Skip to main content
Top
Published in: Cellular Oncology 1/2012

Open Access 01-02-2012 | Original Paper

BMP-7 inhibits TGF-β-induced invasion of breast cancer cells through inhibition of integrin β3 expression

Authors: Hildegonda P. H. Naber, Eliza Wiercinska, Evangelia Pardali, Theo van Laar, Ella Nirmala, Anders Sundqvist, Hans van Dam, Geertje van der Horst, Gabri van der Pluijm, Bertrand Heckmann, Erik H. J. Danen, Peter ten Dijke

Published in: Cellular Oncology | Issue 1/2012

Login to get access

Abstract

Background

The transforming growth factor (TGF)-β superfamily comprises cytokines such as TGF-β and Bone Morphogenetic Proteins (BMPs), which have a critical role in a multitude of biological processes. In breast cancer, high levels of TGF-β are associated with poor outcome, whereas inhibition of TGF-β-signaling reduces metastasis. In contrast, BMP-7 inhibits bone metastasis of breast cancer cells.

Methods

In this study, we investigated the effect of BMP-7 on TGF-β-induced invasion in a 3 dimensional invasion assay.

Results

BMP-7 inhibited TGF-β-induced invasion of the metastatic breast cancer cell line MCF10CA1a, but not of its premalignant precursor MCF10AT in a spheroid invasion model. The inhibitory effect appears to be specific for BMP-7, as its closest homolog, BMP-6, did not alter the invasion of MCF10CA1a spheroids. To elucidate the mechanism by which BMP-7 inhibits TGF-β-induced invasion, we analyzed invasion-related genes. BMP-7 inhibited TGF-β-induced expression of integrin αvβ3 in the spheroids. Moreover, targeting of integrins by a chemical inhibitor or knockdown of integrin β3 negatively affected TGF-β-induced invasion. On the other hand, overexpression of integrin β3 counteracted the inhibitory effect of BMP7 on TGF-β-induced invasion.

Conclusion

Thus, BMP-7 may exert anti-invasive actions by inhibiting TGF-β-induced expression of integrin β3.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference J.D. Hood, D.A. Cheresh, Role of integrins in cell invasion and migration. Nat. Rev. Canc. 2, 91–100 (2002)CrossRef J.D. Hood, D.A. Cheresh, Role of integrins in cell invasion and migration. Nat. Rev. Canc. 2, 91–100 (2002)CrossRef
3.
go back to reference W. Guo, F.G. Giancotti, Integrin signalling during tumour progression. Nat. Rev. Mol. Cell. Biol. 5, 816–826 (2004)PubMedCrossRef W. Guo, F.G. Giancotti, Integrin signalling during tumour progression. Nat. Rev. Mol. Cell. Biol. 5, 816–826 (2004)PubMedCrossRef
4.
go back to reference H. Liapis, A. Flath, S. Kitazawa, Integrin αvβ3 expression by bone-residing breast cancer metastases. Diagn. Mol. Pathol. 5, 127–135 (1996)PubMedCrossRef H. Liapis, A. Flath, S. Kitazawa, Integrin αvβ3 expression by bone-residing breast cancer metastases. Diagn. Mol. Pathol. 5, 127–135 (1996)PubMedCrossRef
5.
go back to reference I. Pecheur, O. Peyruchaud, C.M. Serre, J. Guglielmi, C. Voland, F. Bourre, C. Margue, M. Cohen-Solal, A. Buffet, N. Kieffer, P. Clezardin, Integrin αvβ3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J. 16, 1266–1268 (2002)PubMed I. Pecheur, O. Peyruchaud, C.M. Serre, J. Guglielmi, C. Voland, F. Bourre, C. Margue, M. Cohen-Solal, A. Buffet, N. Kieffer, P. Clezardin, Integrin αvβ3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J. 16, 1266–1268 (2002)PubMed
6.
go back to reference E.K. Sloan, N. Pouliot, K.L. Stanley, J. Chia, J.M. Moseley, D.K. Hards, R.L. Anderson, Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Canc. Res. 8, R20 (2006)CrossRef E.K. Sloan, N. Pouliot, K.L. Stanley, J. Chia, J.M. Moseley, D.K. Hards, R.L. Anderson, Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Canc. Res. 8, R20 (2006)CrossRef
7.
go back to reference Y. Zhao, R. Bachelier, I. Treilleux, P. Pujuguet, O. Peyruchaud, R. Baron, P. Clement-Lacroix, P. Clezardin, Tumor αvβ3 integrin is a therapeutic target for breast cancer bone metastases. Canc. Res. 67, 5821–5830 (2007)CrossRef Y. Zhao, R. Bachelier, I. Treilleux, P. Pujuguet, O. Peyruchaud, R. Baron, P. Clement-Lacroix, P. Clezardin, Tumor αvβ3 integrin is a therapeutic target for breast cancer bone metastases. Canc. Res. 67, 5821–5830 (2007)CrossRef
9.
go back to reference R.J. Akhurst, R. Derynck, TGF-β signaling in cancer–a double-edged sword. Trends Cell Biol. 11, S44–S51 (2001)PubMed R.J. Akhurst, R. Derynck, TGF-β signaling in cancer–a double-edged sword. Trends Cell Biol. 11, S44–S51 (2001)PubMed
10.
go back to reference S. Desruisseau, J. Palmari, C. Giusti, S. Romain, P.M. Martin, Y. Berthois, Determination of TGF-β1 protein level in human primary breast cancers and its relationship with survival. Br. J. Canc. 94, 239–246 (2006)CrossRef S. Desruisseau, J. Palmari, C. Giusti, S. Romain, P.M. Martin, Y. Berthois, Determination of TGF-β1 protein level in human primary breast cancers and its relationship with survival. Br. J. Canc. 94, 239–246 (2006)CrossRef
11.
go back to reference A. Ghellal, C. Li, M. Hayes, G. Byrne, N. Bundred, S. Kumar, Prognostic significance of TGF-β1 and TGF-β3 in human breast carcinoma. Anticancer. Res. 20, 4413–4418 (2000)PubMed A. Ghellal, C. Li, M. Hayes, G. Byrne, N. Bundred, S. Kumar, Prognostic significance of TGF-β1 and TGF-β3 in human breast carcinoma. Anticancer. Res. 20, 4413–4418 (2000)PubMed
12.
go back to reference S.M. Sheen-Chen, H.S. Chen, C.W. Sheen, H.L. Eng, W.J. Chen, Serum levels of transforming growth factor-β1 in patients with breast cancer. Arch. Surg. 136, 937–940 (2001)PubMedCrossRef S.M. Sheen-Chen, H.S. Chen, C.W. Sheen, H.L. Eng, W.J. Chen, Serum levels of transforming growth factor-β1 in patients with breast cancer. Arch. Surg. 136, 937–940 (2001)PubMedCrossRef
13.
go back to reference M. Deckers, M. van Dinther, J. Buijs, I. Que, C. Lowik, G. van der Pluijm, P. ten Dijke, The tumor suppressor Smad4 is required for transforming growth factor-β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Canc. Res. 66, 2202–2209 (2006)CrossRef M. Deckers, M. van Dinther, J. Buijs, I. Que, C. Lowik, G. van der Pluijm, P. ten Dijke, The tumor suppressor Smad4 is required for transforming growth factor-β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Canc. Res. 66, 2202–2209 (2006)CrossRef
14.
go back to reference Y. Kang, W. He, S. Tulley, G.P. Gupta, I. Serganova, C.R. Chen, K. Manova-Todorova, R. Blasberg, W.L. Gerald, J. Massagué, Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. U.S.A. 102, 13909–13914 (2005)PubMedCrossRef Y. Kang, W. He, S. Tulley, G.P. Gupta, I. Serganova, C.R. Chen, K. Manova-Todorova, R. Blasberg, W.L. Gerald, J. Massagué, Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. U.S.A. 102, 13909–13914 (2005)PubMedCrossRef
15.
go back to reference J.J. Yin, K. Selander, J.M. Chirgwin, M. Dallas, B.G. Grubbs, R. Wieser, J. Massagué, G.R. Mundy, T.A. Guise, TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Investig. 103, 197–206 (1999)PubMedCrossRef J.J. Yin, K. Selander, J.M. Chirgwin, M. Dallas, B.G. Grubbs, R. Wieser, J. Massagué, G.R. Mundy, T.A. Guise, TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Investig. 103, 197–206 (1999)PubMedCrossRef
16.
go back to reference M. Petersen, E. Pardali, G. van der Horst, H. Cheung, C. van den Hoogen, G. van der Pluijm, P. ten Dijke, Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29, 1351–1361 (2010)PubMedCrossRef M. Petersen, E. Pardali, G. van der Horst, H. Cheung, C. van den Hoogen, G. van der Pluijm, P. ten Dijke, Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29, 1351–1361 (2010)PubMedCrossRef
18.
go back to reference P. ten Dijke, C.S. Hill, New insights into TGF-β-Smad signalling. Trends Biochem. Sci. 29, 265–273 (2004)PubMedCrossRef P. ten Dijke, C.S. Hill, New insights into TGF-β-Smad signalling. Trends Biochem. Sci. 29, 265–273 (2004)PubMedCrossRef
19.
go back to reference P. ten Dijke, O. Korchynskyi, G. Valdimarsdottir, M.J. Goumans, Controlling cell fate by bone morphogenetic protein receptors. Mol. Cell. Endocrinol. 211, 105–113 (2003)PubMedCrossRef P. ten Dijke, O. Korchynskyi, G. Valdimarsdottir, M.J. Goumans, Controlling cell fate by bone morphogenetic protein receptors. Mol. Cell. Endocrinol. 211, 105–113 (2003)PubMedCrossRef
20.
21.
go back to reference J. Xu, S. Lamouille, R. Derynck, TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009)PubMedCrossRef J. Xu, S. Lamouille, R. Derynck, TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009)PubMedCrossRef
22.
go back to reference M. Zeisberg, J. Hanai, H. Sugimoto, T. Mammoto, D. Charytan, F. Strutz, R. Kalluri, BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003)PubMedCrossRef M. Zeisberg, J. Hanai, H. Sugimoto, T. Mammoto, D. Charytan, F. Strutz, R. Kalluri, BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003)PubMedCrossRef
23.
go back to reference J.T. Buijs, N.V. Henriquez, P.G. van Overveld, G. van der Horst, I. Que, R. Schwaninger, C. Rentsch, P. ten Dijke, A.M. Cleton-Jansen, K. Driouch, R. Lidereau, R. Bachelier, S. Vukicevic, P. Clezardin, S.E. Papapoulos, M.G. Cecchini, C.W. Lowik, G. van der Pluijm, Bone morphogenetic protein-7 in the development and treatment of bone metastases from breast cancer. Canc. Res. 67, 8742–8751 (2007)CrossRef J.T. Buijs, N.V. Henriquez, P.G. van Overveld, G. van der Horst, I. Que, R. Schwaninger, C. Rentsch, P. ten Dijke, A.M. Cleton-Jansen, K. Driouch, R. Lidereau, R. Bachelier, S. Vukicevic, P. Clezardin, S.E. Papapoulos, M.G. Cecchini, C.W. Lowik, G. van der Pluijm, Bone morphogenetic protein-7 in the development and treatment of bone metastases from breast cancer. Canc. Res. 67, 8742–8751 (2007)CrossRef
24.
go back to reference J.T. Buijs, C.A. Rentsch, G. van der Horst, P.G. van Overveld, A. Wetterwald, R. Schwaninger, N.V. Henriquez, P. ten Dijke, F. Borovecki, R. Markwalder, G.N. Thalmann, S.E. Papapoulos, R.C. Pelger, S. Vukicevic, M.G. Cecchini, C.W. Lowik, G. van der Pluijm, BMP-7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am. J. Pathol. 171, 1047–1057 (2007)PubMedCrossRef J.T. Buijs, C.A. Rentsch, G. van der Horst, P.G. van Overveld, A. Wetterwald, R. Schwaninger, N.V. Henriquez, P. ten Dijke, F. Borovecki, R. Markwalder, G.N. Thalmann, S.E. Papapoulos, R.C. Pelger, S. Vukicevic, M.G. Cecchini, C.W. Lowik, G. van der Pluijm, BMP-7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am. J. Pathol. 171, 1047–1057 (2007)PubMedCrossRef
25.
go back to reference E. Wiercinska, H.P.H. Naber, E. Pardali, G. van der Pluijm, H. van Dam, P. ten Dijke, The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Canc. Res. Treat. 128(3), 657–666 (2010) E. Wiercinska, H.P.H. Naber, E. Pardali, G. van der Pluijm, H. van Dam, P. ten Dijke, The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Canc. Res. Treat. 128(3), 657–666 (2010)
26.
go back to reference J.T. Buijs, N.V. Henriquez, P.G. van Overveld, G. van der Horst, P. ten Dijke, G. van der Pluijm, TGF-β and BMP-7 interactions in tumour progression and bone metastasis. Clin. Exp. Metastasis 24, 609–617 (2007)PubMedCrossRef J.T. Buijs, N.V. Henriquez, P.G. van Overveld, G. van der Horst, P. ten Dijke, G. van der Pluijm, TGF-β and BMP-7 interactions in tumour progression and bone metastasis. Clin. Exp. Metastasis 24, 609–617 (2007)PubMedCrossRef
27.
go back to reference H.D. Soule, T.M. Maloney, S.R. Wolman, W.D. Peterson Jr., R. Brenz, C.M. McGrath, J. Russo, R.J. Pauley, R.F. Jones, S.C. Brooks, Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Canc. Res. 50, 6075–6086 (1990) H.D. Soule, T.M. Maloney, S.R. Wolman, W.D. Peterson Jr., R. Brenz, C.M. McGrath, J. Russo, R.J. Pauley, R.F. Jones, S.C. Brooks, Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Canc. Res. 50, 6075–6086 (1990)
28.
go back to reference L.B. Strickland, P.J. Dawson, S.J. Santner, F.R. Miller, Progression of premalignant MCF10AT generates heterogeneous malignant variants with characteristic histologic types and immunohistochemical markers. Breast Canc. Res. Treat. 64, 235–240 (2000)CrossRef L.B. Strickland, P.J. Dawson, S.J. Santner, F.R. Miller, Progression of premalignant MCF10AT generates heterogeneous malignant variants with characteristic histologic types and immunohistochemical markers. Breast Canc. Res. Treat. 64, 235–240 (2000)CrossRef
29.
go back to reference S.J. Santner, P.J. Dawson, L. Tait, H.D. Soule, J. Eliason, A.N. Mohamed, S.R. Wolman, G.H. Heppner, F.R. Miller, Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Canc. Res. Treat. 65, 101–110 (2001)CrossRef S.J. Santner, P.J. Dawson, L. Tait, H.D. Soule, J. Eliason, A.N. Mohamed, S.R. Wolman, G.H. Heppner, F.R. Miller, Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Canc. Res. Treat. 65, 101–110 (2001)CrossRef
30.
go back to reference U. Persson, S. Souchelnytskyi, P. Franzen, K. Miyazono, P. ten Dijke, C.H. Heldin, Transforming growth factor (TGF-β)-specific signaling by chimeric TGF-β type II receptor with intracellular domain of activin type IIB receptor. J. Biol. Chem. 272, 21187–21194 (1997)PubMedCrossRef U. Persson, S. Souchelnytskyi, P. Franzen, K. Miyazono, P. ten Dijke, C.H. Heldin, Transforming growth factor (TGF-β)-specific signaling by chimeric TGF-β type II receptor with intracellular domain of activin type IIB receptor. J. Biol. Chem. 272, 21187–21194 (1997)PubMedCrossRef
31.
go back to reference S. Dennler, S. Itoh, D. Vivien, P. ten Dijke, S. Huet, J.M. Gauthier, Direct binding of Smad3 and Smad4 to critical TGF-β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091–3100 (1998)PubMedCrossRef S. Dennler, S. Itoh, D. Vivien, P. ten Dijke, S. Huet, J.M. Gauthier, Direct binding of Smad3 and Smad4 to critical TGF-β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091–3100 (1998)PubMedCrossRef
32.
go back to reference O. Korchynskyi, P. ten Dijke, Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 277, 4883–4891 (2002)PubMedCrossRef O. Korchynskyi, P. ten Dijke, Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 277, 4883–4891 (2002)PubMedCrossRef
33.
go back to reference H. Zhao, H. Kitaura, M.S. Sands, F.P. Ross, S.L. Teitelbaum, D.V. Novack, Critical role of β3 integrin in experimental postmenopausal osteoporosis. J. Bone Miner. Res. 20, 2116–2123 (2005)PubMedCrossRef H. Zhao, H. Kitaura, M.S. Sands, F.P. Ross, S.L. Teitelbaum, D.V. Novack, Critical role of β3 integrin in experimental postmenopausal osteoporosis. J. Bone Miner. Res. 20, 2116–2123 (2005)PubMedCrossRef
34.
go back to reference M. Oft, J. Peli, C. Rudaz, H. Schwarz, H. Beug, E. Reichmann, TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Gene. Dev. 10, 2462–2477 (1996)PubMedCrossRef M. Oft, J. Peli, C. Rudaz, H. Schwarz, H. Beug, E. Reichmann, TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Gene. Dev. 10, 2462–2477 (1996)PubMedCrossRef
35.
go back to reference R. Fuchshofer, A.H. Yu, U. Welge-Lussen, E.R. Tamm, Bone morphogenetic protein-7 is an antagonist of transforming growth factor-β2 in human trabecular meshwork cells. Investig. Ophthalmol. Vis. Sci. 48, 715–726 (2007)CrossRef R. Fuchshofer, A.H. Yu, U. Welge-Lussen, E.R. Tamm, Bone morphogenetic protein-7 is an antagonist of transforming growth factor-β2 in human trabecular meshwork cells. Investig. Ophthalmol. Vis. Sci. 48, 715–726 (2007)CrossRef
36.
go back to reference D.D. Luo, A. Phillips, D. Fraser, Bone morphogenetic protein-7 inhibits proximal tubular epithelial cell Smad3 signaling via increased SnoN expression. Am. J. Pathol. 176, 1139–1147 (2010)PubMedCrossRef D.D. Luo, A. Phillips, D. Fraser, Bone morphogenetic protein-7 inhibits proximal tubular epithelial cell Smad3 signaling via increased SnoN expression. Am. J. Pathol. 176, 1139–1147 (2010)PubMedCrossRef
37.
go back to reference I. Notting, J. Buijs, R. Mintardjo, G. van der Horst, S. Vukicevic, C. Lowik, N. Schalij-Delfos, J. Keunen, G. van der Pluijm, Bone morphogenetic protein-7 inhibits tumor growth of human uveal melanoma in vivo. Investig. Ophthalmol. Vis. Sci. 48, 4882–4889 (2007)CrossRef I. Notting, J. Buijs, R. Mintardjo, G. van der Horst, S. Vukicevic, C. Lowik, N. Schalij-Delfos, J. Keunen, G. van der Pluijm, Bone morphogenetic protein-7 inhibits tumor growth of human uveal melanoma in vivo. Investig. Ophthalmol. Vis. Sci. 48, 4882–4889 (2007)CrossRef
38.
go back to reference A.J. Galliher, W.P. Schiemann, β3 integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Canc. Res. 8, R42 (2006)CrossRef A.J. Galliher, W.P. Schiemann, β3 integrin and Src facilitate transforming growth factor-β mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Canc. Res. 8, R42 (2006)CrossRef
39.
go back to reference D.V. Pechkovsky, A.K. Scaffidi, T.L. Hackett, J. Ballard, F. Shaheen, P.J. Thompson, V.J. Thannickal, D.A. Knight, Transforming growth factor β1 induces αvβ3 integrin expression in human lung fibroblasts via a β3 integrin-, c-Src-, and p38 MAPK-dependent pathway. J. Biol. Chem. 283, 12898–12908 (2008)PubMedCrossRef D.V. Pechkovsky, A.K. Scaffidi, T.L. Hackett, J. Ballard, F. Shaheen, P.J. Thompson, V.J. Thannickal, D.A. Knight, Transforming growth factor β1 induces αvβ3 integrin expression in human lung fibroblasts via a β3 integrin-, c-Src-, and p38 MAPK-dependent pathway. J. Biol. Chem. 283, 12898–12908 (2008)PubMedCrossRef
40.
go back to reference T. Ebisawa, K. Tada, I. Kitajima, K. Tojo, T.K. Sampath, M. Kawabata, K. Miyazono, T. Imamura, Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J. Cell Sci. 112(Pt 20), 3519–3527 (1999)PubMed T. Ebisawa, K. Tada, I. Kitajima, K. Tojo, T.K. Sampath, M. Kawabata, K. Miyazono, T. Imamura, Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J. Cell Sci. 112(Pt 20), 3519–3527 (1999)PubMed
41.
go back to reference B.L. Rosenzweig, T. Imamura, T. Okadome, G.N. Cox, H. Yamashita, P. ten Dijke, C.H. Heldin, K. Miyazono, Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc. Natl. Acad. Sci. U. S. A. 92, 7632–7636 (1995)PubMedCrossRef B.L. Rosenzweig, T. Imamura, T. Okadome, G.N. Cox, H. Yamashita, P. ten Dijke, C.H. Heldin, K. Miyazono, Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc. Natl. Acad. Sci. U. S. A. 92, 7632–7636 (1995)PubMedCrossRef
42.
go back to reference P. ten Dijke, H. Yamashita, T.K. Sampath, A.H. Reddi, M. Estevez, D.L. Riddle, H. Ichijo, C.H. Heldin, K. Miyazono, Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J. Biol. Chem. 269, 16985–16988 (1994)PubMed P. ten Dijke, H. Yamashita, T.K. Sampath, A.H. Reddi, M. Estevez, D.L. Riddle, H. Ichijo, C.H. Heldin, K. Miyazono, Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J. Biol. Chem. 269, 16985–16988 (1994)PubMed
43.
go back to reference H. Yamashita, P. ten Dijke, D. Huylebroeck, T.K. Sampath, M. Andries, J.C. Smith, C.H. Heldin, K. Miyazono, Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J. Cell Biol. 130, 217–226 (1995)PubMedCrossRef H. Yamashita, P. ten Dijke, D. Huylebroeck, T.K. Sampath, M. Andries, J.C. Smith, C.H. Heldin, K. Miyazono, Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J. Cell Biol. 130, 217–226 (1995)PubMedCrossRef
44.
go back to reference M.S. Friedman, M.W. Long, K.D. Hankenson, Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J. Cell. Biochem. 98, 538–554 (2006)PubMedCrossRef M.S. Friedman, M.W. Long, K.D. Hankenson, Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J. Cell. Biochem. 98, 538–554 (2006)PubMedCrossRef
45.
go back to reference K. Song, C. Krause, S. Shi, M. Patterson, R. Suto, L. Grgurevic, S. Vukicevic, M. van Dinther, D. Falb, P. ten Dijke, M.H. Alaoui-Ismaili, Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity. J. Biol. Chem. 285, 12169–12180 (2010)PubMedCrossRef K. Song, C. Krause, S. Shi, M. Patterson, R. Suto, L. Grgurevic, S. Vukicevic, M. van Dinther, D. Falb, P. ten Dijke, M.H. Alaoui-Ismaili, Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity. J. Biol. Chem. 285, 12169–12180 (2010)PubMedCrossRef
46.
go back to reference B. Tang, M. Vu, T. Booker, S.J. Santner, F.R. Miller, M.R. Anver, L.M. Wakefield, TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J. Clin. Investig. 112, 1116–1124 (2003)PubMed B. Tang, M. Vu, T. Booker, S.J. Santner, F.R. Miller, M.R. Anver, L.M. Wakefield, TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J. Clin. Investig. 112, 1116–1124 (2003)PubMed
47.
go back to reference M. Kadota, H.H. Yang, B. Gomez, M. Sato, R.J. Clifford, D. Meerzaman, B.K. Dunn, L.M. Wakefield, M.P. Lee, Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS One 5, e9201 (2010)PubMedCrossRef M. Kadota, H.H. Yang, B. Gomez, M. Sato, R.J. Clifford, D. Meerzaman, B.K. Dunn, L.M. Wakefield, M.P. Lee, Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS One 5, e9201 (2010)PubMedCrossRef
Metadata
Title
BMP-7 inhibits TGF-β-induced invasion of breast cancer cells through inhibition of integrin β3 expression
Authors
Hildegonda P. H. Naber
Eliza Wiercinska
Evangelia Pardali
Theo van Laar
Ella Nirmala
Anders Sundqvist
Hans van Dam
Geertje van der Horst
Gabri van der Pluijm
Bertrand Heckmann
Erik H. J. Danen
Peter ten Dijke
Publication date
01-02-2012
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 1/2012
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-011-0058-0

Other articles of this Issue 1/2012

Cellular Oncology 1/2012 Go to the issue

List of Reviewers

Reviewers 2011

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine