Skip to main content
Top
Published in: Tumor Biology 12/2016

01-12-2016 | Original Article

E2F-1 promotes DAPK2-induced anti-tumor immunity of gastric cancer cells by targeting miR-34a

Authors: Lin-Hai Yan, Zhi-Ning Chen, Li Li, Jia Chen, Xian-Wei Mo, Yu-Zhou Qin, Wen-E Wei, Hai-Quan Qin, Yuan Lin, Jian-Si Chen

Published in: Tumor Biology | Issue 12/2016

Login to get access

Abstract

Activation of the transcription factor E2F-1 gene is a negative event in dendritic cell (DC) maturation process. Down-regulation of E2F1 causes immaturity of DC thereby stopping antigen production which in turn leads to inhibition of immune responses. E2F-1-free stimulates the NF-kB signaling pathway, leading to activation of monocytes and several other transcription factor genes. In the study, we report that down-regulation of E2F-1 in DCs promote anti-tumor immune response in gastric cancer (GC) cells through a novel mechanism. DCs were isolated from peripheral blood mononuclear cells. E2F-1 small interfering RNA (E2F-1-shRNA) induced down-regulation of E2F-1 mRNA and protein expression in DCs. Furthermore, we identified the E2F-1-shRNA targeted the CD80, CD83, CD86, and MHC II molecules, promoted their expression, and induced T lymphocytes proliferation activity and up-regulation of IFN-Ī³ production and GC cell killing effect, which significantly correlated with the cytotoxic T lymphocytes activated by E2F-1-shRNA DCs. The higher expression of miR-34a was found which was significantly correlated with the DC enhancing anti-tumor immunity against gastric cancer cell, and miR-34a potently targeted DAPK2 and Sp1, both of which were involved in the deactivation of E2F-1. Moreover, in E2F-1-DC-down-regulation in mice, GC transplantation tumors displayed down-regulation of Sp1, DAPK2, Caspase3, and Caspase7 and progressed to anti-tumor immunity. Collectively, our data uncover an E2F-1-mediated mechanism for the control of DC anti-tumor immunity via miR-34a-dependent down-regulation of E2F-1 expression and suggest its contribution to GC immunotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the global burden of disease study 2013. Lancet. 2015;23:551–6. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the global burden of disease study 2013. Lancet. 2015;23:551–6.
2.
go back to reference van Beek JJ, Wimmers F, Hato SV, de Vries IJ, Skold AE. Dendritic cell cross talk with innate and innate-like effector cells in antitumor immunity: implications for DC vaccination. Crit Rev Immunol. 2014;34:517–36.CrossRefPubMed van Beek JJ, Wimmers F, Hato SV, de Vries IJ, Skold AE. Dendritic cell cross talk with innate and innate-like effector cells in antitumor immunity: implications for DC vaccination. Crit Rev Immunol. 2014;34:517–36.CrossRefPubMed
3.
go back to reference N'Diaye M, Warnecke A, Flytzani S, Abdelmagid N, Ruhrmann S, Olsson T, Jagodic M, et al. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics. J Leukoc Biol. 2015;29:e914. N'Diaye M, Warnecke A, Flytzani S, Abdelmagid N, Ruhrmann S, Olsson T, Jagodic M, et al. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics. J Leukoc Biol. 2015;29:e914.
4.
go back to reference Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.CrossRefPubMed Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.CrossRefPubMed
5.
go back to reference Yin X, Johns SC, Kim D, Mikulski Z, Salanga CL, Handel TM, et al. Lymphatic specific disruption in the fine structure of heparan sulfate inhibits dendritic cell traffic and functional T cell responses in the lymph node. J Immunol. 2014;192:2133–42.CrossRefPubMedPubMedCentral Yin X, Johns SC, Kim D, Mikulski Z, Salanga CL, Handel TM, et al. Lymphatic specific disruption in the fine structure of heparan sulfate inhibits dendritic cell traffic and functional T cell responses in the lymph node. J Immunol. 2014;192:2133–42.CrossRefPubMedPubMedCentral
6.
go back to reference Fang F, Wang Y, Li R, Zhao Y, Guo Y, Jiang M, Sun J, et al. Transcription factor E2F1 suppresses dendritic cell maturation. J Immunol. 2010;184:6084–91.CrossRefPubMed Fang F, Wang Y, Li R, Zhao Y, Guo Y, Jiang M, Sun J, et al. Transcription factor E2F1 suppresses dendritic cell maturation. J Immunol. 2010;184:6084–91.CrossRefPubMed
7.
go back to reference Desrichard A, Snyder A, Chan TA. Cancer neoantigens and applications for immunotherapy. Clin Cancer Res. 2015;22:1–6. Desrichard A, Snyder A, Chan TA. Cancer neoantigens and applications for immunotherapy. Clin Cancer Res. 2015;22:1–6.
9.
go back to reference Yan LH, Wei WY, Cao WL, Zhang XS, Xie YB, Xiao Q. Overexpression of E2F1 in human gastric carcinoma is involved in anti-cancer drug resistance. BMC Cancer. 2014;14:904.CrossRefPubMedPubMedCentral Yan LH, Wei WY, Cao WL, Zhang XS, Xie YB, Xiao Q. Overexpression of E2F1 in human gastric carcinoma is involved in anti-cancer drug resistance. BMC Cancer. 2014;14:904.CrossRefPubMedPubMedCentral
10.
go back to reference Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell. 1996;85:537–48.CrossRefPubMed Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell. 1996;85:537–48.CrossRefPubMed
11.
go back to reference Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin Jr WG, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell. 1996;85:549–61.CrossRefPubMed Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin Jr WG, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell. 1996;85:549–61.CrossRefPubMed
12.
go back to reference Zhu JW, Field SJ, Gore L, Thompson M, Yang H, Fujiwara Y, et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol Cell Biol. 2001;21:8547–64.CrossRefPubMedPubMedCentral Zhu JW, Field SJ, Gore L, Thompson M, Yang H, Fujiwara Y, et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol Cell Biol. 2001;21:8547–64.CrossRefPubMedPubMedCentral
13.
go back to reference Yan LH, Wang XT, Yang J, Kong FB, Lian C, Wei WY, et al. Reversal of multidrug resistance in gastric cancer cells by E2F-1 downregulation in vitro and in vivo, J. Cell Biochem. 2014;115:34–41.CrossRef Yan LH, Wang XT, Yang J, Kong FB, Lian C, Wei WY, et al. Reversal of multidrug resistance in gastric cancer cells by E2F-1 downregulation in vitro and in vivo, J. Cell Biochem. 2014;115:34–41.CrossRef
14.
go back to reference Kuang Y, Weng X, Liu X, Zhu H, Chen Z, Jiang B, et al. Anti-tumor immune response induced by dendritic cells transduced with truncated PSMA IRES 4-1BBL recombinant adenoviruses. Cancer Lett. 2010;293:254–62.CrossRefPubMed Kuang Y, Weng X, Liu X, Zhu H, Chen Z, Jiang B, et al. Anti-tumor immune response induced by dendritic cells transduced with truncated PSMA IRES 4-1BBL recombinant adenoviruses. Cancer Lett. 2010;293:254–62.CrossRefPubMed
15.
go back to reference Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: peptide vaccines in cancer therapy. Oncoimmunology. 2013;2:e26621.CrossRefPubMedPubMedCentral Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: peptide vaccines in cancer therapy. Oncoimmunology. 2013;2:e26621.CrossRefPubMedPubMedCentral
16.
go back to reference Zheng C, Ren Z, Wang H, Zhang W, Kalvakolanu DV, Tian Z, et al. E2F1 induces tumor cell survival via nuclear factor-kappaB-dependent induction of EGR1 transcription in prostate cancer cells. Cancer Res. 2009;69:2324–31.CrossRefPubMed Zheng C, Ren Z, Wang H, Zhang W, Kalvakolanu DV, Tian Z, et al. E2F1 induces tumor cell survival via nuclear factor-kappaB-dependent induction of EGR1 transcription in prostate cancer cells. Cancer Res. 2009;69:2324–31.CrossRefPubMed
17.
go back to reference Britschgi A, Trinh E, Rizzi M, Jenal M, Ress A, Tobler A, et al. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function. Oncogene. 2008;27:5706–16.CrossRefPubMed Britschgi A, Trinh E, Rizzi M, Jenal M, Ress A, Tobler A, et al. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function. Oncogene. 2008;27:5706–16.CrossRefPubMed
18.
go back to reference Nencioni A, Grunebach F, Schmidt SM, Muller MR, Boy D, Patrone F, et al. The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol. 2008;65:191–9.CrossRefPubMed Nencioni A, Grunebach F, Schmidt SM, Muller MR, Boy D, Patrone F, et al. The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol. 2008;65:191–9.CrossRefPubMed
19.
go back to reference Aslanidi GV, Rivers AE, Ortiz L, Govindasamy L, Ling C, Jayandharan GR, et al. High-efficiency transduction of human monocyte-derived dendritic cells by capsid-modified recombinant AAV2 vectors. Vaccine. 2012;30:3908–17.CrossRefPubMedPubMedCentral Aslanidi GV, Rivers AE, Ortiz L, Govindasamy L, Ling C, Jayandharan GR, et al. High-efficiency transduction of human monocyte-derived dendritic cells by capsid-modified recombinant AAV2 vectors. Vaccine. 2012;30:3908–17.CrossRefPubMedPubMedCentral
20.
21.
go back to reference DeRyckere D, DeGregori J. E2F1 and E2F2 are differentially required for homeostasis-driven and antigen-induced T cell proliferation in vivo. J Immunol. 2005;175:647–55.CrossRefPubMed DeRyckere D, DeGregori J. E2F1 and E2F2 are differentially required for homeostasis-driven and antigen-induced T cell proliferation in vivo. J Immunol. 2005;175:647–55.CrossRefPubMed
22.
go back to reference Li M, Zhang X, Zheng X, Lian D, Zhang ZX, Ge W, et al. Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference. J Immunol. 2007;178:5480–7.CrossRefPubMed Li M, Zhang X, Zheng X, Lian D, Zhang ZX, Ge W, et al. Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference. J Immunol. 2007;178:5480–7.CrossRefPubMed
23.
go back to reference Lind EF, Ahonen CL, Wasiuk A, Kosaka Y, Becher B, Bennett KA, et al. Dendritic cells require the NF-kappaB2 pathway for cross-presentation of soluble antigens. J Immunol. 2008;181:354–63.CrossRefPubMed Lind EF, Ahonen CL, Wasiuk A, Kosaka Y, Becher B, Bennett KA, et al. Dendritic cells require the NF-kappaB2 pathway for cross-presentation of soluble antigens. J Immunol. 2008;181:354–63.CrossRefPubMed
24.
go back to reference Mann J, Oakley F, Johnson PW, Mann DA. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-kappa B, AND CBF1. J Biol Chem. 2002;277:17125–38.CrossRefPubMed Mann J, Oakley F, Johnson PW, Mann DA. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-kappa B, AND CBF1. J Biol Chem. 2002;277:17125–38.CrossRefPubMed
25.
go back to reference Jafarinejad-Farsangi S, Farazmand A, Mahmoudi M, Gharibdoost F, Karimizadeh E, Noorbakhsh F, et al. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity. 2015;48:369–78.CrossRefPubMed Jafarinejad-Farsangi S, Farazmand A, Mahmoudi M, Gharibdoost F, Karimizadeh E, Noorbakhsh F, et al. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity. 2015;48:369–78.CrossRefPubMed
26.
go back to reference Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–22.CrossRefPubMed Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–22.CrossRefPubMed
27.
go back to reference Xu X, Chen W, Miao R, Zhou Y, Wang Z, Zhang L, et al. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget. 2015;6:3988–4004.CrossRefPubMedPubMedCentral Xu X, Chen W, Miao R, Zhou Y, Wang Z, Zhang L, et al. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget. 2015;6:3988–4004.CrossRefPubMedPubMedCentral
28.
go back to reference Tryndyak VP, Ross SA, Beland FA, Pogribny IP. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog. 2009;48:479–87.CrossRefPubMed Tryndyak VP, Ross SA, Beland FA, Pogribny IP. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog. 2009;48:479–87.CrossRefPubMed
29.
go back to reference Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res. 2008;68:3193–203.CrossRefPubMedPubMedCentral Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res. 2008;68:3193–203.CrossRefPubMedPubMedCentral
30.
go back to reference Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236–45.CrossRefPubMed Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236–45.CrossRefPubMed
31.
go back to reference Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM. miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol. 2011;22:1252–61.CrossRefPubMedPubMedCentral Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM. miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol. 2011;22:1252–61.CrossRefPubMedPubMedCentral
Metadata
Title
E2F-1 promotes DAPK2-induced anti-tumor immunity of gastric cancer cells by targeting miR-34a
Authors
Lin-Hai Yan
Zhi-Ning Chen
Li Li
Jia Chen
Xian-Wei Mo
Yu-Zhou Qin
Wen-E Wei
Hai-Quan Qin
Yuan Lin
Jian-Si Chen
Publication date
01-12-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 12/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5446-7

Other articles of this Issue 12/2016

Tumor Biology 12/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine