Skip to main content
Top
Published in: Neurotherapeutics 1/2011

01-01-2011

Optical Coherence Tomography (OCT): Imaging the Visual Pathway as a Model for Neurodegeneration

Authors: Kristin M. Galetta, Peter A. Calabresi, Elliot M. Frohman, Laura J. Balcer, M.D., M.S.C.E.

Published in: Neurotherapeutics | Issue 1/2011

Login to get access

Summary

Axonal and neuronal degeneration are important features of multiple sclerosis (MS) and other neurologic disorders that affect the anterior visual pathway. Optical coherence tomography (OCT) is a non-invasive technique that allows imaging of the retinal nerve fiber layer (RNFL), a structure which is principally composed of ganglion cell axons that form the optic nerves, chiasm, and optic tracts. Since retinal axons are nonmyelinated until they penetrate the lamina cribrosa, the RNFL is an ideal structure (no other central nervous system tract has this unique arrangement) for visualizing the processes of neurodegeneration, neuroprotection and, potentially, even neuro-repair. OCT is capable of providing high-resolution reconstructions of retinal anatomy in a rapid and reproducible fashion and permits objective analysis of the RNFL (axons) as well as ganglion cells and other neurons in the macula. In a systematic OCT examination of multiple sclerosis (MS) patients, RNFL thickness and macular volumes are reduced when compared to disease-free controls. Conspicuously, these changes, which signify disorganization of retinal structural architecture, occur over time even in the absence of a history of acute demyelinating optic neuritis. RNFL axonal loss in MS is most severe in those eyes with a corresponding reduction in low-contrast letter acuity (a sensitive vision test involving the perception of gray letters on a white background) and in those patients who exhibit the greatest magnitude of brain atrophy, as measured by validated magnetic resonance imaging techniques. These unique structure–function correlations make the anterior visual pathway an ideal model for investigating the effects of standard and novel therapies that target axonal and neuronal degeneration. We provide an overview of the physics of OCT, its unique properties as a non-invasive imaging technique, and its potential applications toward understanding mechanisms of brain tissue injury in MS, other optic neuropathies, and neurologic disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278–285.CrossRefPubMed Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278–285.CrossRefPubMed
2.
go back to reference Evangelou N, Konz D, Esiri MM, et al. Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 2001;124:1813–1820.CrossRefPubMed Evangelou N, Konz D, Esiri MM, et al. Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 2001;124:1813–1820.CrossRefPubMed
3.
go back to reference DeLuca GC, Williams K, Evangelou N, et al. The contribution of demyelination to axonal loss in multiple sclerosis. Brain 2006;129:1507–1516.CrossRefPubMed DeLuca GC, Williams K, Evangelou N, et al. The contribution of demyelination to axonal loss in multiple sclerosis. Brain 2006;129:1507–1516.CrossRefPubMed
4.
go back to reference Sepulcre J, Goñi J, Masdeu JC, et al. Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch Neurol. 2009;66:173–179.CrossRefPubMed Sepulcre J, Goñi J, Masdeu JC, et al. Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch Neurol. 2009;66:173–179.CrossRefPubMed
5.
go back to reference Frohman EM, Fujimoto JG, Frohman TC, et al. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 2008;4:664–675.CrossRefPubMed Frohman EM, Fujimoto JG, Frohman TC, et al. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 2008;4:664–675.CrossRefPubMed
6.
go back to reference Parisi V, Manni G, Spadaro M, et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 1999;40:2520–2527.PubMed Parisi V, Manni G, Spadaro M, et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 1999;40:2520–2527.PubMed
7.
go back to reference Trip SA, Schlottmann PG, Jones SJ, et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 2005;58:383–391.CrossRefPubMed Trip SA, Schlottmann PG, Jones SJ, et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 2005;58:383–391.CrossRefPubMed
8.
go back to reference Costello F, Coupland S, Hodge W, et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006;59:963–969.CrossRefPubMed Costello F, Coupland S, Hodge W, et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006;59:963–969.CrossRefPubMed
9.
go back to reference Fisher JB, Jacobs DA, Markowitz CE, et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006;113:324–332.CrossRefPubMed Fisher JB, Jacobs DA, Markowitz CE, et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006;113:324–332.CrossRefPubMed
10.
go back to reference Cheng H, Laron M, Schiffman JS, Tang RA, Frishman LJ. The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis. Invest Ophthalmol Vis Sci 2007;48;5798–5805.CrossRefPubMed Cheng H, Laron M, Schiffman JS, Tang RA, Frishman LJ. The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis. Invest Ophthalmol Vis Sci 2007;48;5798–5805.CrossRefPubMed
11.
go back to reference Pulicken M, Gordon-Lipkin E, Balcer LJ, et al. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 2007;69:2085–2092.CrossRefPubMed Pulicken M, Gordon-Lipkin E, Balcer LJ, et al. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 2007;69:2085–2092.CrossRefPubMed
12.
go back to reference Costello F, Hodge W, Pan YI, et al. Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes. J Neurol Sci 2009;281:74–79.CrossRefPubMed Costello F, Hodge W, Pan YI, et al. Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes. J Neurol Sci 2009;281:74–79.CrossRefPubMed
13.
go back to reference Henderson AP, Trip SA, Schlottmann PG, et al. An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 2008;131:277–287.PubMed Henderson AP, Trip SA, Schlottmann PG, et al. An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 2008;131:277–287.PubMed
14.
go back to reference Gordon-Lipkin E, Chodkowski B, Reich DS, et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 2007;69:1603–1609.CrossRefPubMed Gordon-Lipkin E, Chodkowski B, Reich DS, et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 2007;69:1603–1609.CrossRefPubMed
15.
go back to reference Sepulcre J, Murie-Fernandez M, Salinas-Alaman A, et al. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology 2007;68:1488–1494.CrossRefPubMed Sepulcre J, Murie-Fernandez M, Salinas-Alaman A, et al. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology 2007;68:1488–1494.CrossRefPubMed
16.
go back to reference Cettomai D, Pulicken M, Gordon-Lipkin E, et al. Reproducibility of optical coherence tomography in multiple sclerosis. Arch Neurol 2008;65:1218–1222.CrossRefPubMed Cettomai D, Pulicken M, Gordon-Lipkin E, et al. Reproducibility of optical coherence tomography in multiple sclerosis. Arch Neurol 2008;65:1218–1222.CrossRefPubMed
17.
go back to reference Zaveri M, Conger A, Salter A, et al. Retinal imaging by laser polarimetry corroborates optical coherence tomography evidence of axonal degeneration in multiple sclerosis. Arch Neurol 2008;65:924–928.CrossRefPubMed Zaveri M, Conger A, Salter A, et al. Retinal imaging by laser polarimetry corroborates optical coherence tomography evidence of axonal degeneration in multiple sclerosis. Arch Neurol 2008;65:924–928.CrossRefPubMed
18.
go back to reference Salter AR, Conger A, Frohman TC, et al. Retinal architecture predicts pupillary reflex metrics in MS. Mult Scler 2008;15:479–486.CrossRefPubMed Salter AR, Conger A, Frohman TC, et al. Retinal architecture predicts pupillary reflex metrics in MS. Mult Scler 2008;15:479–486.CrossRefPubMed
19.
go back to reference Pueyo V, Ara JR, Almarcegui C, et al. Sub-clinical atrophy of the retinal nerve fibre layer in multiple sclerosis. Acta Ophthalmol 2010;88:748–752. Pueyo V, Ara JR, Almarcegui C, et al. Sub-clinical atrophy of the retinal nerve fibre layer in multiple sclerosis. Acta Ophthalmol 2010;88:748–752.
20.
go back to reference Costello F, Hodge W, Pan YI, Metz L, Kardon RH. Retinal nerve fiber layer and future risk of multiple sclerosis. Can J Neurol Sci 2008;35:482–487.PubMed Costello F, Hodge W, Pan YI, Metz L, Kardon RH. Retinal nerve fiber layer and future risk of multiple sclerosis. Can J Neurol Sci 2008;35:482–487.PubMed
21.
go back to reference Burkholder BM, Osborne B, Loguidice MJ, et al. Macular volume by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 2009;66:1366–1372.CrossRefPubMed Burkholder BM, Osborne B, Loguidice MJ, et al. Macular volume by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 2009;66:1366–1372.CrossRefPubMed
22.
go back to reference Kolappan M, Henderson APD, Jenkins TM, et al. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J Neurol 2009;256:305–319.CrossRefPubMed Kolappan M, Henderson APD, Jenkins TM, et al. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J Neurol 2009;256:305–319.CrossRefPubMed
23.
go back to reference Barkhof F, Calabresi P, Miller DH, Reingold SC. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 2009;5:256–266.CrossRefPubMed Barkhof F, Calabresi P, Miller DH, Reingold SC. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 2009;5:256–266.CrossRefPubMed
24.
go back to reference Jindahra P, Hedges TR, Mendoza-Santiesteban CE, Plant GT. Optical coherence tomography of the retina: applications in neurology. Curr Opin Neurol 2010;23:16–23.CrossRefPubMed Jindahra P, Hedges TR, Mendoza-Santiesteban CE, Plant GT. Optical coherence tomography of the retina: applications in neurology. Curr Opin Neurol 2010;23:16–23.CrossRefPubMed
25.
go back to reference Lameril C, Newman N, Biousse V. The use of optical coherence tomography in neurology. Rev Neurol Dis 2009;6:E105–120. Lameril C, Newman N, Biousse V. The use of optical coherence tomography in neurology. Rev Neurol Dis 2009;6:E105–120.
26.
go back to reference Sakata LM, DeLeon-Ortega J, Sakata V, Girkin CA. Optical coherence tomography of the retina and optic nerve—a review. Clin Exp Ophthalmol 2009;37:90–99.CrossRef Sakata LM, DeLeon-Ortega J, Sakata V, Girkin CA. Optical coherence tomography of the retina and optic nerve—a review. Clin Exp Ophthalmol 2009;37:90–99.CrossRef
27.
go back to reference Glisson CC, Galetta SL. Nonconventional optic nerve imaging in multiple sclerosis. Neuroimag Clin N Am 2009;19:71–79.CrossRef Glisson CC, Galetta SL. Nonconventional optic nerve imaging in multiple sclerosis. Neuroimag Clin N Am 2009;19:71–79.CrossRef
28.
go back to reference Kallenbach K, Frederiksen J. Optical coherence tomography in optic neuritis and multiple sclerosis: a review. Eur J Neurol 2007;14:841–849.CrossRefPubMed Kallenbach K, Frederiksen J. Optical coherence tomography in optic neuritis and multiple sclerosis: a review. Eur J Neurol 2007;14:841–849.CrossRefPubMed
29.
go back to reference Frohman E, Costello F, Zivadinov R, et al. Optical coherence tomography in multiple sclerosis. Lancet Neurol 2006;5:853–863.CrossRefPubMed Frohman E, Costello F, Zivadinov R, et al. Optical coherence tomography in multiple sclerosis. Lancet Neurol 2006;5:853–863.CrossRefPubMed
30.
go back to reference Burkholder BM, Osborne B, Loguidice MJ, et al. Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 2008;66:1366–1372.CrossRef Burkholder BM, Osborne B, Loguidice MJ, et al. Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 2008;66:1366–1372.CrossRef
31.
go back to reference Talman LS, Bisker ER, Sackel DJ, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010;67:749–760.PubMed Talman LS, Bisker ER, Sackel DJ, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010;67:749–760.PubMed
32.
go back to reference Syc SB, Warner CV, Hiremath GS, et al. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler 2010;16:829–839. Syc SB, Warner CV, Hiremath GS, et al. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler 2010;16:829–839.
33.
go back to reference Traboulsee A, Dehmeshki J, Peters KR, et al. Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities. Mult Scler 2003;9:566–573.CrossRefPubMed Traboulsee A, Dehmeshki J, Peters KR, et al. Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities. Mult Scler 2003;9:566–573.CrossRefPubMed
34.
go back to reference Frohman EM, Zhang H, Kramer PD, et al. MRI characteristics of the MLF in MS patients with chronic internuclear ophthalmoparesis. Neurology 2001;57:762–768.PubMed Frohman EM, Zhang H, Kramer PD, et al. MRI characteristics of the MLF in MS patients with chronic internuclear ophthalmoparesis. Neurology 2001;57:762–768.PubMed
35.
go back to reference Frohman EM, Frohman TC, O’Suilleabhain P et al. Quantitative oculographic characterization of internuclear ophthalmoparesis in multiple sclerosis: the versional dysconjugacy index Z score. J Neurol Neurosurg Psychiatry 2002;73:51–55.CrossRefPubMed Frohman EM, Frohman TC, O’Suilleabhain P et al. Quantitative oculographic characterization of internuclear ophthalmoparesis in multiple sclerosis: the versional dysconjugacy index Z score. J Neurol Neurosurg Psychiatry 2002;73:51–55.CrossRefPubMed
36.
go back to reference Fox RJ, McColl RW, Lee JC, et al. A preliminary validation study of diffusion tensor imaging as a measure of functional brain injury. Arch Neurol 2008;65:1179–1184.CrossRefPubMed Fox RJ, McColl RW, Lee JC, et al. A preliminary validation study of diffusion tensor imaging as a measure of functional brain injury. Arch Neurol 2008;65:1179–1184.CrossRefPubMed
37.
38.
go back to reference Swanson EA, Izatt JA, Hee MR, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett 1993;18:1864–1866.CrossRefPubMed Swanson EA, Izatt JA, Hee MR, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett 1993;18:1864–1866.CrossRefPubMed
39.
go back to reference Fercher AF, Hitzenberger CK, Drexler W, et al. In vivo optical coherence tomography. Am J Ophthalmol 1993;116:113–114.PubMed Fercher AF, Hitzenberger CK, Drexler W, et al. In vivo optical coherence tomography. Am J Ophthalmol 1993;116:113–114.PubMed
40.
go back to reference Hee MR, Puliafito CA, Wong C, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325–332.PubMed Hee MR, Puliafito CA, Wong C, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325–332.PubMed
41.
go back to reference Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995;102:217–229.PubMed Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995;102:217–229.PubMed
42.
go back to reference Drexler W and Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 2008;27:45–88.CrossRefPubMed Drexler W and Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 2008;27:45–88.CrossRefPubMed
43.
go back to reference de Boer JF, Cense B, Park BH, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003;28:2067–2069.CrossRefPubMed de Boer JF, Cense B, Park BH, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003;28:2067–2069.CrossRefPubMed
44.
go back to reference Leitgeb R, Hitzenberger A, Fercher C. Performance of Fourier domain vs time domain optical coherence tomography. Opt Express 2003;11:889–894.CrossRefPubMed Leitgeb R, Hitzenberger A, Fercher C. Performance of Fourier domain vs time domain optical coherence tomography. Opt Express 2003;11:889–894.CrossRefPubMed
45.
go back to reference Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002;7:457–463.CrossRefPubMed Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002;7:457–463.CrossRefPubMed
46.
go back to reference Nassif N, Cense B, Park BH, et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 2004;29:480–482.CrossRefPubMed Nassif N, Cense B, Park BH, et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 2004;29:480–482.CrossRefPubMed
47.
go back to reference Wojtkowski M, Srinivasan V, Ko T, Fujimoto J, Kowalczyk A, Duker J. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 2004;12:2404–2422.CrossRefPubMed Wojtkowski M, Srinivasan V, Ko T, Fujimoto J, Kowalczyk A, Duker J. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 2004;12:2404–2422.CrossRefPubMed
48.
go back to reference Choma MA, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 2003;11:2183–2189.CrossRefPubMed Choma MA, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 2003;11:2183–2189.CrossRefPubMed
49.
go back to reference Keeler CR. The ophthalmoscope in the lifetime of Hermann von Helmholtz. Arch Ophthalmol 2002;120:194–201.PubMed Keeler CR. The ophthalmoscope in the lifetime of Hermann von Helmholtz. Arch Ophthalmol 2002;120:194–201.PubMed
50.
go back to reference Frisén L and Hoyt WF. Insidious atrophy of retinal nerve fibers in multiple sclerosis. Funduscopic identification in patients with and without visual complaints. Arch Ophthalmol 1974;92:91–97.PubMed Frisén L and Hoyt WF. Insidious atrophy of retinal nerve fibers in multiple sclerosis. Funduscopic identification in patients with and without visual complaints. Arch Ophthalmol 1974;92:91–97.PubMed
51.
go back to reference Kerrison JB, Flynn T, Green WR. Retinal pathologic changes in multiple sclerosis. Retina 1994;14:445–451.CrossRefPubMed Kerrison JB, Flynn T, Green WR. Retinal pathologic changes in multiple sclerosis. Retina 1994;14:445–451.CrossRefPubMed
52.
go back to reference Frohman EM, Costello F, Stüve O, et al. Modeling axonal degeneration within the anterior visual system: implications for demonstrating neuroprotection in multiple sclerosis. Arch Neurol 2008;65:26–35.CrossRefPubMed Frohman EM, Costello F, Stüve O, et al. Modeling axonal degeneration within the anterior visual system: implications for demonstrating neuroprotection in multiple sclerosis. Arch Neurol 2008;65:26–35.CrossRefPubMed
53.
go back to reference Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 1976;26:26–28.PubMed Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 1976;26:26–28.PubMed
54.
go back to reference Toussaint D, Périer O, Verstappen A, Bervoets S.. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuro-Ophthalmol 1983;3:211–220.CrossRef Toussaint D, Périer O, Verstappen A, Bervoets S.. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuro-Ophthalmol 1983;3:211–220.CrossRef
56.
go back to reference Frohman EM, Frohman TC, Zee DS, McColl R, Galetta S. The neuro-ophthalmology of multiple sclerosis. Lancet Neurol 2005;4:111–121.CrossRefPubMed Frohman EM, Frohman TC, Zee DS, McColl R, Galetta S. The neuro-ophthalmology of multiple sclerosis. Lancet Neurol 2005;4:111–121.CrossRefPubMed
57.
go back to reference Kupersmith MJ, Alban T, Zeiffer B, Lefton D. Contrast-enhanced MRI in acute optic neuritis: relationship to visual performance. Brain 2002;125:812–822.CrossRefPubMed Kupersmith MJ, Alban T, Zeiffer B, Lefton D. Contrast-enhanced MRI in acute optic neuritis: relationship to visual performance. Brain 2002;125:812–822.CrossRefPubMed
58.
go back to reference Hickman SJ, Toosy AT, Jones SJ, et al. A serial MRI study following optic nerve mean area in acute optic neuritis. Brain 2004;127:2498–2505.CrossRefPubMed Hickman SJ, Toosy AT, Jones SJ, et al. A serial MRI study following optic nerve mean area in acute optic neuritis. Brain 2004;127:2498–2505.CrossRefPubMed
59.
go back to reference Wu GF Schwartz ED, Lei T, et al. Relation of vision to global and regional brain MRI in multiple sclerosis. Neurology 2007;69:2128–2135.CrossRefPubMed Wu GF Schwartz ED, Lei T, et al. Relation of vision to global and regional brain MRI in multiple sclerosis. Neurology 2007;69:2128–2135.CrossRefPubMed
60.
go back to reference Frohman EM, Racke MK, Raine CS, et al. Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 2006;354:942–955.CrossRefPubMed Frohman EM, Racke MK, Raine CS, et al. Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 2006;354:942–955.CrossRefPubMed
61.
go back to reference Kanamori A, Escano MF, Eno A, et al. Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Opthalmologica 2003;217:273–278.CrossRef Kanamori A, Escano MF, Eno A, et al. Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Opthalmologica 2003;217:273–278.CrossRef
62.
go back to reference Balcer LJ, Baier ML, Cohen JA, et al. Contrast letter acuity as a visual component for the Multiple Sclerosis Functional Composite. Neurology 2003;61:1367–1373.PubMed Balcer LJ, Baier ML, Cohen JA, et al. Contrast letter acuity as a visual component for the Multiple Sclerosis Functional Composite. Neurology 2003;61:1367–1373.PubMed
63.
go back to reference Baier ML, Cutter GR, Rudick RA, et al. Low-contrast letter acuity testing captures visual dysfunction in patients with multiple sclerosis. Neurology 2005;64:992–995.PubMed Baier ML, Cutter GR, Rudick RA, et al. Low-contrast letter acuity testing captures visual dysfunction in patients with multiple sclerosis. Neurology 2005;64:992–995.PubMed
64.
go back to reference Grazioli E, Zivadinov R, Weinstock-Guttman B, et al. Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci 2008;268:12–17.CrossRefPubMed Grazioli E, Zivadinov R, Weinstock-Guttman B, et al. Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci 2008;268:12–17.CrossRefPubMed
65.
go back to reference Green A, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 2010;133:1591-1601.CrossRefPubMed Green A, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 2010;133:1591-1601.CrossRefPubMed
66.
go back to reference Naismith RT, Tutlam NT, Xu J, Shepherd JB, Klawiter EC, Song SK, Cross AH. Optical coherence tomography is less sensitive than visual evoked potentials in optic neuritis. Neurology 2009;73:46-52.CrossRefPubMed Naismith RT, Tutlam NT, Xu J, Shepherd JB, Klawiter EC, Song SK, Cross AH. Optical coherence tomography is less sensitive than visual evoked potentials in optic neuritis. Neurology 2009;73:46-52.CrossRefPubMed
67.
go back to reference Banks MC et al. Scanning laser polarimetry of edematous and atrophic optic nerve heads. Arch Ophthalmol 2003;121:484–490.CrossRefPubMed Banks MC et al. Scanning laser polarimetry of edematous and atrophic optic nerve heads. Arch Ophthalmol 2003;121:484–490.CrossRefPubMed
68.
go back to reference Jiao S et al. Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography. Opt Express 2005;13:444–452.CrossRefPubMed Jiao S et al. Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography. Opt Express 2005;13:444–452.CrossRefPubMed
69.
go back to reference Wojtkowski M et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734–1746.CrossRefPubMed Wojtkowski M et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734–1746.CrossRefPubMed
70.
go back to reference Beck RW, Cleary PA, Anderson MM, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N Engl J Med 1992;326:581-588.CrossRefPubMed Beck RW, Cleary PA, Anderson MM, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N Engl J Med 1992;326:581-588.CrossRefPubMed
71.
go back to reference Optic Neuritis Study Group: The clinical profile of optic neuritis. Experience of the Optic Neuritis Treatment Trial. Arch Ophthalmol 1991;109:1673-1678. Optic Neuritis Study Group: The clinical profile of optic neuritis. Experience of the Optic Neuritis Treatment Trial. Arch Ophthalmol 1991;109:1673-1678.
72.
go back to reference Optic Neuritis Study Group. High risk and low risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: Experience of the Optic Neuritis Treatment Trial. Arch Ophthalmol 2003;121:944-949.CrossRef Optic Neuritis Study Group. High risk and low risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: Experience of the Optic Neuritis Treatment Trial. Arch Ophthalmol 2003;121:944-949.CrossRef
73.
go back to reference Optic Neuritis Study Group. The 5 year risk of multiple sclerosis after optic neuritis: Experience of the optic neuritis treatment trial. Neurology 1997;49:1404-1413. Optic Neuritis Study Group. The 5 year risk of multiple sclerosis after optic neuritis: Experience of the optic neuritis treatment trial. Neurology 1997;49:1404-1413.
74.
go back to reference Balcer LJ, Galetta SL. Optic neuritis. In: Conn’s current therapy. Rakel RE, Bope ET (Eds.), Philadelphia: W.B. Saunders, pp 187–190, 2004. Balcer LJ, Galetta SL. Optic neuritis. In: Conn’s current therapy. Rakel RE, Bope ET (Eds.), Philadelphia: W.B. Saunders, pp 187–190, 2004.
75.
go back to reference Ischemic Optic Neuropathy Decompression Trial Research Group. Optic nerve decompression surgery for nonarteritic anterior ischemic optic neuropathy (NAION) is not effective and may be harmful. JAMA 1995;273:625–632.CrossRef Ischemic Optic Neuropathy Decompression Trial Research Group. Optic nerve decompression surgery for nonarteritic anterior ischemic optic neuropathy (NAION) is not effective and may be harmful. JAMA 1995;273:625–632.CrossRef
76.
go back to reference Chan CKM, Cheng ACO, Leung CKS et al. Quantitative assessment of optic nerve head morphology and retinal nerve fibre layer in non-arteritic anterior ischaemic optic neuropathy with optical coherence tomography and confocal scanning laser ophthalmoscopy. Br J Ophthalmol 2009;93:731–735.CrossRefPubMed Chan CKM, Cheng ACO, Leung CKS et al. Quantitative assessment of optic nerve head morphology and retinal nerve fibre layer in non-arteritic anterior ischaemic optic neuropathy with optical coherence tomography and confocal scanning laser ophthalmoscopy. Br J Ophthalmol 2009;93:731–735.CrossRefPubMed
77.
go back to reference Alasil T, Tan O, Hui Lu, AT et al. Correlation of Fourier domain optical coherence tomography retinal nerve fiber layer maps with visual fields in nonarteritic ischemic optic neuropathy. Ophthalmic Surg Lasers Imaging 2008;39:S71–S79.PubMed Alasil T, Tan O, Hui Lu, AT et al. Correlation of Fourier domain optical coherence tomography retinal nerve fiber layer maps with visual fields in nonarteritic ischemic optic neuropathy. Ophthalmic Surg Lasers Imaging 2008;39:S71–S79.PubMed
78.
go back to reference Contreras I, Noval S, Rebolleda G et al. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 2007;114: 2338–2344.CrossRefPubMed Contreras I, Noval S, Rebolleda G et al. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 2007;114: 2338–2344.CrossRefPubMed
79.
go back to reference Horowitz J, Fishelzon T, Rath EZ et al. Comparison of optic nerve head topography findings in eyes with non arteritic anterior ischemic optic neuropathy and eyes with glaucoma. Graefes Arch Clin Ophthalmol 2010;248:845–851.CrossRef Horowitz J, Fishelzon T, Rath EZ et al. Comparison of optic nerve head topography findings in eyes with non arteritic anterior ischemic optic neuropathy and eyes with glaucoma. Graefes Arch Clin Ophthalmol 2010;248:845–851.CrossRef
80.
go back to reference Danesh-Meyer HV, Boland MV, Savino PJ et al. Optic disc morphology in open angle glaucoma compared with anterior ischemic optic neuropathies. Invest Ophthalmol Vis Sci 2010;51:2003–2010.CrossRefPubMed Danesh-Meyer HV, Boland MV, Savino PJ et al. Optic disc morphology in open angle glaucoma compared with anterior ischemic optic neuropathies. Invest Ophthalmol Vis Sci 2010;51:2003–2010.CrossRefPubMed
81.
go back to reference Contreras I, Rebolleda G, Noval S et al. Optic disc evaluation by optical coherence tomography in nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 2007;48:4087–4092.CrossRefPubMed Contreras I, Rebolleda G, Noval S et al. Optic disc evaluation by optical coherence tomography in nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 2007;48:4087–4092.CrossRefPubMed
82.
go back to reference Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 1999;53:1107–1114.PubMed Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 1999;53:1107–1114.PubMed
83.
go back to reference Ratchford JN, Quigg ME, Conger A et al. Optical coherence tomography helps differentiate neuromyelitis optica from MS optic neuropathies. Neurology 2009;73:302–308.CrossRefPubMed Ratchford JN, Quigg ME, Conger A et al. Optical coherence tomography helps differentiate neuromyelitis optica from MS optic neuropathies. Neurology 2009;73:302–308.CrossRefPubMed
84.
go back to reference Newman NJ, Biousse V. Hereditary optic neuropathies. Eye 2004;18:114–160. Newman NJ, Biousse V. Hereditary optic neuropathies. Eye 2004;18:114–160.
85.
go back to reference Barboni P, Carbonelli M, Savini G et al. Natural history of Leber’s hereditary optic neuropathy: Longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 2010;117:623–627.CrossRefPubMed Barboni P, Carbonelli M, Savini G et al. Natural history of Leber’s hereditary optic neuropathy: Longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 2010;117:623–627.CrossRefPubMed
86.
go back to reference Ramos CVF, Bellusci C, Savini G et al. Association of optic disc size with development and prognosis of Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 2009;50:1666–1674.CrossRefPubMed Ramos CVF, Bellusci C, Savini G et al. Association of optic disc size with development and prognosis of Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 2009;50:1666–1674.CrossRefPubMed
87.
go back to reference Savini G, Barboni P, Valentino ML et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology 2005;112:127–131.CrossRefPubMed Savini G, Barboni P, Valentino ML et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology 2005;112:127–131.CrossRefPubMed
88.
go back to reference Seo JH, Hwang JM, Park SS. Comparison of retinal nerve fibre layer between 11778 and 14484 mutations in Leber’s hereditary optic neuropathy. Eye 2010;24:107–111.CrossRefPubMed Seo JH, Hwang JM, Park SS. Comparison of retinal nerve fibre layer between 11778 and 14484 mutations in Leber’s hereditary optic neuropathy. Eye 2010;24:107–111.CrossRefPubMed
89.
go back to reference Schmalfuss IM, Dean CW, Sistrom C, Bhatti MT. Optic neuropathy secondary to cat scratch disease: Distinguishing MR imaging features from other types of optic neuropathies. AJNR Am J Neuroradiol 2010;26:1310–1316. Schmalfuss IM, Dean CW, Sistrom C, Bhatti MT. Optic neuropathy secondary to cat scratch disease: Distinguishing MR imaging features from other types of optic neuropathies. AJNR Am J Neuroradiol 2010;26:1310–1316.
90.
go back to reference Pineles SL, Wilson CA, Balcer LJ et al. Combined optic neuropathy and myelopathy secondary to copper deficiency. Surv Ophthalmol 2010;55:386–392.CrossRefPubMed Pineles SL, Wilson CA, Balcer LJ et al. Combined optic neuropathy and myelopathy secondary to copper deficiency. Surv Ophthalmol 2010;55:386–392.CrossRefPubMed
91.
go back to reference Danesh-Meyer HV, Papchenko T, Savino PJ et al. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Visual Sci 2008;49:1879–1885.CrossRef Danesh-Meyer HV, Papchenko T, Savino PJ et al. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Visual Sci 2008;49:1879–1885.CrossRef
92.
go back to reference Jacob M, Raverot G, Jounneau E et al. Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 2009;147:64–70.CrossRefPubMed Jacob M, Raverot G, Jounneau E et al. Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 2009;147:64–70.CrossRefPubMed
93.
go back to reference Shinojima A, Hirose T, Mori et al. Morphologic findings in acute central serous chorioretinopathy using spectral domain optical coherence tomography with simultaneous angiography. Retina 2010;30:193–202.CrossRefPubMed Shinojima A, Hirose T, Mori et al. Morphologic findings in acute central serous chorioretinopathy using spectral domain optical coherence tomography with simultaneous angiography. Retina 2010;30:193–202.CrossRefPubMed
94.
go back to reference Leung CK, Cheung CYL, Weinreb RN et al. Evaluation of retinal nerve fiber progression in glaucoma: A study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010;51:217–222.CrossRefPubMed Leung CK, Cheung CYL, Weinreb RN et al. Evaluation of retinal nerve fiber progression in glaucoma: A study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010;51:217–222.CrossRefPubMed
95.
go back to reference Iseri PK, Atlinaş Ö, Tokay T, Yüksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuro-Ophthalmol 2006;26:18–24.CrossRef Iseri PK, Atlinaş Ö, Tokay T, Yüksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuro-Ophthalmol 2006;26:18–24.CrossRef
96.
go back to reference Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL. Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 2007;48:2285–2289.CrossRefPubMed Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL. Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 2007;48:2285–2289.CrossRefPubMed
97.
98.
go back to reference Hajee ME, March WF, Lazzaro DR, et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009;127:737–741.CrossRefPubMed Hajee ME, March WF, Lazzaro DR, et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009;127:737–741.CrossRefPubMed
99.
go back to reference Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 2004;44:2793–2797.CrossRefPubMed Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 2004;44:2793–2797.CrossRefPubMed
100.
go back to reference Fortuna F, Barboni P, Liguori R, et al. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009;132:116–123.CrossRefPubMed Fortuna F, Barboni P, Liguori R, et al. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009;132:116–123.CrossRefPubMed
Metadata
Title
Optical Coherence Tomography (OCT): Imaging the Visual Pathway as a Model for Neurodegeneration
Authors
Kristin M. Galetta
Peter A. Calabresi
Elliot M. Frohman
Laura J. Balcer, M.D., M.S.C.E.
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Neurotherapeutics / Issue 1/2011
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-010-0005-1

Other articles of this Issue 1/2011

Neurotherapeutics 1/2011 Go to the issue