-2018
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 1/2018
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-017-0357-1

Other articles of this Issue 1/2018

Cellular Oncology 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine