Skip to main content
Top
Published in: Tumor Biology 7/2016

01-07-2016 | Original Article

Tumour-suppressive role of PTPN13 in hepatocellular carcinoma and its clinical significance

Authors: Hao Zhan, Jiahao Jiang, Chubin Luo, Qiman Sun, Aiwu Ke, Chao Sun, Jinwu Hu, Zhiqiang Hu, Bo Hu, Kai Zhu, Jia Fan, Jian Zhou, Xiaowu Huang

Published in: Tumor Biology | Issue 7/2016

Login to get access

Abstract

Hepatocellular carcinoma (HCC) is the second leading cause of cancer mortality and carries a dismal prognosis. The present study aimed to identify the tumour-suppressive role and clinical implications of PTPN13 in HCC progression. We tested the effects of PTPN13 expression in proliferation, invasion, epithelial–mesenchymal transition and associated pathways in HCC cell lines in vitro. Furthermore, its clinical relevance was evaluated in a tissue microarray analysis of samples from 282 HCC patients. Various HCC cell lines expressed relatively low PTPN13 protein levels in vitro. PTPN13 overexpression significantly inhibited the progression of HCC cells, possibly by inhibiting epithelial–mesenchymal transition through inactivation of the EGFR/ERK signalling pathway. Tissue microarray analysis revealed that high PTPN13 expression was correlated with a favourable prognosis in postoperative HCC patients. This study demonstrated the tumour suppressor, PTPN13, as an alternative therapeutic target for HCC.
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA: Cancer J Clin. 2015;65(2):87–108. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA: Cancer J Clin. 2015;65(2):87–108.
3.
go back to reference Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA: Cancer J Clin. 2012;62:394–9. Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA: Cancer J Clin. 2012;62:394–9.
5.
go back to reference Julien SG, Dube N, Hardy S, Tremblay ML. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer. 2011;11:35–49.CrossRefPubMed Julien SG, Dube N, Hardy S, Tremblay ML. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer. 2011;11:35–49.CrossRefPubMed
6.
go back to reference Gao Q, Zhao YJ, Wang XY, et al. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology. 2014;146:1397–407.CrossRefPubMed Gao Q, Zhao YJ, Wang XY, et al. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology. 2014;146:1397–407.CrossRefPubMed
7.
go back to reference Chan G, Kalaitzidis D, Neel BG. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 2008;27:179–92.CrossRefPubMed Chan G, Kalaitzidis D, Neel BG. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 2008;27:179–92.CrossRefPubMed
8.
go back to reference Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer. 2007;7:35–45.CrossRefPubMed Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer. 2007;7:35–45.CrossRefPubMed
9.
go back to reference Yeh SH, Wu DC, Tsai CY, et al. Genetic characterization of Fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clin Cancer Res. 2006;12:1097–108.CrossRefPubMed Yeh SH, Wu DC, Tsai CY, et al. Genetic characterization of Fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clin Cancer Res. 2006;12:1097–108.CrossRefPubMed
10.
go back to reference Wang Z, Shen D, Parsons DW, et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Sci N Y. 2004;304:1164–6.CrossRef Wang Z, Shen D, Parsons DW, et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Sci N Y. 2004;304:1164–6.CrossRef
11.
go back to reference Zhu JH, Chen R, Yi W, et al. Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene. 2008;27:2525–31.CrossRefPubMed Zhu JH, Chen R, Yi W, et al. Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene. 2008;27:2525–31.CrossRefPubMed
12.
go back to reference Sotelo NS, Schepens JT, Valiente M, et al. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13. Methods. 2015;77–78:147–56.CrossRefPubMed Sotelo NS, Schepens JT, Valiente M, et al. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13. Methods. 2015;77–78:147–56.CrossRefPubMed
13.
go back to reference Freiss G, Chalbos D. PTPN13/PTPL1: an important regulator of tumor aggressiveness. Anti Cancer Agents Med Chem. 2011;11:78–88.CrossRef Freiss G, Chalbos D. PTPN13/PTPL1: an important regulator of tumor aggressiveness. Anti Cancer Agents Med Chem. 2011;11:78–88.CrossRef
14.
go back to reference Sun HC, Zhang W, Qin LX, et al. Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. J Hepatol. 2007;47:684–90.CrossRefPubMed Sun HC, Zhang W, Qin LX, et al. Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. J Hepatol. 2007;47:684–90.CrossRefPubMed
15.
go back to reference Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15:971–9.CrossRef Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15:971–9.CrossRef
16.
go back to reference Zhou SL, Dai Z, Zhou ZJ, et al. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatol Baltimo, Md. 2012;56:2242–54.CrossRef Zhou SL, Dai Z, Zhou ZJ, et al. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatol Baltimo, Md. 2012;56:2242–54.CrossRef
17.
go back to reference Wang J, Ren J, Wu B, et al. Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling. Proc Natl Acad Sci U S A. 2015;112:148–53.CrossRefPubMed Wang J, Ren J, Wu B, et al. Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling. Proc Natl Acad Sci U S A. 2015;112:148–53.CrossRefPubMed
20.
go back to reference Erdmann KS. The protein tyrosine phosphatase PTP-basophil/basophil-like. Eur J Biochem. 2003;270:4789–98.CrossRefPubMed Erdmann KS. The protein tyrosine phosphatase PTP-basophil/basophil-like. Eur J Biochem. 2003;270:4789–98.CrossRefPubMed
21.
go back to reference Ying J, Li H, Cui Y, et al. Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia. 2006;20:1173–5.CrossRefPubMed Ying J, Li H, Cui Y, et al. Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia. 2006;20:1173–5.CrossRefPubMed
22.
go back to reference Lucci MA, Orlandi R, Triulzi T, et al. Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cell Oncol. 2010;32:361–72.PubMedPubMedCentral Lucci MA, Orlandi R, Triulzi T, et al. Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cell Oncol. 2010;32:361–72.PubMedPubMedCentral
23.
go back to reference Wieckowski E, Atarashi Y, Stanson J, et al. FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. J Cell Biochem. 2007;100:16–28.CrossRefPubMed Wieckowski E, Atarashi Y, Stanson J, et al. FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. J Cell Biochem. 2007;100:16–28.CrossRefPubMed
25.
go back to reference Castilla C, Chinchon D, Medina R, et al. PTPL1 and PKCdelta contribute to proapoptotic signalling in prostate cancer cells. Cell Death Dis. 2013;4:e576.CrossRefPubMedPubMedCentral Castilla C, Chinchon D, Medina R, et al. PTPL1 and PKCdelta contribute to proapoptotic signalling in prostate cancer cells. Cell Death Dis. 2013;4:e576.CrossRefPubMedPubMedCentral
26.
go back to reference Castilla C, Flores ML, Conde JM, et al. Downregulation of protein tyrosine phosphatase PTPL1 alters cell cycle and upregulates invasion-related genes in prostate cancer cells. Clin Exp Metastasis. 2012;29:349–58.CrossRefPubMed Castilla C, Flores ML, Conde JM, et al. Downregulation of protein tyrosine phosphatase PTPL1 alters cell cycle and upregulates invasion-related genes in prostate cancer cells. Clin Exp Metastasis. 2012;29:349–58.CrossRefPubMed
27.
go back to reference Scrima M, De Marco C, De Vita F, et al. The nonreceptor-type tyrosine phosphatase PTPN13 is a tumor suppressor gene in non-small cell lung cancer. Am J Pathol. 2012;180:1202–14.CrossRefPubMed Scrima M, De Marco C, De Vita F, et al. The nonreceptor-type tyrosine phosphatase PTPN13 is a tumor suppressor gene in non-small cell lung cancer. Am J Pathol. 2012;180:1202–14.CrossRefPubMed
28.
go back to reference Glondu-Lassis M, Dromard M, Lacroix-Triki M, et al. PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res. 2010;70:5116–26.CrossRefPubMedPubMedCentral Glondu-Lassis M, Dromard M, Lacroix-Triki M, et al. PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res. 2010;70:5116–26.CrossRefPubMedPubMedCentral
29.
go back to reference Revillion F, Puech C, Rabenoelina F, et al. Expression of the putative tumor suppressor gene PTPN13/PTPL1 is an independent prognostic marker for overall survival in breast cancer. Int J Cancer. 2009;124:638–43.CrossRefPubMedPubMedCentral Revillion F, Puech C, Rabenoelina F, et al. Expression of the putative tumor suppressor gene PTPN13/PTPL1 is an independent prognostic marker for overall survival in breast cancer. Int J Cancer. 2009;124:638–43.CrossRefPubMedPubMedCentral
30.
go back to reference Dromard M, Bompard G, Glondu-Lassis M, et al. The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation. Cancer Res. 2007;67:6806–13.CrossRefPubMed Dromard M, Bompard G, Glondu-Lassis M, et al. The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation. Cancer Res. 2007;67:6806–13.CrossRefPubMed
31.
32.
33.
go back to reference Gloire G, Charlier E, Piette J. Regulation of CD95/APO-1/Fas-induced apoptosis by protein phosphatases. Biochem Pharmacol. 2008;76:1451–8.CrossRefPubMed Gloire G, Charlier E, Piette J. Regulation of CD95/APO-1/Fas-induced apoptosis by protein phosphatases. Biochem Pharmacol. 2008;76:1451–8.CrossRefPubMed
34.
go back to reference Winterhoff BJ, Arlt A, Duttmann A, et al. Characterisation of FAP-1 expression and CD95 mediated apoptosis in the A818-6 pancreatic adenocarcinoma differentiation system. Differentiation. 2012;83:148–57.CrossRefPubMed Winterhoff BJ, Arlt A, Duttmann A, et al. Characterisation of FAP-1 expression and CD95 mediated apoptosis in the A818-6 pancreatic adenocarcinoma differentiation system. Differentiation. 2012;83:148–57.CrossRefPubMed
35.
go back to reference Cuppen E, Nagata S, Wieringa B, Hendriks W. No evidence for involvement of mouse protein-tyrosine phosphatase-BAS-like Fas-associated phosphatase-1 in Fas-mediated apoptosis. J Biol Chem. 1997;272:30215–20.CrossRefPubMed Cuppen E, Nagata S, Wieringa B, Hendriks W. No evidence for involvement of mouse protein-tyrosine phosphatase-BAS-like Fas-associated phosphatase-1 in Fas-mediated apoptosis. J Biol Chem. 1997;272:30215–20.CrossRefPubMed
Metadata
Title
Tumour-suppressive role of PTPN13 in hepatocellular carcinoma and its clinical significance
Authors
Hao Zhan
Jiahao Jiang
Chubin Luo
Qiman Sun
Aiwu Ke
Chao Sun
Jinwu Hu
Zhiqiang Hu
Bo Hu
Kai Zhu
Jia Fan
Jian Zhou
Xiaowu Huang
Publication date
01-07-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 7/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-4843-2

Other articles of this Issue 7/2016

Tumor Biology 7/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine