Skip to main content
Top
Published in: Cellular Oncology 1/2018

01-02-2018 | Report

A new ETV6-NTRK3 cell line model reveals MALAT1 as a novel therapeutic target - a short report

Authors: Suning Chen, Stefan Nagel, Bjoern Schneider, Haiping Dai, Robert Geffers, Maren Kaufmann, Corinna Meyer, Claudia Pommerenke, Kenneth S. Thress, Jiao Li, Hilmar Quentmeier, Hans G. Drexler, Roderick A. F. MacLeod

Published in: Cellular Oncology | Issue 1/2018

Login to get access

Abstract

Background

Previously, the chromosomal translocation t(12;15)(p13;q25) has been found to recurrently occur in both solid tumors and leukemias. This translocation leads to ETV6-NTRK3 (EN) gene fusions resulting in ectopic expression of the NTRK3 neurotropic tyrosine receptor kinase moiety as well as oligomerization through the donated ETV6-sterile alpha motif domain. As yet, no in vitro cell line model carrying this anomaly is available. Here we genetically characterized the acute promyelocytic leukemia (APL) cell line AP-1060 and, by doing so, revealed the presence of a t(12;15)(p13;q25). Subsequently, we evaluated its suitability as a model for this important clinical entity.

Methods

Spectral karyotyping, fluorescence in situ hybridization (FISH), and genomic and transcriptomic microarray-based profiling were used to screen for the presence of EN fusions. qRT-PCR was used for quantitative expression analyses. Responses to AZ-23 (NTRK) and wortmannin (PI3K) inhibitors, as well as to arsenic trioxide (ATO), were assessed using colorimetric assays. An AZ-23 microarray screen was used to define the EN targetome, which was parsed bioinformatically. MAPK1 and MALAT1 activation were assayed using Western blotting and RNA-FISH, respectively, whereas an AML patient cohort was used to assess the clinical occurrence of MALAT1 activation.

Results

An EN fusion was detected in AP1060 cells which, accordingly, turned out to be hypersensitive to AZ-23. We also found that AZ-23 can potentiate the effect of ATO and inhibit the phosphorylation of its canonical target MAPK1. The AZ-23 microarray screen highlighted a novel EN target, MALAT1, which also proved sensitive to wortmannin. Finally, we found that MALAT1 was massively up-regulated in a subset of AML patients.

Conclusions

From our data we conclude that AP-1060 may serve as a first publicly available preclinical model for EN. In addition, we conclude that these EN-positive cells are sensitive to the NTRK inhibitor AZ-23 and that this inhibitor may potentiate the therapeutic efficacy of ATO. Our data also highlight a novel AML EN target, MALAT1, which was so far only conspicuous in solid tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference S.R. Knezevich, D.E. McFadden, W. Tao, J.F. Lim, P.H. Sorensen, A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet. 18, 184–187 (1998)CrossRefPubMed S.R. Knezevich, D.E. McFadden, W. Tao, J.F. Lim, P.H. Sorensen, A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet. 18, 184–187 (1998)CrossRefPubMed
2.
go back to reference S.R. Knezevich, M.J. Garnett, T.J. Pysher, J.B. Beckwith, P.E. Grundy, P.H. Sorensen, ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 58, 5046–5048 (1998)PubMed S.R. Knezevich, M.J. Garnett, T.J. Pysher, J.B. Beckwith, P.E. Grundy, P.H. Sorensen, ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 58, 5046–5048 (1998)PubMed
3.
go back to reference C. Tognon, M. Garnett, E. Kenward, R. Kay, K. Morrison, P.H. Sorensen, The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res. 61, 8909–8916 (2001)PubMed C. Tognon, M. Garnett, E. Kenward, R. Kay, K. Morrison, P.H. Sorensen, The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res. 61, 8909–8916 (2001)PubMed
4.
go back to reference C.L. Lannon, P.H. Sorensen, ETV6-NTRK3 a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin. Cancer Biol. 15, 215–223 (2005)CrossRefPubMed C.L. Lannon, P.H. Sorensen, ETV6-NTRK3 a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin. Cancer Biol. 15, 215–223 (2005)CrossRefPubMed
5.
6.
go back to reference M. Eguchi, M. Eguchi-Ishimae, A. Tojo, K. Morishita, K. Suzuki, Y. Sato, S. Kudoh, K. Tanaka, M. Setoyama, F. Nagamura, S. Asano, N. Kamada, Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93, 1355–1363 (1999)PubMed M. Eguchi, M. Eguchi-Ishimae, A. Tojo, K. Morishita, K. Suzuki, Y. Sato, S. Kudoh, K. Tanaka, M. Setoyama, F. Nagamura, S. Asano, N. Kamada, Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93, 1355–1363 (1999)PubMed
7.
go back to reference J.M. Kralik, W. Kranewitter, H. Boesmueller, R. Marschon, G. Tschurtschenthaler, H. Rumpold, K. Wiesinger, M. Erdel, A.L. Petzer, G. Webersinke, Characterization of a newly identified ETV6-NTRK3 fusion transcript in acute myeloid leukemia. Diagn. Pathol. 6, 19 (2011)CrossRefPubMedPubMedCentral J.M. Kralik, W. Kranewitter, H. Boesmueller, R. Marschon, G. Tschurtschenthaler, H. Rumpold, K. Wiesinger, M. Erdel, A.L. Petzer, G. Webersinke, Characterization of a newly identified ETV6-NTRK3 fusion transcript in acute myeloid leukemia. Diagn. Pathol. 6, 19 (2011)CrossRefPubMedPubMedCentral
8.
go back to reference C.A. Kim, M.L. Phillips, W. Kim, M. Gingery, H.H. Tran, M.A. Robinson, S. Faham, J.U. Bowie, Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J. 20, 4173–4182 (2001)CrossRefPubMedPubMedCentral C.A. Kim, M.L. Phillips, W. Kim, M. Gingery, H.H. Tran, M.A. Robinson, S. Faham, J.U. Bowie, Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J. 20, 4173–4182 (2001)CrossRefPubMedPubMedCentral
9.
go back to reference D.H. Wai, S.R. Knezevich, T. Lucas, B. Jansen, R.J. Kay, P.H. Sorensen, The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 19, 906–915 (2000)CrossRefPubMed D.H. Wai, S.R. Knezevich, T. Lucas, B. Jansen, R.J. Kay, P.H. Sorensen, The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 19, 906–915 (2000)CrossRefPubMed
10.
go back to reference D.R. Kaplan, F.D. Miller, Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000)CrossRefPubMed D.R. Kaplan, F.D. Miller, Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000)CrossRefPubMed
11.
go back to reference M.S. Kim, G.M. Kim, Y.J. Choi, H.J. Kim, Y.J. Kim, W. Jin, TrkC promotes survival and growth of leukemia cells through Akt-mTOR-dependent up-regulation of PLK-1 and Twist-1. Mol. Cell 36, 177–184 (2013)CrossRef M.S. Kim, G.M. Kim, Y.J. Choi, H.J. Kim, Y.J. Kim, W. Jin, TrkC promotes survival and growth of leukemia cells through Akt-mTOR-dependent up-regulation of PLK-1 and Twist-1. Mol. Cell 36, 177–184 (2013)CrossRef
12.
go back to reference M. Eguchi, M. Eguchi-Ishimae, A. Green, T. Enver, M. Greaves, Directing oncogenic fusion genes into stem cells via an SCL enhancer. Proc. Natl. Acad. Sci. U. S. A. 102, 1133–1138 (2005)CrossRefPubMedPubMedCentral M. Eguchi, M. Eguchi-Ishimae, A. Green, T. Enver, M. Greaves, Directing oncogenic fusion genes into stem cells via an SCL enhancer. Proc. Natl. Acad. Sci. U. S. A. 102, 1133–1138 (2005)CrossRefPubMedPubMedCentral
13.
go back to reference T.L. Gu, L. Popova, C. Reeves, J. Nardone, J. Macneill, J. Rush, S.D. Nimer, R.D. Polakiewicz, Phosphoproteomic analysis identifies the M0-91 cell line as a cellular model for the study of TEL-TRKC fusion-associated leukemia. Leukemia 21, 563–566 (2007)CrossRefPubMed T.L. Gu, L. Popova, C. Reeves, J. Nardone, J. Macneill, J. Rush, S.D. Nimer, R.D. Polakiewicz, Phosphoproteomic analysis identifies the M0-91 cell line as a cellular model for the study of TEL-TRKC fusion-associated leukemia. Leukemia 21, 563–566 (2007)CrossRefPubMed
14.
go back to reference K. Thress, T. Macintyre, H. Wang, D. Whitston, Z.Y. Liu, E. Hoffman, T. Wang, J.L. Brown, K. Webster, C. Omer, P.E. Zage, L. Zeng, P.A. Zweidler-McKay, Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway. Mol. Cancer Ther. 8, 1818–1827 (2009)CrossRefPubMed K. Thress, T. Macintyre, H. Wang, D. Whitston, Z.Y. Liu, E. Hoffman, T. Wang, J.L. Brown, K. Webster, C. Omer, P.E. Zage, L. Zeng, P.A. Zweidler-McKay, Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway. Mol. Cancer Ther. 8, 1818–1827 (2009)CrossRefPubMed
15.
go back to reference M. Vitiello, A. Tuccoli, L. Poliseno, Long non-coding RNAs in cancer: implications for personalized therapy. Cell. Oncol. 38, 17–28 (2015)CrossRef M. Vitiello, A. Tuccoli, L. Poliseno, Long non-coding RNAs in cancer: implications for personalized therapy. Cell. Oncol. 38, 17–28 (2015)CrossRef
16.
go back to reference V. Taucher, H. Mangge, J. Haybaec, Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell. Oncol. 39, 295–318 (2016)CrossRef V. Taucher, H. Mangge, J. Haybaec, Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell. Oncol. 39, 295–318 (2016)CrossRef
17.
go back to reference Y. Sun, S.H. Kim, D.C. Zhou, W. Ding, E. Paietta, F. Guidez, A. Zelent, K.H. Ramesh, L. Cannizzaro, R.P. Warrell, R.E. Gallagher, Acute promyelocytic leukemia cell line AP-1060 established as a cytokine-dependent culture from a patient clinically resistant to all-trans retinoic acid and arsenic trioxide. Leukemia 18, 1258–1269 (2004)CrossRefPubMed Y. Sun, S.H. Kim, D.C. Zhou, W. Ding, E. Paietta, F. Guidez, A. Zelent, K.H. Ramesh, L. Cannizzaro, R.P. Warrell, R.E. Gallagher, Acute promyelocytic leukemia cell line AP-1060 established as a cytokine-dependent culture from a patient clinically resistant to all-trans retinoic acid and arsenic trioxide. Leukemia 18, 1258–1269 (2004)CrossRefPubMed
18.
go back to reference R.A. MacLeod, M. Kaufmann, H.G. Drexler, Cytogenetic harvesting of commonly used tumor cell lines. Nature Prot. 2, 372–382 (2007)CrossRef R.A. MacLeod, M. Kaufmann, H.G. Drexler, Cytogenetic harvesting of commonly used tumor cell lines. Nature Prot. 2, 372–382 (2007)CrossRef
20.
go back to reference H. Dai, S. Ehrentraut, S. Nagel, S. Eberth, C. Pommerenke, W.G. Dirks, R. Geffers, S. Kalavalapalli, M. Kaufmann, C. Meyer, S. Faehnrich, S. Chen, H.G. Drexler, R.A. MacLeod, Genomic landscape of primary mediastinal B-cell lymphoma cell lines. PLoS One 10, e0139663 (2015)CrossRefPubMedPubMedCentral H. Dai, S. Ehrentraut, S. Nagel, S. Eberth, C. Pommerenke, W.G. Dirks, R. Geffers, S. Kalavalapalli, M. Kaufmann, C. Meyer, S. Faehnrich, S. Chen, H.G. Drexler, R.A. MacLeod, Genomic landscape of primary mediastinal B-cell lymphoma cell lines. PLoS One 10, e0139663 (2015)CrossRefPubMedPubMedCentral
21.
go back to reference S. Nagel, C. Pommerenke, C. Meyer, M. Kaufmann, H.G. Drexler, R.A. MacLeod, Deregulation of polycomb repressor complex 1 modifier AUTS2 in T-cell leukemia. Oncotarget 7, 45398–45413 (2016)CrossRefPubMedPubMedCentral S. Nagel, C. Pommerenke, C. Meyer, M. Kaufmann, H.G. Drexler, R.A. MacLeod, Deregulation of polycomb repressor complex 1 modifier AUTS2 in T-cell leukemia. Oncotarget 7, 45398–45413 (2016)CrossRefPubMedPubMedCentral
22.
go back to reference M.A. Frohman, M.K. Dush, G. Martin, Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. U. S. A. 85, 8998–9002 (1988)CrossRefPubMedPubMedCentral M.A. Frohman, M.K. Dush, G. Martin, Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. U. S. A. 85, 8998–9002 (1988)CrossRefPubMedPubMedCentral
23.
go back to reference J.J. van Dongen, E.A. Macintyre, J.A. Gabert, E. Delabesse, V. Rossi, G. Saglio, E. Gottardi, A. Rambaldi, G. Dotti, F. Griesinger, A. Parreira, P. Gameiro, M.G. Diáz, M. Malec, A.W. Langerak, J.F. San Miguel, A. Biondi, Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia 13, 1901–1928 (1999)CrossRefPubMed J.J. van Dongen, E.A. Macintyre, J.A. Gabert, E. Delabesse, V. Rossi, G. Saglio, E. Gottardi, A. Rambaldi, G. Dotti, F. Griesinger, A. Parreira, P. Gameiro, M.G. Diáz, M. Malec, A.W. Langerak, J.F. San Miguel, A. Biondi, Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia 13, 1901–1928 (1999)CrossRefPubMed
24.
go back to reference R.A. MacLeod, Z.B. Hu, M. Kaufmann, H.G. Drexler, Cohabiting t(12;22) and inv(3) primary rearrangements in an acute myelomonocytic leukemia (FAB M4) cell line. Genes Chromosom. Cancer 16, 144–148 (1996)CrossRefPubMed R.A. MacLeod, Z.B. Hu, M. Kaufmann, H.G. Drexler, Cohabiting t(12;22) and inv(3) primary rearrangements in an acute myelomonocytic leukemia (FAB M4) cell line. Genes Chromosom. Cancer 16, 144–148 (1996)CrossRefPubMed
25.
go back to reference J. Redondo-Munoz, E. Escobar-Diaz, M. Hernandez Del Cerro, A. Pandiella, M.J. Terol, J.A. Garcia-Marco, A. Garcia-Pardo, Induction of B-chronic lymphocytic leukemia cell apoptosis by arsenic trioxide involves suppression of the phosphoinositide 3-kinase/Akt survival pathway via c-jun-NH2 terminal kinase activation and PTEN upregulation. Clin. Cancer Res. 16, 4382–4391 (2010)CrossRefPubMed J. Redondo-Munoz, E. Escobar-Diaz, M. Hernandez Del Cerro, A. Pandiella, M.J. Terol, J.A. Garcia-Marco, A. Garcia-Pardo, Induction of B-chronic lymphocytic leukemia cell apoptosis by arsenic trioxide involves suppression of the phosphoinositide 3-kinase/Akt survival pathway via c-jun-NH2 terminal kinase activation and PTEN upregulation. Clin. Cancer Res. 16, 4382–4391 (2010)CrossRefPubMed
26.
go back to reference I. Amigo-Jiménez, E. Bailón, N. Aguilera-Montilla, J.A. García-Marco, A. García-Pardo, Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget 7, 83359–83377 (2016)CrossRefPubMedPubMedCentral I. Amigo-Jiménez, E. Bailón, N. Aguilera-Montilla, J.A. García-Marco, A. García-Pardo, Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget 7, 83359–83377 (2016)CrossRefPubMedPubMedCentral
27.
go back to reference C. Xu, M. Yang, J. Tian, X. Wang, Z. Li, MALAT-1 a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int. J. Oncol. 39, 169–175 (2011)PubMed C. Xu, M. Yang, J. Tian, X. Wang, Z. Li, MALAT-1 a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int. J. Oncol. 39, 169–175 (2011)PubMed
28.
go back to reference J.A. West, C.P. Davis, H. Sunwoo, M.D. Simon, R.I. Sadreyev, P.I. Wang, M.Y. Tolstorukov, R.E. Kingston, The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014)CrossRefPubMedPubMedCentral J.A. West, C.P. Davis, H. Sunwoo, M.D. Simon, R.I. Sadreyev, P.I. Wang, M.Y. Tolstorukov, R.E. Kingston, The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014)CrossRefPubMedPubMedCentral
29.
go back to reference I. Shmulevich, I. Gluhovsky, R.F. Hashimoto, E.R. Dougherty, W. Zhang, Steady-state analysis of genetic regulatory networks modelled by probabilistic boolean networks. Comp. Funct. Genomics 4, 601–608 (2003)CrossRefPubMedPubMedCentral I. Shmulevich, I. Gluhovsky, R.F. Hashimoto, E.R. Dougherty, W. Zhang, Steady-state analysis of genetic regulatory networks modelled by probabilistic boolean networks. Comp. Funct. Genomics 4, 601–608 (2003)CrossRefPubMedPubMedCentral
30.
go back to reference L. Calzone, E. Barillot, A. Zinovyev, Predicting genetic interactions from Boolean models of biological networks. Integr. Biol. Camb. 7, 921–929 (2015)CrossRefPubMed L. Calzone, E. Barillot, A. Zinovyev, Predicting genetic interactions from Boolean models of biological networks. Integr. Biol. Camb. 7, 921–929 (2015)CrossRefPubMed
31.
go back to reference J. Zhao, L. Li, L. Peng, MAPK1 up-regulates the expression of MALAT1 to promote the proliferation of cardiomyocytes through PI3K/AKT signaling pathway. Int. J. Clin. Exp. Pathol. 8, 15947–15953 (2015)PubMedPubMedCentral J. Zhao, L. Li, L. Peng, MAPK1 up-regulates the expression of MALAT1 to promote the proliferation of cardiomyocytes through PI3K/AKT signaling pathway. Int. J. Clin. Exp. Pathol. 8, 15947–15953 (2015)PubMedPubMedCentral
32.
go back to reference X.Y. Ma, J.H. Wang, J.L. Wang, C.X. Ma, X.C. Wang, F.S. Liu, Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells. BMC Genomics 16, 676 (2015)CrossRefPubMedPubMedCentral X.Y. Ma, J.H. Wang, J.L. Wang, C.X. Ma, X.C. Wang, F.S. Liu, Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells. BMC Genomics 16, 676 (2015)CrossRefPubMedPubMedCentral
Metadata
Title
A new ETV6-NTRK3 cell line model reveals MALAT1 as a novel therapeutic target - a short report
Authors
Suning Chen
Stefan Nagel
Bjoern Schneider
Haiping Dai
Robert Geffers
Maren Kaufmann
Corinna Meyer
Claudia Pommerenke
Kenneth S. Thress
Jiao Li
Hilmar Quentmeier
Hans G. Drexler
Roderick A. F. MacLeod
Publication date
01-02-2018
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 1/2018
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-017-0356-2

Other articles of this Issue 1/2018

Cellular Oncology 1/2018 Go to the issue

Letter to the Editor

Metabolic iodine and tumours

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine