Skip to main content
Top
Published in: Diabetes Therapy 1/2020

Open Access 01-01-2020 | Insulins | Original Research

Impact of a Formulation Containing Unusual Polyunsaturated Fatty Acids, Trace Elements, Polyphenols and Plant Sterols on Insulin Resistance and Associated Disturbances

Authors: María J. Peláez-Jaramillo, Natalia Valencia-Enciso, Allison A. Cárdenas-Mojica, Paula V. Gaete, Eitan A. Scher-Nemirovsky, Luisa F. Gómez-Arango, Daniel Colmenares-Araque, Camilo A. Castro-López, Eddy Betancourt-Villamizar, Jesús Jaimes-Madrigal, Carlos A. Alvarez, Mario A. Jiménez-Mora, Pedro J. Quiroga-Padilla, Danna K. Puerto-Baracaldo, Carlos O. Mendivil

Published in: Diabetes Therapy | Issue 1/2020

Login to get access

Abstract

Introduction

To evaluate the effect of a lipid-based formulation containing unusual polyunsaturated fatty acids, trace elements, polyphenols and plant sterols on insulin resistance and its associated disturbances among adults at risk of diabetes.

Methods

This was an 8-week, three-arm, open-label randomized clinical trial. We studied individuals aged ≥ 18 years old with diabetes risk given by a body mass index ≥ 25 kg/m2 or a FinnRisc score ≥ 13/20. Participants were randomly assigned to receive: 7 ml sunflower oil (control group), 3.5 ml of the study formulation + 3.5 ml of sunflower oil (low-dose group) or 7 ml of study formulation (high-dose group).

Results

We randomized 25 individuals. After one withdrawal in the high-dose group, the study sample comprised nine patients in the control, nine in the low-dose and six in the high-dose groups. The insulin sensitivity increased significantly and in a dose-dependent fashion, up to 10% in the high-dose group. At week 8 the low-dose group exhibited lower glycemic excursions during the oral glucose tolerance test (OGTT), especially 1 h after the glucose challenge (32 mg/dl or 23% lower vs. control group). The incremental area under the glucose curve in the OGTT was 17.1% lower in the low-dose group vs. the control group. Waist circumference increased in the control group, remained constant in the low-dose group and decreased in the high-dose group. C-reactive protein decreased in both formulation groups, up to 50% in the high-dose group. Participants in the formulation groups exhibited increased secretion of GLP-1 and plasma irisin at week 8 vs. the control group.

Conclusion

The formulation induced favorable changes in insulin sensitivity, glucose tolerance, abdominal obesity and inflammation. These effects and their durability will need to be assessed in larger studies.

Trial Registration

NCT03512665.

Funding

Team Foods Colombia.
Literature
1.
go back to reference GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–88. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–88.
2.
go back to reference GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–94. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–94.
3.
go back to reference Faerch K, Borch-Johnsen K, Holst JJ, Vaag A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia. 2009;52:1714–23.PubMed Faerch K, Borch-Johnsen K, Holst JJ, Vaag A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia. 2009;52:1714–23.PubMed
4.
go back to reference Johnson AM, Olefsky JM. The origins and drivers of insulin resistance. Cell. 2013;152:673–84.PubMed Johnson AM, Olefsky JM. The origins and drivers of insulin resistance. Cell. 2013;152:673–84.PubMed
5.
go back to reference Buysschaert M, Medina JL, Bergman M, Shah A, Lonier J. Prediabetes and associated disorders. Endocrine. 2015;48:371–93.PubMed Buysschaert M, Medina JL, Bergman M, Shah A, Lonier J. Prediabetes and associated disorders. Endocrine. 2015;48:371–93.PubMed
6.
go back to reference Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10:293–302.PubMed Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10:293–302.PubMed
7.
go back to reference Goldstein JN, Long JA, Arevalo D, Ibrahim SA, Mao JJ. US veterans use vitamins and supplements as substitutes for prescription medication. Med Care. 2014;52:S65–9.PubMed Goldstein JN, Long JA, Arevalo D, Ibrahim SA, Mao JJ. US veterans use vitamins and supplements as substitutes for prescription medication. Med Care. 2014;52:S65–9.PubMed
8.
go back to reference Bishop FL, Yardley L, Lewith G. Developing a measure of treatment beliefs: the complementary and alternative medicine beliefs inventory. Complement Ther Med. 2005;13:144–9.PubMed Bishop FL, Yardley L, Lewith G. Developing a measure of treatment beliefs: the complementary and alternative medicine beliefs inventory. Complement Ther Med. 2005;13:144–9.PubMed
9.
go back to reference O’Callaghan FV, Jordan N. Postmodern values, attitudes and the use of complementary medicine. Complement Ther Med. 2003;11:28–32.PubMed O’Callaghan FV, Jordan N. Postmodern values, attitudes and the use of complementary medicine. Complement Ther Med. 2003;11:28–32.PubMed
10.
go back to reference Shabbir MA, Khan MR, Saeed M, Pasha I, Khalil AA, Siraj N. Punicic acid: a striking health substance to combat metabolic syndromes in humans. Lipids Health Dis. 2017;16:99.PubMedPubMedCentral Shabbir MA, Khan MR, Saeed M, Pasha I, Khalil AA, Siraj N. Punicic acid: a striking health substance to combat metabolic syndromes in humans. Lipids Health Dis. 2017;16:99.PubMedPubMedCentral
11.
go back to reference Vroegrijk IOCM, Diepen JAV, Berg SVD, et al. Pomegranate seed oil, a rich source of PA, prevents diet-induced obesity and insulin resistance in mice. Food Chem Toxicol. 2011;49:1426–30.PubMed Vroegrijk IOCM, Diepen JAV, Berg SVD, et al. Pomegranate seed oil, a rich source of PA, prevents diet-induced obesity and insulin resistance in mice. Food Chem Toxicol. 2011;49:1426–30.PubMed
12.
go back to reference Arao K, Wang Y, Inoue N, et al. Dietary effect of pomegranate seed oil rich in 9cis, 11trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF rats. Lipids Health Dis. 2004;3:24–30.PubMedPubMedCentral Arao K, Wang Y, Inoue N, et al. Dietary effect of pomegranate seed oil rich in 9cis, 11trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF rats. Lipids Health Dis. 2004;3:24–30.PubMedPubMedCentral
13.
go back to reference Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–44.PubMedPubMedCentral Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–44.PubMedPubMedCentral
14.
go back to reference Mozaffarian D, Cao H, King IB, et al. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in US adults: a cohort study. Ann Intern Med. 2010;153:790–9.PubMedPubMedCentral Mozaffarian D, Cao H, King IB, et al. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in US adults: a cohort study. Ann Intern Med. 2010;153:790–9.PubMedPubMedCentral
15.
go back to reference Shiba S, Tsunoda N, Wakutsu M, et al. Regulation of lipid metabolism by palmitoleate and eicosapentaenoic acid (EPA) in mice fed a high-fat diet. Biosci Biotechnol Biochem. 2011;75:2401–3.PubMed Shiba S, Tsunoda N, Wakutsu M, et al. Regulation of lipid metabolism by palmitoleate and eicosapentaenoic acid (EPA) in mice fed a high-fat diet. Biosci Biotechnol Biochem. 2011;75:2401–3.PubMed
16.
go back to reference Bernstein AM, Roizen MF, Martinez L. Purified palmitoleic acid for the reduction of high-sensitivity C-reactive protein and serum lipids: a double-blinded, randomized, placebo controlled study. J Clin Lipidol. 2014;8:612–7.PubMed Bernstein AM, Roizen MF, Martinez L. Purified palmitoleic acid for the reduction of high-sensitivity C-reactive protein and serum lipids: a double-blinded, randomized, placebo controlled study. J Clin Lipidol. 2014;8:612–7.PubMed
17.
go back to reference Pasman WJ, Heimerikx J, Rubingh CM, et al. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids Health Dis. 2008;7:10.PubMedPubMedCentral Pasman WJ, Heimerikx J, Rubingh CM, et al. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids Health Dis. 2008;7:10.PubMedPubMedCentral
18.
go back to reference Hua Y, Clark S, Ren J, Sreejayan N. Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem. 2012;23:313–9.PubMedPubMedCentral Hua Y, Clark S, Ren J, Sreejayan N. Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem. 2012;23:313–9.PubMedPubMedCentral
19.
go back to reference Sharma S, Agrawal RP, Choudhary M, Jain S, Goyal S, Agarwal V. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J Trace Elem Med Biol. 2011;25:149–53.PubMed Sharma S, Agrawal RP, Choudhary M, Jain S, Goyal S, Agarwal V. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J Trace Elem Med Biol. 2011;25:149–53.PubMed
20.
go back to reference Ali A, Ma Y, Reynolds J, Wise JP Sr, Inzucchi SE, Katz DL. Chromium effects on glucose tolerance and insulin sensitivity in persons at risk for diabetes mellitus. Endocr Pract. 2011;17:16–25.PubMedPubMedCentral Ali A, Ma Y, Reynolds J, Wise JP Sr, Inzucchi SE, Katz DL. Chromium effects on glucose tolerance and insulin sensitivity in persons at risk for diabetes mellitus. Endocr Pract. 2011;17:16–25.PubMedPubMedCentral
21.
go back to reference Jain SK, Kahlon G, Morehead L, et al. Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: randomized, double-blind, placebo-controlled study. Mol Nutr Food Res. 2012;56:1333–41.PubMedPubMedCentral Jain SK, Kahlon G, Morehead L, et al. Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: randomized, double-blind, placebo-controlled study. Mol Nutr Food Res. 2012;56:1333–41.PubMedPubMedCentral
22.
go back to reference Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol. 2015;83:111–24.PubMed Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol. 2015;83:111–24.PubMed
23.
go back to reference Na LX, Li Y, Pan HZ, et al. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res. 2013;57:1569–77.PubMed Na LX, Li Y, Pan HZ, et al. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res. 2013;57:1569–77.PubMed
24.
go back to reference Mohammadi A, Sahebkar A, Iranshahi M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res. 2013;27:374–9.PubMed Mohammadi A, Sahebkar A, Iranshahi M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res. 2013;27:374–9.PubMed
25.
go back to reference Rondanelli M, Monteferrario F, Faliva MA, Perna S, Antoniello N. Key points for maximum effectiveness and safety for cholesterol-lowering properties of plant sterols and use in the treatment of metabolic syndrome. J Sci Food Agric. 2013;93:2605–10.PubMed Rondanelli M, Monteferrario F, Faliva MA, Perna S, Antoniello N. Key points for maximum effectiveness and safety for cholesterol-lowering properties of plant sterols and use in the treatment of metabolic syndrome. J Sci Food Agric. 2013;93:2605–10.PubMed
26.
go back to reference Barengo NC, Tamayo DC, Tono T, Tuomilehto J. A Colombian diabetes risk score for detecting undiagnosed diabetes and impaired glucose regulation. Prim Care Diabetes. 2017;11:86–93.PubMed Barengo NC, Tamayo DC, Tono T, Tuomilehto J. A Colombian diabetes risk score for detecting undiagnosed diabetes and impaired glucose regulation. Prim Care Diabetes. 2017;11:86–93.PubMed
27.
go back to reference Gutt M, Davis CL, Spitzer SB, et al. Validation of the insulin sensitivity index (ISI(0,120)): comparison with other measures. Diabetes Res Clin Pract. 2000;47:177–84.PubMed Gutt M, Davis CL, Spitzer SB, et al. Validation of the insulin sensitivity index (ISI(0,120)): comparison with other measures. Diabetes Res Clin Pract. 2000;47:177–84.PubMed
28.
go back to reference Monsalve Álvarez JM, González Zapata L. Development of a questionnaire to assess food intake in the University of Antioquia, Colombia. Nutr Hosp. 2011;26:1333–44.PubMed Monsalve Álvarez JM, González Zapata L. Development of a questionnaire to assess food intake in the University of Antioquia, Colombia. Nutr Hosp. 2011;26:1333–44.PubMed
29.
go back to reference Ruiz-Casado A, Alejo LB, Santos-Lozano A, et al. Validity of the physical activity questionnaires IPAQ-SF and GPAQ for cancer survivors: insights from a Spanish cohort. Int J Sports Med. 2016;37:979–85.PubMed Ruiz-Casado A, Alejo LB, Santos-Lozano A, et al. Validity of the physical activity questionnaires IPAQ-SF and GPAQ for cancer survivors: insights from a Spanish cohort. Int J Sports Med. 2016;37:979–85.PubMed
30.
go back to reference Meigs JB, Rutter MK, Sullivan LM, Fox CS, D’Agostino RB Sr, Wilson PW. Impact of insulin resistance on risk of type 2 diabetes and cardiovascular disease in people with metabolic syndrome. Diabetes Care. 2007;30:1219–25.PubMed Meigs JB, Rutter MK, Sullivan LM, Fox CS, D’Agostino RB Sr, Wilson PW. Impact of insulin resistance on risk of type 2 diabetes and cardiovascular disease in people with metabolic syndrome. Diabetes Care. 2007;30:1219–25.PubMed
31.
go back to reference Bressler P, Bailey SR, Matsuda M, deFronzo RA. Insulin resistance and coronary artery disease. Diabetologia. 1996;39:1345–50.PubMed Bressler P, Bailey SR, Matsuda M, deFronzo RA. Insulin resistance and coronary artery disease. Diabetologia. 1996;39:1345–50.PubMed
32.
go back to reference Eddy D, Schlessinger L, Kahn R, Peskin B, Schiebinger R. Relationship of insulin resistance and related metabolic variables to coronary artery disease: a mathematical analysis. Diabetes Care. 2009;32:361–6.PubMedPubMedCentral Eddy D, Schlessinger L, Kahn R, Peskin B, Schiebinger R. Relationship of insulin resistance and related metabolic variables to coronary artery disease: a mathematical analysis. Diabetes Care. 2009;32:361–6.PubMedPubMedCentral
33.
go back to reference Xue H, Wang C, Li Y, et al. Incidence of type 2 diabetes and number of events attributable to abdominal obesity in China: a cohort study. J Diabetes. 2016;8:190–8.PubMed Xue H, Wang C, Li Y, et al. Incidence of type 2 diabetes and number of events attributable to abdominal obesity in China: a cohort study. J Diabetes. 2016;8:190–8.PubMed
34.
go back to reference Després JP, Lemieux I, Bergeron J, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28:1039–49.PubMed Després JP, Lemieux I, Bergeron J, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28:1039–49.PubMed
35.
go back to reference Dong Y, Zhou J, Zhu Y, et al. Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Biosci Rep. 2017;37:BSR20170945.PubMedPubMedCentral Dong Y, Zhou J, Zhu Y, et al. Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Biosci Rep. 2017;37:BSR20170945.PubMedPubMedCentral
36.
go back to reference Du X, Hidayat K, Shi BM. Abdominal obesity and gastroesophageal cancer risk: systematic review and meta-analysis of prospective studies. Biosci Rep. 2017;11(37):BSR20160474. Du X, Hidayat K, Shi BM. Abdominal obesity and gastroesophageal cancer risk: systematic review and meta-analysis of prospective studies. Biosci Rep. 2017;11(37):BSR20160474.
37.
go back to reference Hidayat K, Du X, Chen G, Shi M, Shi B. Abdominal obesity and lung cancer risk: systematic review and meta-analysis of prospective studies. Nutrients. 2016;8:E810.PubMed Hidayat K, Du X, Chen G, Shi M, Shi B. Abdominal obesity and lung cancer risk: systematic review and meta-analysis of prospective studies. Nutrients. 2016;8:E810.PubMed
38.
go back to reference Genkinger JM, Kitahara CM, Bernstein L, de Gonzalez BA, Brotzman M, Elena JW. Central adiposity, obesity during early adulthood, and pancreatic cancer mortality in a pooled analysis of cohort studies. Ann Oncol. 2015;26:2257–66.PubMedPubMedCentral Genkinger JM, Kitahara CM, Bernstein L, de Gonzalez BA, Brotzman M, Elena JW. Central adiposity, obesity during early adulthood, and pancreatic cancer mortality in a pooled analysis of cohort studies. Ann Oncol. 2015;26:2257–66.PubMedPubMedCentral
39.
go back to reference Santos AC, Lopes C, Guimarães JT, Barros H. Central obesity as a major determinant of increased high-sensitivity C-reactive protein in metabolic syndrome. Int J Obes (Lond). 2005;29:1452–6. Santos AC, Lopes C, Guimarães JT, Barros H. Central obesity as a major determinant of increased high-sensitivity C-reactive protein in metabolic syndrome. Int J Obes (Lond). 2005;29:1452–6.
40.
go back to reference Bennett NR, Ferguson TS, Bennett FI, et al. High-sensitivity C-reactive protein is related to central obesity and the number of metabolic syndrome components in Jamaican young adults. Front Cardiovasc Med. 2014;1:12.PubMedPubMedCentral Bennett NR, Ferguson TS, Bennett FI, et al. High-sensitivity C-reactive protein is related to central obesity and the number of metabolic syndrome components in Jamaican young adults. Front Cardiovasc Med. 2014;1:12.PubMedPubMedCentral
41.
go back to reference Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542:177–85. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542:177–85.
42.
go back to reference Lopez-Candales A, Hernández Burgos PM, Hernandez-Suarez DF, Harris D. Linking chronic inflammation with cardiovascular disease: from normal aging to the metabolic syndrome. J Nat Sci. 2017;3:e341.PubMedPubMedCentral Lopez-Candales A, Hernández Burgos PM, Hernandez-Suarez DF, Harris D. Linking chronic inflammation with cardiovascular disease: from normal aging to the metabolic syndrome. J Nat Sci. 2017;3:e341.PubMedPubMedCentral
43.
go back to reference Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev. 2015;95:513–48.PubMed Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev. 2015;95:513–48.PubMed
44.
go back to reference Jiang Y, Wang Z, Ma B, et al. GLP-1 improves adipocyte insulin sensitivity following induction of endoplasmic reticulum stress. Front Pharmacol. 2018;9:1168.PubMedPubMedCentral Jiang Y, Wang Z, Ma B, et al. GLP-1 improves adipocyte insulin sensitivity following induction of endoplasmic reticulum stress. Front Pharmacol. 2018;9:1168.PubMedPubMedCentral
45.
go back to reference Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.PubMedPubMedCentral Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.PubMedPubMedCentral
46.
go back to reference Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes. 2014;38:1538–44. Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes. 2014;38:1538–44.
47.
go back to reference Xiong XQ, Chen D, Sun HJ, et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta. 2015;852:1867–75. Xiong XQ, Chen D, Sun HJ, et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta. 2015;852:1867–75.
48.
go back to reference Vaughan RA, Gannon NP, Barberena MA, et al. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab. 2014;16:711–8.PubMed Vaughan RA, Gannon NP, Barberena MA, et al. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab. 2014;16:711–8.PubMed
49.
go back to reference Mo L, Shen J, Liu Q, et al. Irisin is regulated by CAR in liver and is a mediator of hepatic glucose and lipid metabolism. Mol Endocrinol. 2016;30:533–42.PubMedPubMedCentral Mo L, Shen J, Liu Q, et al. Irisin is regulated by CAR in liver and is a mediator of hepatic glucose and lipid metabolism. Mol Endocrinol. 2016;30:533–42.PubMedPubMedCentral
50.
go back to reference Motahari-Tabari N, Ahmad Shirvani M, Shirzad-E-Ahoodashty M, Yousefi-Abdolmaleki E, Teimourzadeh M. The effect of 8 weeks aerobic exercise on insulin resistance in type 2 diabetes: a randomized clinical trial. Glob J Health Sci. 2014;7:115–21.PubMedPubMedCentral Motahari-Tabari N, Ahmad Shirvani M, Shirzad-E-Ahoodashty M, Yousefi-Abdolmaleki E, Teimourzadeh M. The effect of 8 weeks aerobic exercise on insulin resistance in type 2 diabetes: a randomized clinical trial. Glob J Health Sci. 2014;7:115–21.PubMedPubMedCentral
51.
go back to reference Madsen SM, Thorup AC, Overgaard K, Jeppesen PB. High intensity interval training improves glycaemic control and pancreatic β cell function of type 2 diabetes patients. PLoS One. 2015;10:e0133286.PubMedPubMedCentral Madsen SM, Thorup AC, Overgaard K, Jeppesen PB. High intensity interval training improves glycaemic control and pancreatic β cell function of type 2 diabetes patients. PLoS One. 2015;10:e0133286.PubMedPubMedCentral
Metadata
Title
Impact of a Formulation Containing Unusual Polyunsaturated Fatty Acids, Trace Elements, Polyphenols and Plant Sterols on Insulin Resistance and Associated Disturbances
Authors
María J. Peláez-Jaramillo
Natalia Valencia-Enciso
Allison A. Cárdenas-Mojica
Paula V. Gaete
Eitan A. Scher-Nemirovsky
Luisa F. Gómez-Arango
Daniel Colmenares-Araque
Camilo A. Castro-López
Eddy Betancourt-Villamizar
Jesús Jaimes-Madrigal
Carlos A. Alvarez
Mario A. Jiménez-Mora
Pedro J. Quiroga-Padilla
Danna K. Puerto-Baracaldo
Carlos O. Mendivil
Publication date
01-01-2020
Publisher
Springer Healthcare
Keywords
Insulins
Insulins
Published in
Diabetes Therapy / Issue 1/2020
Print ISSN: 1869-6953
Electronic ISSN: 1869-6961
DOI
https://doi.org/10.1007/s13300-019-00721-z

Other articles of this Issue 1/2020

Diabetes Therapy 1/2020 Go to the issue