Skip to main content
Top
Published in: Neurotherapeutics 4/2015

01-10-2015 | ASENT 2015 Symposium Report

Neuroinflammation: Ways in Which the Immune System Affects the Brain

Authors: Richard M. Ransohoff, Dorothy Schafer, Angela Vincent, Nathalie E. Blachère, Amit Bar-Or

Published in: Neurotherapeutics | Issue 4/2015

Login to get access

Abstract

Neuroinflammation is the response of the central nervous system (CNS) to disturbed homeostasis and typifies all neurological diseases. The main reactive components of the CNS include microglial cells and infiltrating myeloid cells, astrocytes, oligodendrocytes, and the blood–brain barrier, cytokines, and cytokine signaling. Neuroinflammatory responses may be helpful or harmful, as mechanisms associated with neuroinflammation are involved in normal brain development, as well as in neuropathological processes. This review examines the roles of various cell types that contribute to the immune dysregulation associated with neuroinflammation. Microglia enter the CNS very early in embryonic development and, as such, play an essential role in both the healthy and diseased brain. B-cell diversity contributes to CNS disease through both antibody-dependent and antibody-independent mechanisms. The influences of these B-cell mechanisms on other cell types, including myeloid cells and T cells, are reviewed in relationship to antibody-mediated CNS disorders, paraneoplastic neurological diseases, and multiple sclerosis. New insights into neuroinflammation offer exciting opportunities to investigate potential therapeutic targets for debilitating CNS diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alliot F, Lecain E, Grima B, Pessac B. Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc Natl Acad Sci U S A 1991;88:1541–1545.PubMedCentralCrossRefPubMed Alliot F, Lecain E, Grima B, Pessac B. Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc Natl Acad Sci U S A 1991;88:1541–1545.PubMedCentralCrossRefPubMed
2.
go back to reference Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999;117:145–152.CrossRefPubMed Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999;117:145–152.CrossRefPubMed
3.
go back to reference Bilimoria PM, Stevens B. Microglia function during brain development: New insights from animal models. Brain Res 2014. Bilimoria PM, Stevens B. Microglia function during brain development: New insights from animal models. Brain Res 2014.
4.
go back to reference Matyszak MK. Inflammation in the CNS: balance between immunological privilege and immune responses. Prog Neurobiol 1998;56:19–35.CrossRefPubMed Matyszak MK. Inflammation in the CNS: balance between immunological privilege and immune responses. Prog Neurobiol 1998;56:19–35.CrossRefPubMed
5.
6.
go back to reference Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354:610–621.CrossRefPubMed Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354:610–621.CrossRefPubMed
7.
go back to reference Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523:337–341.CrossRefPubMed Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523:337–341.CrossRefPubMed
8.
go back to reference Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 2006;80:797–801.CrossRefPubMed Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 2006;80:797–801.CrossRefPubMed
9.
go back to reference Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12:623–635.CrossRefPubMed Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12:623–635.CrossRefPubMed
10.
go back to reference Andres KH, von Düring M, Muszynski K, Schmidt RF. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl) 1987;175:289–301.CrossRef Andres KH, von Düring M, Muszynski K, Schmidt RF. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl) 1987;175:289–301.CrossRef
11.
go back to reference von Andrian UH, Mackay CR. T-cell function and migration. Two sides of the same coin. N Engl J Med 2000;343:1020–1034.CrossRef von Andrian UH, Mackay CR. T-cell function and migration. Two sides of the same coin. N Engl J Med 2000;343:1020–1034.CrossRef
12.
go back to reference Leick M, Azcutia V, Newton G, Luscinskas FW. Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res 2014;355:647–656.PubMedCentralCrossRefPubMed Leick M, Azcutia V, Newton G, Luscinskas FW. Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res 2014;355:647–656.PubMedCentralCrossRefPubMed
13.
go back to reference Gordon LB, Knopf PM, Cserr HF. Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral sites. J Neuroimmunol 1992;40:81–87.CrossRefPubMed Gordon LB, Knopf PM, Cserr HF. Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral sites. J Neuroimmunol 1992;40:81–87.CrossRefPubMed
14.
go back to reference McKercher SR, Torbett BE, Anderson KL, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 1996;15:5647–5658.PubMedCentralPubMed McKercher SR, Torbett BE, Anderson KL, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 1996;15:5647–5658.PubMedCentralPubMed
15.
go back to reference Paloneva J, Manninen T, Christman G, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 2002;71:656–662.PubMedCentralCrossRefPubMed Paloneva J, Manninen T, Christman G, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 2002;71:656–662.PubMedCentralCrossRefPubMed
16.
go back to reference Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8:752–758.CrossRefPubMed Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8:752–758.CrossRefPubMed
17.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314–1318.CrossRefPubMed Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308:1314–1318.CrossRefPubMed
19.
20.
go back to reference Guerreiro RJ, Lohmann E, Brás JM, et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 2013;70:78–84.PubMedCentralCrossRefPubMed Guerreiro RJ, Lohmann E, Brás JM, et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 2013;70:78–84.PubMedCentralCrossRefPubMed
21.
go back to reference Ueno M, Fujita Y, Tanaka T, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013;16:543–551.CrossRefPubMed Ueno M, Fujita Y, Tanaka T, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013;16:543–551.CrossRefPubMed
22.
go back to reference Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011;333:1456–1458.CrossRefPubMed Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011;333:1456–1458.CrossRefPubMed
23.
go back to reference Zhan Y, Paolicelli RC, Sforazzini F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 2014;17:400–406.CrossRefPubMed Zhan Y, Paolicelli RC, Sforazzini F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 2014;17:400–406.CrossRefPubMed
24.
go back to reference Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013;155:1596–1609.PubMedCentralCrossRefPubMed Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013;155:1596–1609.PubMedCentralCrossRefPubMed
25.
go back to reference Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science 1996; 274:1133–1138.CrossRefPubMed Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science 1996; 274:1133–1138.CrossRefPubMed
26.
go back to reference Hua JY, Smith SJ. Neural activity and the dynamics of central nervous system development. Nat Neurosci 2004; 7:327–332.CrossRefPubMed Hua JY, Smith SJ. Neural activity and the dynamics of central nervous system development. Nat Neurosci 2004; 7:327–332.CrossRefPubMed
27.
go back to reference Sanes JR, Lichtman JW. Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 1999;22:389–442.CrossRefPubMed Sanes JR, Lichtman JW. Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 1999;22:389–442.CrossRefPubMed
28.
go back to reference Del Rio T, Feller MB. Early retinal activity and visual circuit development. Neuron 2006;52:221–222.CrossRefPubMed Del Rio T, Feller MB. Early retinal activity and visual circuit development. Neuron 2006;52:221–222.CrossRefPubMed
29.
go back to reference Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012;74:691–705.PubMedCentralCrossRefPubMed Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012;74:691–705.PubMedCentralCrossRefPubMed
30.
go back to reference Chen C, Regehr WG. Developmental remodeling of the retinogeniculate synapse. Neuron 2000;28:955–966.CrossRefPubMed Chen C, Regehr WG. Developmental remodeling of the retinogeniculate synapse. Neuron 2000;28:955–966.CrossRefPubMed
31.
32.
go back to reference Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 2005;22:661–676.CrossRefPubMed Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 2005;22:661–676.CrossRefPubMed
33.
go back to reference Ziburkus J, Guido W. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J Neurophysiol 2006;96:2775–2784.CrossRefPubMed Ziburkus J, Guido W. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J Neurophysiol 2006;96:2775–2784.CrossRefPubMed
34.
35.
go back to reference Ackman JB, Crair MC. Role of emergent neural activity in visual map development. Curr Opin Neurobiol 2014;24:166–175.CrossRefPubMed Ackman JB, Crair MC. Role of emergent neural activity in visual map development. Curr Opin Neurobiol 2014;24:166–175.CrossRefPubMed
36.
go back to reference Akiyama H, McGeer PL. Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 1990;30:81–93.CrossRefPubMed Akiyama H, McGeer PL. Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 1990;30:81–93.CrossRefPubMed
37.
go back to reference Napoli I, Neumann H. Microglial clearance function in health and disease. Neuroscience 2009;158:1030–1038.CrossRefPubMed Napoli I, Neumann H. Microglial clearance function in health and disease. Neuroscience 2009;158:1030–1038.CrossRefPubMed
38.
go back to reference Perry VH, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 1985;15:313–326.CrossRefPubMed Perry VH, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 1985;15:313–326.CrossRefPubMed
39.
go back to reference Stevens B, Allen NJ, Vazquez LE, et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007;131:1164–1178.CrossRefPubMed Stevens B, Allen NJ, Vazquez LE, et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007;131:1164–1178.CrossRefPubMed
40.
go back to reference Amir RE, van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999;23:185–188.CrossRefPubMed Amir RE, van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999;23:185–188.CrossRefPubMed
41.
go back to reference Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron 2007;56:422–437.CrossRefPubMed Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron 2007;56:422–437.CrossRefPubMed
42.
go back to reference Noutel J, Hong YK, Leu B, Kang E, Chen C. Experience-dependent retinogeniculate synapse remodeling is abnormal in MeCP2-deficient mice. Neuron 2011;70:35–42.PubMedCentralCrossRefPubMed Noutel J, Hong YK, Leu B, Kang E, Chen C. Experience-dependent retinogeniculate synapse remodeling is abnormal in MeCP2-deficient mice. Neuron 2011;70:35–42.PubMedCentralCrossRefPubMed
43.
go back to reference Schafer DP, Stevens B. Brains, blood, and guts: MeCP2 regulates microglia, monocytes, and peripheral macrophages. Immunity 2015;42:600–602.CrossRefPubMed Schafer DP, Stevens B. Brains, blood, and guts: MeCP2 regulates microglia, monocytes, and peripheral macrophages. Immunity 2015;42:600–602.CrossRefPubMed
44.
45.
go back to reference Riemersma S, Vincent A, Beeson D, et al. Association of arthrogryposis multiplex congenita with maternal antibodies inhibiting fetal acetylcholine receptor function. J Clin Invest 1996;98:2358–2363.PubMedCentralCrossRefPubMed Riemersma S, Vincent A, Beeson D, et al. Association of arthrogryposis multiplex congenita with maternal antibodies inhibiting fetal acetylcholine receptor function. J Clin Invest 1996;98:2358–2363.PubMedCentralCrossRefPubMed
46.
go back to reference Jacobson L, Polizzi A, Morriss-Kay G, Vincent A. Plasma from human mothers of fetuses with severe arthrogryposis multiplex congenita causes deformities in mice. J Clin Invest 1999;103:1031–1038.PubMedCentralCrossRefPubMed Jacobson L, Polizzi A, Morriss-Kay G, Vincent A. Plasma from human mothers of fetuses with severe arthrogryposis multiplex congenita causes deformities in mice. J Clin Invest 1999;103:1031–1038.PubMedCentralCrossRefPubMed
47.
go back to reference Dalton P, Deacon R, Blamire A, et al. Maternal neuronal antibodies associated with autism and a languagedisorder. Ann Neurol 2003;53:533–537. Dalton P, Deacon R, Blamire A, et al. Maternal neuronal antibodies associated with autism and a languagedisorder. Ann Neurol 2003;53:533–537.
48.
go back to reference Knuesel I, Chicha L, Britschgi M, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 2014;10:643–660.CrossRefPubMed Knuesel I, Chicha L, Britschgi M, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 2014;10:643–660.CrossRefPubMed
49.
go back to reference Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004;127:701–712.CrossRefPubMed Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004;127:701–712.CrossRefPubMed
50.
go back to reference Vincent A, Bien CG, Irani SR, Waters P. Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 2011;10:759–772.CrossRefPubMed Vincent A, Bien CG, Irani SR, Waters P. Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 2011;10:759–772.CrossRefPubMed
51.
go back to reference Irani SR, Alexander S, Waters P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain 2010;133:2734–2748.PubMedCentralCrossRefPubMed Irani SR, Alexander S, Waters P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain 2010;133:2734–2748.PubMedCentralCrossRefPubMed
52.
go back to reference Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892–900.CrossRefPubMed Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892–900.CrossRefPubMed
53.
go back to reference Irani SR, Stagg CJ, Schott JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136:3151–3162.CrossRefPubMed Irani SR, Stagg CJ, Schott JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136:3151–3162.CrossRefPubMed
54.
go back to reference Lalic T, Pettingill P, Vincent A, Capogna M. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission. Epilepsia 2011;52:121–131.CrossRefPubMed Lalic T, Pettingill P, Vincent A, Capogna M. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission. Epilepsia 2011;52:121–131.CrossRefPubMed
55.
go back to reference Ohkawa T, Fukata Y, Yamasaki M, et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci 2013;33:18161–18174.PubMedCentralCrossRefPubMed Ohkawa T, Fukata Y, Yamasaki M, et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci 2013;33:18161–18174.PubMedCentralCrossRefPubMed
56.
57.
go back to reference Waters P, Woodhall M, O'Connor KC, et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm 2015;2:e89.PubMedCentralCrossRefPubMed Waters P, Woodhall M, O'Connor KC, et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm 2015;2:e89.PubMedCentralCrossRefPubMed
58.
go back to reference Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008;7:1091–1098.PubMedCentralCrossRefPubMed Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008;7:1091–1098.PubMedCentralCrossRefPubMed
59.
go back to reference Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin Infect Dis 2012;54:899–904.PubMedCentralCrossRefPubMed Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin Infect Dis 2012;54:899–904.PubMedCentralCrossRefPubMed
60.
go back to reference Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157–165.PubMedCentralCrossRefPubMed Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157–165.PubMedCentralCrossRefPubMed
61.
go back to reference Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011;10:63–74.PubMedCentralCrossRefPubMed Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011;10:63–74.PubMedCentralCrossRefPubMed
62.
go back to reference Irani SR, Bera K, Waters P, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010;133:1655–1667.PubMedCentralCrossRefPubMed Irani SR, Bera K, Waters P, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010;133:1655–1667.PubMedCentralCrossRefPubMed
63.
64.
go back to reference Moscato EH, Peng X, Jain A, Parsons TD, Dalmau J, Balice-Gordon RJ. Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014;76:108–119.PubMedCentralCrossRefPubMed Moscato EH, Peng X, Jain A, Parsons TD, Dalmau J, Balice-Gordon RJ. Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014;76:108–119.PubMedCentralCrossRefPubMed
65.
go back to reference Planagumà J, Leypoldt F, Mannara F, et al. Human N-methyl D-aspartate receptor antibodies alter memory andbehaviour in mice. Brain 2015;138:94–109.CrossRefPubMed Planagumà J, Leypoldt F, Mannara F, et al. Human N-methyl D-aspartate receptor antibodies alter memory andbehaviour in mice. Brain 2015;138:94–109.CrossRefPubMed
66.
go back to reference Wright S, Hashemi K, Stasiak L, et al. Epileptogenic effects of N-methyl-D-aspartate-receptor antibodies in a passive transfer mouse model. Brain 2015;138(11). Wright S, Hashemi K, Stasiak L, et al. Epileptogenic effects of N-methyl-D-aspartate-receptor antibodies in a passive transfer mouse model. Brain 2015;138(11).
67.
go back to reference Hacohen Y, Absoud M, Hemingway C, et al. NMDA receptor antibodies associated with distinct white matter syndromes. Neurol Neuroimmunol Neuroinflamm 2014;1:e2.PubMedCentralCrossRefPubMed Hacohen Y, Absoud M, Hemingway C, et al. NMDA receptor antibodies associated with distinct white matter syndromes. Neurol Neuroimmunol Neuroinflamm 2014;1:e2.PubMedCentralCrossRefPubMed
68.
go back to reference Leypoldt F, Titulaer MJ, Aguilar E, et al. Herpes simplex virus-1 encephalitis can trigger anti-NMDA receptor encephalitis: case report. Neurology 2013;81:1637–1639.PubMedCentralCrossRefPubMed Leypoldt F, Titulaer MJ, Aguilar E, et al. Herpes simplex virus-1 encephalitis can trigger anti-NMDA receptor encephalitis: case report. Neurology 2013;81:1637–1639.PubMedCentralCrossRefPubMed
69.
go back to reference Hacohen Y, Deiva K, Pettingill P, et al. N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord 2014;29:90–96.CrossRefPubMed Hacohen Y, Deiva K, Pettingill P, et al. N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord 2014;29:90–96.CrossRefPubMed
70.
go back to reference Hutchinson M, Waters P, McHugh J, et al. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 2008;71:1291–1292.CrossRefPubMed Hutchinson M, Waters P, McHugh J, et al. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 2008;71:1291–1292.CrossRefPubMed
71.
go back to reference Carvajal-González A, Leite MI, Waters P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:2178–2192.PubMedCentralCrossRefPubMed Carvajal-González A, Leite MI, Waters P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:2178–2192.PubMedCentralCrossRefPubMed
72.
go back to reference Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol 2013;12:554–562.CrossRefPubMed Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol 2013;12:554–562.CrossRefPubMed
73.
go back to reference Albert ML, Darnell RB. Paraneoplastic neurological degenerations: keys to tumour immunity. Nat Rev Cancer 2004;4:36–44.CrossRefPubMed Albert ML, Darnell RB. Paraneoplastic neurological degenerations: keys to tumour immunity. Nat Rev Cancer 2004;4:36–44.CrossRefPubMed
74.
go back to reference Storstein A, Krossnes BK, Vedeler CA. Morphological and immunohistochemical characterization of paraneoplastic cerebellar degeneration associated with Yo antibodies. Acta Neurol Scand 2009;120:64–67.CrossRefPubMed Storstein A, Krossnes BK, Vedeler CA. Morphological and immunohistochemical characterization of paraneoplastic cerebellar degeneration associated with Yo antibodies. Acta Neurol Scand 2009;120:64–67.CrossRefPubMed
75.
go back to reference Amyes E, Curnow J, Stark Z, Corlett L, Sutton I, Vincent A. Restricted IgG1 subclass of anti-Yo antibodies in paraneoplastic cerebellar degeneration. J Neuroimmunol 2001;114:259–264.CrossRefPubMed Amyes E, Curnow J, Stark Z, Corlett L, Sutton I, Vincent A. Restricted IgG1 subclass of anti-Yo antibodies in paraneoplastic cerebellar degeneration. J Neuroimmunol 2001;114:259–264.CrossRefPubMed
76.
go back to reference Tanaka K, Tanaka M, Onodera O, Igarashi S, Miyatake T, Tsuji S. Passive transfer and active immunization with the recombinant leucine-zipper (Yo) protein as an attempt to establish an animal model of paraneoplastic cerebellar degeneration. J Neurol Sci 1994;127:153–158.CrossRefPubMed Tanaka K, Tanaka M, Onodera O, Igarashi S, Miyatake T, Tsuji S. Passive transfer and active immunization with the recombinant leucine-zipper (Yo) protein as an attempt to establish an animal model of paraneoplastic cerebellar degeneration. J Neurol Sci 1994;127:153–158.CrossRefPubMed
77.
go back to reference Albert ML, Darnell JC, Bender A, Francisco LM, Bhardwaj N, Darnell RB. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 1998;4:1321–1324.CrossRefPubMed Albert ML, Darnell JC, Bender A, Francisco LM, Bhardwaj N, Darnell RB. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 1998;4:1321–1324.CrossRefPubMed
78.
go back to reference Blachère NE, Orange DE, Santomasso BD, et al. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation. Eur J Immunol 2014;44:3240–3251.CrossRefPubMed Blachère NE, Orange DE, Santomasso BD, et al. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation. Eur J Immunol 2014;44:3240–3251.CrossRefPubMed
79.
go back to reference Shams'ili S, de Beukelaar J, Gratama JW, et al. An uncontrolled trial of rituximab for antibody associated paraneoplastic neurological syndromes. J Neurol. 2006;253:16–20.CrossRefPubMed Shams'ili S, de Beukelaar J, Gratama JW, et al. An uncontrolled trial of rituximab for antibody associated paraneoplastic neurological syndromes. J Neurol. 2006;253:16–20.CrossRefPubMed
80.
go back to reference Orange D, Frank M, Tian S, et al. Cellular immune suppression in paraneoplastic neurologic syndromes targeting intracellular antigens. Arch Neurol 2012;69:113211–40.CrossRef Orange D, Frank M, Tian S, et al. Cellular immune suppression in paraneoplastic neurologic syndromes targeting intracellular antigens. Arch Neurol 2012;69:113211–40.CrossRef
81.
go back to reference Lovato L, Willis SN, Rodig SJ, et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain 2011;134:534–541.PubMedCentralCrossRefPubMed Lovato L, Willis SN, Rodig SJ, et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain 2011;134:534–541.PubMedCentralCrossRefPubMed
82.
go back to reference Obermeier B, Lovato L, Mentele R, et al. Related B cell clones that populate the CSF and CNS of patients withmultiple sclerosis produce CSF immunoglobulin. J Neuroimmunol 2011;233:245–248.PubMedCentralCrossRefPubMed Obermeier B, Lovato L, Mentele R, et al. Related B cell clones that populate the CSF and CNS of patients withmultiple sclerosis produce CSF immunoglobulin. J Neuroimmunol 2011;233:245–248.PubMedCentralCrossRefPubMed
83.
go back to reference O'Connor KC, Lopez-Amaya C, Gagne D, et al. Anti-myelin antibodies modulate clinical expression of childhood multiple sclerosis. J Neuroimmunol 2010;223:92–99.CrossRefPubMed O'Connor KC, Lopez-Amaya C, Gagne D, et al. Anti-myelin antibodies modulate clinical expression of childhood multiple sclerosis. J Neuroimmunol 2010;223:92–99.CrossRefPubMed
84.
go back to reference Bar-Or A, Calabresi PA, Arnold D, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 2008;63:395–400.CrossRefPubMed Bar-Or A, Calabresi PA, Arnold D, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 2008;63:395–400.CrossRefPubMed
85.
go back to reference Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008;358:676–688.CrossRefPubMed Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008;358:676–688.CrossRefPubMed
86.
go back to reference Naismith RT, Piccio L, Lyons JA, et al. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology 2010;74:1860–1867.PubMedCentralCrossRefPubMed Naismith RT, Piccio L, Lyons JA, et al. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology 2010;74:1860–1867.PubMedCentralCrossRefPubMed
87.
go back to reference Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 2011;378:1779–1787.CrossRefPubMed Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 2011;378:1779–1787.CrossRefPubMed
88.
go back to reference Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons J-A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006;180:63–70.PubMedCentralCrossRefPubMed Cross AH, Stark JL, Lauber J, Ramsbottom MJ, Lyons J-A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2006;180:63–70.PubMedCentralCrossRefPubMed
89.
go back to reference Monson NL, Cravens PD, Frohman EM, Hawker K, Racke MK. Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol 2005;62:258–264.CrossRefPubMed Monson NL, Cravens PD, Frohman EM, Hawker K, Racke MK. Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol 2005;62:258–264.CrossRefPubMed
90.
go back to reference Piccio L, Naismith RT, Trinkaus K, et al. Changes in B- and T-lymphocyte and chemokine levels with rituximabtreatment in multiple sclerosis. Arch Neurol 2010;67:707–714.PubMedCentralCrossRefPubMed Piccio L, Naismith RT, Trinkaus K, et al. Changes in B- and T-lymphocyte and chemokine levels with rituximabtreatment in multiple sclerosis. Arch Neurol 2010;67:707–714.PubMedCentralCrossRefPubMed
91.
go back to reference Duddy M, Niino M, Adatia F, et al. Distinct effector cytokine profiles of memory and naïve human B cell subsets and implication in multiple sclerosis. J Immunol 2007;178:6092–6099.CrossRefPubMed Duddy M, Niino M, Adatia F, et al. Distinct effector cytokine profiles of memory and naïve human B cell subsets and implication in multiple sclerosis. J Immunol 2007;178:6092–6099.CrossRefPubMed
92.
go back to reference Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010;67:452–461.CrossRefPubMed Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010;67:452–461.CrossRefPubMed
93.
go back to reference Correale J, Farex M Razzitte G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol 2008;64:187–199.CrossRefPubMed Correale J, Farex M Razzitte G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol 2008;64:187–199.CrossRefPubMed
94.
go back to reference Barr TA, Shen P, Brown S, et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 2009;5:1001–1010. Barr TA, Shen P, Brown S, et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 2009;5:1001–1010.
95.
go back to reference Shen P, Roch T, Lampropoulou V, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014;507:366–370.PubMedCentralCrossRefPubMed Shen P, Roch T, Lampropoulou V, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014;507:366–370.PubMedCentralCrossRefPubMed
97.
go back to reference Howell OW, Reeves CA, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011;134:2755–2771.CrossRefPubMed Howell OW, Reeves CA, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011;134:2755–2771.CrossRefPubMed
98.
go back to reference Lisak RP, Benjamins JA, Nedelkoska L, et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J Neuroimmunol 2012;246:85–95.CrossRefPubMed Lisak RP, Benjamins JA, Nedelkoska L, et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J Neuroimmunol 2012;246:85–95.CrossRefPubMed
99.
go back to reference Krumbholz M, Theil D, Derfuss T, et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 2005;210:195–200.CrossRef Krumbholz M, Theil D, Derfuss T, et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 2005;210:195–200.CrossRef
100.
go back to reference Stern JN, Yaari G, Vander Heiden JA, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 2014;6:248ra107.PubMedCentralCrossRefPubMed Stern JN, Yaari G, Vander Heiden JA, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 2014;6:248ra107.PubMedCentralCrossRefPubMed
Metadata
Title
Neuroinflammation: Ways in Which the Immune System Affects the Brain
Authors
Richard M. Ransohoff
Dorothy Schafer
Angela Vincent
Nathalie E. Blachère
Amit Bar-Or
Publication date
01-10-2015
Publisher
Springer US
Published in
Neurotherapeutics / Issue 4/2015
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-015-0385-3

Other articles of this Issue 4/2015

Neurotherapeutics 4/2015 Go to the issue