Skip to main content
Top
Published in: Tumor Biology 7/2016

01-07-2016 | Original Article

Evaluation of 188Re-labeled NGR–VEGI protein for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts

Authors: Wenhui Ma, Yahui Shao, Weidong Yang, Guiyu Li, Yingqi Zhang, Mingru Zhang, Changjing Zuo, Kai Chen, Jing Wang

Published in: Tumor Biology | Issue 7/2016

Login to get access

Abstract

Vascular endothelial growth inhibitor (VEGI) is an anti-angiogenic protein, which includes three isoforms: VEGI-174, VEGI-192, and VEGI-251. The NGR (asparagine–glycine–arginine)-containing peptides can specifically bind to CD13 (Aminopeptidase N) receptor which is overexpressed in angiogenic blood vessels and tumor cells. In this study, a novel NGR–VEGI fusion protein was prepared and labeled with 188Re for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts. Single photon emission computerized tomography (SPECT) imaging results revealed that 188Re-NGR–VEGI exhibits good tumor-to-background contrast in CD13-positive HT-1080 tumor xenografts. The CD13 specificity of 188Re-NGR–VEGI was further verified by significant reduction of tumor uptake in HT-1080 tumor xenografts with co-injection of the non-radiolabeled NGR–VEGI protein. The biodistribution results demonstrated good tumor-to-muscle ratio (4.98 ± 0.25) of 188Re-NGR–VEGI at 24 h, which is consistent with the results from SPECT imaging. For radiotherapy, 18.5 MBq of 188Re-NGR–VEGI showed excellent tumor inhibition effect in HT-1080 tumor xenografts with no observable toxicity, which was confirmed by the tumor size change and hematoxylin and eosin (H&E) staining of major mouse organs. In conclusion, these data demonstrated that 188Re-NGR–VEGI has the potential as a theranostic agent for CD13-targeted tumor imaging and therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Haridas V, Shrivastava A, Su J, Yu GL, Ni J, Liu D, et al. VEGI, a new member of the TNF family activates nuclear factor-kappa B and c-Jun N-terminal kinase and modulates cell growth. Oncogene. 1999;18(47):6496–504.CrossRefPubMed Haridas V, Shrivastava A, Su J, Yu GL, Ni J, Liu D, et al. VEGI, a new member of the TNF family activates nuclear factor-kappa B and c-Jun N-terminal kinase and modulates cell growth. Oncogene. 1999;18(47):6496–504.CrossRefPubMed
2.
go back to reference Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene. 1997;204(1-2):35–46.CrossRefPubMed Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene. 1997;204(1-2):35–46.CrossRefPubMed
3.
go back to reference Zhang N, Sanders AJ, Ye L, Jiang WG. Vascular endothelial growth inhibitor in human cancer. Int J Mol Med. 2009;24(1):3–8.PubMed Zhang N, Sanders AJ, Ye L, Jiang WG. Vascular endothelial growth inhibitor in human cancer. Int J Mol Med. 2009;24(1):3–8.PubMed
4.
go back to reference Metheny-Barlow LJ, Li LY. Vascular endothelial growth inhibitor (VEGI), an endogenous negative regulator of angiogenesis. Semin Ophthalmol. 2006;21(1):49–58.CrossRefPubMed Metheny-Barlow LJ, Li LY. Vascular endothelial growth inhibitor (VEGI), an endogenous negative regulator of angiogenesis. Semin Ophthalmol. 2006;21(1):49–58.CrossRefPubMed
5.
go back to reference Chew LJ, Pan H, Yu J, Tian S, Huang WQ, Zhang JY, et al. A novel secreted splice variant of vascular endothelial cell growth inhibitor. FASEB J. 2002;16(7):742–4.PubMed Chew LJ, Pan H, Yu J, Tian S, Huang WQ, Zhang JY, et al. A novel secreted splice variant of vascular endothelial cell growth inhibitor. FASEB J. 2002;16(7):742–4.PubMed
6.
go back to reference Bikfalvi A. Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem Pharmacol. 2004;68(6):1017–21.CrossRefPubMed Bikfalvi A. Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem Pharmacol. 2004;68(6):1017–21.CrossRefPubMed
7.
go back to reference Bhardwaj A, Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol. 2003;23(5):317–32.CrossRefPubMed Bhardwaj A, Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol. 2003;23(5):317–32.CrossRefPubMed
8.
go back to reference Yu J, Tian S, Metheny-Barlow L, Chew LJ, Hayes AJ, Pan H, et al. Modulation of endothelial cell growth arrest and apoptosis by vascular endothelial growth inhibitor. Circ Res. 2001;89(12):1161–7.CrossRefPubMed Yu J, Tian S, Metheny-Barlow L, Chew LJ, Hayes AJ, Pan H, et al. Modulation of endothelial cell growth arrest and apoptosis by vascular endothelial growth inhibitor. Circ Res. 2001;89(12):1161–7.CrossRefPubMed
9.
go back to reference Parr C, Gan CH, Watkins G, Jiang WG. Reduced vascular endothelial growth inhibitor (VEGI) expression is associated with poor prognosis in breast cancer patients. Angiogenesis. 2006;9(2):73–81.CrossRefPubMed Parr C, Gan CH, Watkins G, Jiang WG. Reduced vascular endothelial growth inhibitor (VEGI) expression is associated with poor prognosis in breast cancer patients. Angiogenesis. 2006;9(2):73–81.CrossRefPubMed
11.
go back to reference Sethi G, Sung B, Aggarwal BB. Therapeutic potential of VEGI/TL1A in autoimmunity and cancer. Adv Exp Med Biol. 2009;647:207–15.CrossRefPubMed Sethi G, Sung B, Aggarwal BB. Therapeutic potential of VEGI/TL1A in autoimmunity and cancer. Adv Exp Med Biol. 2009;647:207–15.CrossRefPubMed
12.
go back to reference Duan L, Yang G, Zhang R, Feng L, Xu C. Advancement in the research on vascular endothelial growth inhibitor (VEGI). Target Oncol. 2012;7(1):87–90.CrossRefPubMed Duan L, Yang G, Zhang R, Feng L, Xu C. Advancement in the research on vascular endothelial growth inhibitor (VEGI). Target Oncol. 2012;7(1):87–90.CrossRefPubMed
13.
go back to reference Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood. 2001;97(3):652–9.CrossRefPubMedPubMedCentral Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood. 2001;97(3):652–9.CrossRefPubMedPubMedCentral
14.
go back to reference Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60(3):722–7.PubMedPubMedCentral Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60(3):722–7.PubMedPubMedCentral
15.
go back to reference Huang R, Wang M, Zhu Y, Conti PS, Chen K. Development of PET probes for cancer imaging. Curr Top Med Chem. 2015;15(8):795–819.CrossRefPubMed Huang R, Wang M, Zhu Y, Conti PS, Chen K. Development of PET probes for cancer imaging. Curr Top Med Chem. 2015;15(8):795–819.CrossRefPubMed
16.
go back to reference Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, et al. A direct comparison of tumor angiogenesis with 68Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging. Amino Acids. 2014;46(10):2355–64.CrossRefPubMed Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, et al. A direct comparison of tumor angiogenesis with 68Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging. Amino Acids. 2014;46(10):2355–64.CrossRefPubMed
17.
go back to reference Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, et al. 68Ga-labeled cyclic NGR peptide for MicroPET imaging of CD13 receptor expression. Molecules. 2014;19(8):11600–12.CrossRefPubMed Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, et al. 68Ga-labeled cyclic NGR peptide for MicroPET imaging of CD13 receptor expression. Molecules. 2014;19(8):11600–12.CrossRefPubMed
18.
go back to reference Li G, Wang X, Zong S, Wang J, Conti PS, Chen K. MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm. 2014;11(11):3938–46.CrossRefPubMed Li G, Wang X, Zong S, Wang J, Conti PS, Chen K. MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm. 2014;11(11):3938–46.CrossRefPubMed
19.
go back to reference Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, et al. Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm. 2013;10(1):417–27.CrossRefPubMed Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, et al. Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm. 2013;10(1):417–27.CrossRefPubMed
20.
go back to reference Faintuch BL, Oliveira EA, Targino RC, Moro AM. Radiolabeled NGR phage display peptide sequence for tumor targeting. Appl Radiat Isot. 2014;86:41–5.CrossRefPubMed Faintuch BL, Oliveira EA, Targino RC, Moro AM. Radiolabeled NGR phage display peptide sequence for tumor targeting. Appl Radiat Isot. 2014;86:41–5.CrossRefPubMed
21.
go back to reference Ma W, Kang F, Wang Z, Yang W, Li G, Ma X, et al. 99mTc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids. 2013;44(5):1337–45. Ma W, Kang F, Wang Z, Yang W, Li G, Ma X, et al. 99mTc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids. 2013;44(5):1337–45.
22.
go back to reference Li G, Xing Y, Wang J, Conti PS, Chen K. Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide. Amino Acids. 2014;46(6):1547–56.CrossRefPubMed Li G, Xing Y, Wang J, Conti PS, Chen K. Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide. Amino Acids. 2014;46(6):1547–56.CrossRefPubMed
23.
go back to reference Persigehl T, Ring J, Bremer C, Heindel W, Holtmeier R, Stypmann J, et al. Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF-NGR using multi-modal imaging. Angiogenesis. 2014;17(1):235–46.CrossRefPubMed Persigehl T, Ring J, Bremer C, Heindel W, Holtmeier R, Stypmann J, et al. Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF-NGR using multi-modal imaging. Angiogenesis. 2014;17(1):235–46.CrossRefPubMed
24.
go back to reference Liu F, Li M, Liu C, Liu Y, Liang Y, Wang F, et al. Tumor-specific delivery and therapy by double-targeted DTX-CMCS-PEG-NGR conjugates. Pharm Res. 2014;31(2):475–88.CrossRefPubMed Liu F, Li M, Liu C, Liu Y, Liang Y, Wang F, et al. Tumor-specific delivery and therapy by double-targeted DTX-CMCS-PEG-NGR conjugates. Pharm Res. 2014;31(2):475–88.CrossRefPubMed
25.
go back to reference Wang Y, Chen J, Lin AH, Fang Y. Advance in studies on NGR peptide modified liposome and its anti-tumor performance. Zhongguo Zhong Yao Za Zhi. 2013;38(13):2041–5.PubMed Wang Y, Chen J, Lin AH, Fang Y. Advance in studies on NGR peptide modified liposome and its anti-tumor performance. Zhongguo Zhong Yao Za Zhi. 2013;38(13):2041–5.PubMed
26.
go back to reference Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, et al. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res. 2002;62(3):867–74.PubMed Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, et al. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res. 2002;62(3):867–74.PubMed
27.
go back to reference Argyrou M, Valassi A, Andreou M, Lyra M. Rhenium-188 production in hospitals, by W-188/Re-188 generator, for easy use in radionuclide therapy. Int J Mol Imaging. 2013;2013:290750. Argyrou M, Valassi A, Andreou M, Lyra M. Rhenium-188 production in hospitals, by W-188/Re-188 generator, for easy use in radionuclide therapy. Int J Mol Imaging. 2013;2013:290750.
28.
go back to reference Hsieh BT, Hsieh JF, Tsai SC, Lin WY, Huang HT, Ting G, et al. Rhenium-188-Labeled DTPA: a new radiopharmaceutical for intravascular radiation therapy. Nucl Med Biol. 1999;26(8):967–72.CrossRefPubMed Hsieh BT, Hsieh JF, Tsai SC, Lin WY, Huang HT, Ting G, et al. Rhenium-188-Labeled DTPA: a new radiopharmaceutical for intravascular radiation therapy. Nucl Med Biol. 1999;26(8):967–72.CrossRefPubMed
29.
go back to reference Eary JF, Durack L, Williams D, Vanderheyden JL. Considerations for imaging Re-188 and Re-186 isotopes. Clin Nucl Med. 1990;15(12):911–6.CrossRefPubMed Eary JF, Durack L, Williams D, Vanderheyden JL. Considerations for imaging Re-188 and Re-186 isotopes. Clin Nucl Med. 1990;15(12):911–6.CrossRefPubMed
30.
go back to reference Jansen DR, Krijger GC, Kolar ZI, Zonnenberg BA, Zeevaart JR. Targeted radiotherapy of bone malignancies. Curr Drug Discov Technol. 2010;7(4):233–46.CrossRefPubMed Jansen DR, Krijger GC, Kolar ZI, Zonnenberg BA, Zeevaart JR. Targeted radiotherapy of bone malignancies. Curr Drug Discov Technol. 2010;7(4):233–46.CrossRefPubMed
31.
go back to reference Werner M, Scheinert D, Henn M, Scheinert S, Braunlich S, Bausback Y, et al. Endovascular brachytherapy using liquid Beta-emitting Rhenium-188 for the treatment of long-segment femoropopliteal in-stent stenosis. J Endovasc Ther. 2012;19(4):467–75. Werner M, Scheinert D, Henn M, Scheinert S, Braunlich S, Bausback Y, et al. Endovascular brachytherapy using liquid Beta-emitting Rhenium-188 for the treatment of long-segment femoropopliteal in-stent stenosis. J Endovasc Ther. 2012;19(4):467–75.
32.
go back to reference Leissner GG, Wengenmair H, Sciuk J, Woelfle KD, Winterstein A, Weinrich K, et al. Endovascular brachytherapy (EVBT) with Rhenium-188 for restenosis prophylaxis after angioplasty of infrainguinal lesions: early experience. Röfo. 2011;183(8):735–42.PubMed Leissner GG, Wengenmair H, Sciuk J, Woelfle KD, Winterstein A, Weinrich K, et al. Endovascular brachytherapy (EVBT) with Rhenium-188 for restenosis prophylaxis after angioplasty of infrainguinal lesions: early experience. Röfo. 2011;183(8):735–42.PubMed
33.
go back to reference Selcuk NA, Onsel C, Ozturk S, Gurmen T, Gulbaran M, Sager S, et al. Intravascular radiation therapy with a Re-188 liquid-filled balloon in patients with in-stent restenosis. Nucl Med Commun. 2010;31(8):746–52.CrossRefPubMed Selcuk NA, Onsel C, Ozturk S, Gurmen T, Gulbaran M, Sager S, et al. Intravascular radiation therapy with a Re-188 liquid-filled balloon in patients with in-stent restenosis. Nucl Med Commun. 2010;31(8):746–52.CrossRefPubMed
34.
go back to reference Torres-Garcia E, Ferro-Flores G, Arteaga de Murphy C, Correa-Gonzalez L, Pichardo-Romero PA. Biokinetics and dosimetry of 188Re-anti-CD20 in patients with non-Hodgkin’s lymphoma: preliminary experience. Arch Med Res. 2008;39(1):100–9. Torres-Garcia E, Ferro-Flores G, Arteaga de Murphy C, Correa-Gonzalez L, Pichardo-Romero PA. Biokinetics and dosimetry of 188Re-anti-CD20 in patients with non-Hodgkin’s lymphoma: preliminary experience. Arch Med Res. 2008;39(1):100–9.
35.
go back to reference Ferro-Flores G, Torres-Garcia E, Garcia-Pedroza L, Arteaga de Murphy C, Pedraza-Lopez M, Garnica-Garza H. An efficient, reproducible and fast preparation of 188Re-anti-CD20 for the treatment of non-Hodgkin’s lymphoma. Nucl Med Commun. 2005;26(9):793–9.CrossRefPubMed Ferro-Flores G, Torres-Garcia E, Garcia-Pedroza L, Arteaga de Murphy C, Pedraza-Lopez M, Garnica-Garza H. An efficient, reproducible and fast preparation of 188Re-anti-CD20 for the treatment of non-Hodgkin’s lymphoma. Nucl Med Commun. 2005;26(9):793–9.CrossRefPubMed
36.
37.
go back to reference Wang HY, Lin WY, Chen MC, Lin T, Chao CH, Hsu FN, et al. Inhibitory effects of Rhenium-188-labeled Herceptin on prostate cancer cell growth: a possible radioimmunotherapy to prostate carcinoma. Int J Radiat Biol. 2013;89(5):346–55.CrossRefPubMed Wang HY, Lin WY, Chen MC, Lin T, Chao CH, Hsu FN, et al. Inhibitory effects of Rhenium-188-labeled Herceptin on prostate cancer cell growth: a possible radioimmunotherapy to prostate carcinoma. Int J Radiat Biol. 2013;89(5):346–55.CrossRefPubMed
38.
go back to reference Tang QS, Chen DZ, Xue WQ, Xiang JY, Gong YC, Zhang L, et al. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int J Nanomedicine. 2011;6:3077–85.PubMedPubMedCentral Tang QS, Chen DZ, Xue WQ, Xiang JY, Gong YC, Zhang L, et al. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int J Nanomedicine. 2011;6:3077–85.PubMedPubMedCentral
39.
go back to reference Ma W, Li G, Wang J, Yang W, Zhang Y, Conti PS, et al. In vivo NIRF imaging-guided delivery of a novel NGR-VEGI fusion protein for targeting tumor vasculature. Amino Acids. 2014;46(12):2721–32.CrossRefPubMed Ma W, Li G, Wang J, Yang W, Zhang Y, Conti PS, et al. In vivo NIRF imaging-guided delivery of a novel NGR-VEGI fusion protein for targeting tumor vasculature. Amino Acids. 2014;46(12):2721–32.CrossRefPubMed
40.
go back to reference Liu G, Dou S, He J, Yin D, Gupta S, Zhang S, et al. Radiolabeling of MAG3-morpholino oligomers with 188Re at high labeling efficiency and specific radioactivity for tumor pretargeting. Appl Radiat Isot. 2006;64(9):971–8.CrossRefPubMedPubMedCentral Liu G, Dou S, He J, Yin D, Gupta S, Zhang S, et al. Radiolabeling of MAG3-morpholino oligomers with 188Re at high labeling efficiency and specific radioactivity for tumor pretargeting. Appl Radiat Isot. 2006;64(9):971–8.CrossRefPubMedPubMedCentral
41.
go back to reference Xing Y, Zhao J, Shi X, Conti PS, Chen K. Recent development of radiolabeled nanoparticles for PET imaging. Austin J Nanomed Nanotech. 2014;2(2):1016. Xing Y, Zhao J, Shi X, Conti PS, Chen K. Recent development of radiolabeled nanoparticles for PET imaging. Austin J Nanomed Nanotech. 2014;2(2):1016.
43.
go back to reference Zhao R, Yang W, Wang Z, Li G, Qin W, Wang J. Treatment of transplanted tumor of lung adenocarcinoma A549 transfected by human somatostatin receptor subtype 2 (hsstr2) gene with 188Re-RC-160. Nucl Med Biol. 2010;37(8):977–87.CrossRefPubMed Zhao R, Yang W, Wang Z, Li G, Qin W, Wang J. Treatment of transplanted tumor of lung adenocarcinoma A549 transfected by human somatostatin receptor subtype 2 (hsstr2) gene with 188Re-RC-160. Nucl Med Biol. 2010;37(8):977–87.CrossRefPubMed
44.
go back to reference Hou W, Medynski D, Wu S, Lin X, Li LY. VEGI-192, a new isoform of TNFSF15, specifically eliminates tumor vascular endothelial cells and suppresses tumor growth. Clin Cancer Res. 2005;11(15):5595–602.CrossRefPubMed Hou W, Medynski D, Wu S, Lin X, Li LY. VEGI-192, a new isoform of TNFSF15, specifically eliminates tumor vascular endothelial cells and suppresses tumor growth. Clin Cancer Res. 2005;11(15):5595–602.CrossRefPubMed
45.
go back to reference Liepe K, Zaknun JJ, Padhy A, Barrenechea E, Soroa V, Shrikant S, et al. Radiosynovectomy using Yttrium-90, Phosphorus-32 or Rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Ann Nucl Med. 2011;25(5):317–23. Liepe K, Zaknun JJ, Padhy A, Barrenechea E, Soroa V, Shrikant S, et al. Radiosynovectomy using Yttrium-90, Phosphorus-32 or Rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Ann Nucl Med. 2011;25(5):317–23.
Metadata
Title
Evaluation of 188Re-labeled NGR–VEGI protein for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts
Authors
Wenhui Ma
Yahui Shao
Weidong Yang
Guiyu Li
Yingqi Zhang
Mingru Zhang
Changjing Zuo
Kai Chen
Jing Wang
Publication date
01-07-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 7/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-4810-y

Other articles of this Issue 7/2016

Tumor Biology 7/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine