Skip to main content
Top
Published in: Tumor Biology 12/2016

01-12-2016 | Original Article

A humanized chimeric antibody Hai178 targeted to the β subunit of F1F0 ATP synthase

Authors: Chen Chen, Hui Liang, Xinmei Liao, Jian Pan, Jianhe Chen, Shibi Zhao, Yan Xu, Yun Wu, Jian Ni

Published in: Tumor Biology | Issue 12/2016

Login to get access

Abstract

Inhibition of tumor vasculature is an effective strategy for cancer therapy. Angiostatin could suppress tumor growth and metastasis by binding and inhibiting F1F0 ATP synthase on the endothelial cell surface. We previously screened a monoclonal antibody (McAb, McAb178-5G10), which specifically bound to ATPase on the surface of cells and showed an angiostatin-like activity. Here, we further generated a panel of CHO-mAb subclone stable expressing a humanized chimeric antibody from hybridoma cell McAb178-5G10 by gene engineer. And then, we successfully expressed the humanized antibody Hai178 at high level in a 5-L wave bioreactor. The vitro results showed that Hai178 retained the specific binding and antitumor activity of murine antibody. Furthermore, Hai178 also had a tumor therapeutic effect in tumor xenografts. These results paved the way for Hai178 as a therapeutic antibody in clinic.
Literature
1.
go back to reference Burwick NR. An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem. 2004;280:1740–5.CrossRefPubMedPubMedCentral Burwick NR. An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem. 2004;280:1740–5.CrossRefPubMedPubMedCentral
2.
go back to reference Ma Z, Cao M, Liu Y, He Y, Wang Y, Yang C, et al. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta. Biochim Biophys. 2010;42:530–7. Ma Z, Cao M, Liu Y, He Y, Wang Y, Yang C, et al. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta. Biochim Biophys. 2010;42:530–7.
3.
go back to reference Champagne E, Martinez LO, Collet X, Barbaras R. Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions. Curr Opin Lipidol. 2006;17:279–84.CrossRefPubMed Champagne E, Martinez LO, Collet X, Barbaras R. Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions. Curr Opin Lipidol. 2006;17:279–84.CrossRefPubMed
4.
go back to reference Moser L, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A. 2001;98:6656–61.CrossRefPubMedPubMedCentral Moser L, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A. 2001;98:6656–61.CrossRefPubMedPubMedCentral
5.
go back to reference Yuan J, Zhang C, Fang S, Zhuang Z, Ling S, Wang SA. Monoclonal antibody against F1-F0 atp synthase beta subunit. Hybridoma. 2012;31:352–7.CrossRefPubMed Yuan J, Zhang C, Fang S, Zhuang Z, Ling S, Wang SA. Monoclonal antibody against F1-F0 atp synthase beta subunit. Hybridoma. 2012;31:352–7.CrossRefPubMed
6.
go back to reference Fliedner SM, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, et al. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. Am J Cancer Res. 2015;5:1558–70.PubMedPubMedCentral Fliedner SM, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, et al. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. Am J Cancer Res. 2015;5:1558–70.PubMedPubMedCentral
7.
go back to reference Zhang X, Gao F, LL Y, Peng Y, Liu HH, Liu JY, et al. Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin. 2008;29:942–50.CrossRefPubMed Zhang X, Gao F, LL Y, Peng Y, Liu HH, Liu JY, et al. Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin. 2008;29:942–50.CrossRefPubMed
8.
go back to reference Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, et al. Tumor recognition following vgamma 9vdelta2 t cell receptor interactions with a surface F1-atpase-related structure and apolipoprotein a-i. Immunity. 2005;22:71–80.CrossRefPubMed Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, et al. Tumor recognition following vgamma 9vdelta2 t cell receptor interactions with a surface F1-atpase-related structure and apolipoprotein a-i. Immunity. 2005;22:71–80.CrossRefPubMed
9.
go back to reference Deshpande M, Notari L, Subramanian P, Notario V, Becerra SP. Inhibition of tumor cell surface atp synthesis by pigment epithelium-derived factor: implications for antitumor activity. Int J Oncol. 2012;41:219–27.PubMedPubMedCentral Deshpande M, Notari L, Subramanian P, Notario V, Becerra SP. Inhibition of tumor cell surface atp synthesis by pigment epithelium-derived factor: implications for antitumor activity. Int J Oncol. 2012;41:219–27.PubMedPubMedCentral
10.
go back to reference Chi SL, Pizzo SV. Angiostatin is directly cytotoxic to tumor cells at low extracellular ph: a mechanism dependent on cell surface-associated atp synthase. Cancer Res. 2006;66:875–82.CrossRefPubMed Chi SL, Pizzo SV. Angiostatin is directly cytotoxic to tumor cells at low extracellular ph: a mechanism dependent on cell surface-associated atp synthase. Cancer Res. 2006;66:875–82.CrossRefPubMed
11.
go back to reference Chi SL, Wahl ML, Mowery YM, Shan S, Mukhopadhyay S, Hilderbrand SC, et al. Angiostatin-like activity of a monoclonal antibody to the catalytic subunit of F1F0 ATP synthase. Cancer Res. 2007;67:4716–24.CrossRefPubMed Chi SL, Wahl ML, Mowery YM, Shan S, Mukhopadhyay S, Hilderbrand SC, et al. Angiostatin-like activity of a monoclonal antibody to the catalytic subunit of F1F0 ATP synthase. Cancer Res. 2007;67:4716–24.CrossRefPubMed
12.
go back to reference Moser TL, Stack SM, Asplin I, Enghild JJ, Højrup P, Everitt L, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A. 1999;96:2811–6.CrossRefPubMedPubMedCentral Moser TL, Stack SM, Asplin I, Enghild JJ, Højrup P, Everitt L, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A. 1999;96:2811–6.CrossRefPubMedPubMedCentral
13.
go back to reference Mowery YM, Pizzo SV. Targeting cell surface F1F0 ATP synthase in cancer therapy. Cancer Biol Ther. 2008;7:1836–8.CrossRefPubMed Mowery YM, Pizzo SV. Targeting cell surface F1F0 ATP synthase in cancer therapy. Cancer Biol Ther. 2008;7:1836–8.CrossRefPubMed
14.
go back to reference Barbato S, Sgarbi G, Gorini G, Baracca A, Solaini G. The inhibitor protein (IF1) of the F1F0-ATPase modulates human osteosarcoma cell bioenergetics. J Biol Chem. 2015;290:6338–43.CrossRefPubMedPubMedCentral Barbato S, Sgarbi G, Gorini G, Baracca A, Solaini G. The inhibitor protein (IF1) of the F1F0-ATPase modulates human osteosarcoma cell bioenergetics. J Biol Chem. 2015;290:6338–43.CrossRefPubMedPubMedCentral
15.
go back to reference Pan J, Sun LC, Tao YF, Zhou Z, Du XL, Peng L, et al. ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer. J Transl Med. 2011;(9):211. Pan J, Sun LC, Tao YF, Zhou Z, Du XL, Peng L, et al. ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer. J Transl Med. 2011;(9):211.
16.
go back to reference Wang J, Han Y, Liang J, Cheng X, Yan L, Wang Y, et al. Effect of a novel inhibitory mAb against β-subunit of F1F0 ATPase on HCC. Cancer Biol Ther. 2008;7:1829–35.CrossRefPubMed Wang J, Han Y, Liang J, Cheng X, Yan L, Wang Y, et al. Effect of a novel inhibitory mAb against β-subunit of F1F0 ATPase on HCC. Cancer Biol Ther. 2008;7:1829–35.CrossRefPubMed
17.
go back to reference Wang WJ, Ma Z, Liu YW, He YQ, Wang YZ, Yang CX, et al. A monoclonal antibody (Mc178-ab) targeted to the ecto-ATP synthase beta-subunit-induced cell apoptosis via a mechanism involving the MAPKase and Akt pathways. Clin Exp Med. 2012;12:3–12.CrossRefPubMed Wang WJ, Ma Z, Liu YW, He YQ, Wang YZ, Yang CX, et al. A monoclonal antibody (Mc178-ab) targeted to the ecto-ATP synthase beta-subunit-induced cell apoptosis via a mechanism involving the MAPKase and Akt pathways. Clin Exp Med. 2012;12:3–12.CrossRefPubMed
18.
go back to reference Wang WJ, Shi XX, Liu YW, He YQ, Wang YZ, Yang CX, et al. The mechanism underlying the effects of the cell surface ATP synthase on the regulation of intracellular acidification during acidosis. J Cell Biochem. 2013;114:1695–703.CrossRefPubMed Wang WJ, Shi XX, Liu YW, He YQ, Wang YZ, Yang CX, et al. The mechanism underlying the effects of the cell surface ATP synthase on the regulation of intracellular acidification during acidosis. J Cell Biochem. 2013;114:1695–703.CrossRefPubMed
19.
go back to reference Zhao WL, Wang J, Tao YF, Feng X, Li YH, Zhu XM, et al. Inhibition of the ecto-beta subunit of F1F0-ATPase inhibits proliferation and induces apoptosis in acute myeloid leukemia cell lines. J Exp Clin Cancer Res. 2012;31:31–92.CrossRefPubMedPubMedCentral Zhao WL, Wang J, Tao YF, Feng X, Li YH, Zhu XM, et al. Inhibition of the ecto-beta subunit of F1F0-ATPase inhibits proliferation and induces apoptosis in acute myeloid leukemia cell lines. J Exp Clin Cancer Res. 2012;31:31–92.CrossRefPubMedPubMedCentral
20.
go back to reference Benavente S, Huang S, Armstrong EA, Chi A, Hsu KT, Wheeler DL, et al. Establishment and characterization of a model of acquired resistance to epidermal growth factor receptor targeting agents in human cancer cells. Clin Cancer Res. 2009;15:1585–92.CrossRefPubMedPubMedCentral Benavente S, Huang S, Armstrong EA, Chi A, Hsu KT, Wheeler DL, et al. Establishment and characterization of a model of acquired resistance to epidermal growth factor receptor targeting agents in human cancer cells. Clin Cancer Res. 2009;15:1585–92.CrossRefPubMedPubMedCentral
21.
go back to reference Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NCA. Study of monoclonal antibody-producing cho cell lines: what makes a stable high producer? Biotechnol Bioeng. 2009;102:1182–96.CrossRefPubMed Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NCA. Study of monoclonal antibody-producing cho cell lines: what makes a stable high producer? Biotechnol Bioeng. 2009;102:1182–96.CrossRefPubMed
22.
go back to reference Sleiman RJ, Gray PP, McCall MN, Codamo J, Sunstrom NA. Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng. 2008;99:578–87.CrossRefPubMed Sleiman RJ, Gray PP, McCall MN, Codamo J, Sunstrom NA. Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng. 2008;99:578–87.CrossRefPubMed
23.
go back to reference Tabuchi H, Sugiyama T, Tanaka S, Tainaka S. Overexpression of taurine transporter in chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption. Biotechnol Bioeng. 2010;107:998–1003.CrossRefPubMed Tabuchi H, Sugiyama T, Tanaka S, Tainaka S. Overexpression of taurine transporter in chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption. Biotechnol Bioeng. 2010;107:998–1003.CrossRefPubMed
24.
go back to reference Liang H, Li X, Chen B, Wang B, Zhao Y, Zhuang Y, et al. A collagen-binding egfr single-chain fv antibody fragment for the targeted cancer therapy. J Control Release. 2015;209:101–9.CrossRefPubMed Liang H, Li X, Chen B, Wang B, Zhao Y, Zhuang Y, et al. A collagen-binding egfr single-chain fv antibody fragment for the targeted cancer therapy. J Control Release. 2015;209:101–9.CrossRefPubMed
25.
go back to reference Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed
26.
go back to reference Balin-Gauthier D, Delord JP, Rochaix P, Mallard V, Thomas F, Hennebelle I, et al. Vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of egfr. Cancer Chemother Pharmacol. 2006;57:709–18.CrossRefPubMed Balin-Gauthier D, Delord JP, Rochaix P, Mallard V, Thomas F, Hennebelle I, et al. Vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of egfr. Cancer Chemother Pharmacol. 2006;57:709–18.CrossRefPubMed
27.
go back to reference De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/her3 signalling. Gut. 2013;62:550–60.CrossRefPubMed De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/her3 signalling. Gut. 2013;62:550–60.CrossRefPubMed
28.
go back to reference Ohsakaya S, Fujikawa M, Hisabori T, Yoshida M. Knockdown of dapit (diabetes-associated protein in insulin-sensitive tissue) results in loss of atp synthase in mitochondria. J Biol Chem. 2011;286:20292–6.CrossRefPubMedPubMedCentral Ohsakaya S, Fujikawa M, Hisabori T, Yoshida M. Knockdown of dapit (diabetes-associated protein in insulin-sensitive tissue) results in loss of atp synthase in mitochondria. J Biol Chem. 2011;286:20292–6.CrossRefPubMedPubMedCentral
29.
go back to reference Ortega AD, Willers IM, Sala S, Cuezva JM. Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J. Cell Sci. J Cell Sci. 2010;123:2685–96.CrossRefPubMed Ortega AD, Willers IM, Sala S, Cuezva JM. Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J. Cell Sci. J Cell Sci. 2010;123:2685–96.CrossRefPubMed
30.
go back to reference Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27:331–7.CrossRefPubMed Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27:331–7.CrossRefPubMed
31.
go back to reference Calvo B, Zuñiga L. Therapeutic monoclonal antibodies: strategies and challenges for biosimilarsdevelopment. Curr Med Chem. 2012;2012:4445–50.CrossRef Calvo B, Zuñiga L. Therapeutic monoclonal antibodies: strategies and challenges for biosimilarsdevelopment. Curr Med Chem. 2012;2012:4445–50.CrossRef
32.
go back to reference Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer. 2007;109:170–9.CrossRefPubMed Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer. 2007;109:170–9.CrossRefPubMed
33.
Metadata
Title
A humanized chimeric antibody Hai178 targeted to the β subunit of F1F0 ATP synthase
Authors
Chen Chen
Hui Liang
Xinmei Liao
Jian Pan
Jianhe Chen
Shibi Zhao
Yan Xu
Yun Wu
Jian Ni
Publication date
01-12-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 12/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5423-1

Other articles of this Issue 12/2016

Tumor Biology 12/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine