Skip to main content
Log in

Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In this study, we synthesized a novel Cy5.5-labeled dimeric NGR peptide (Cy5.5-NGR2) via bioorthogonal click chemistry, and evaluated the utility of Cy5.5-NGR2 for near-infrared fluorescence imaging of CD13 receptor expression in vivo. The dimeric NGR peptide (NGR2) was conjugated with an alkyne-containing PEG unit followed by mixing with an azide-terminated Cy5.5 fluorophore (Cy5.5-N3) to afford Cy5.5-NGR2. The probe was subject to in vitro and in vivo evaluations. The bioorthogonal click chemistry provided a rapid conjugation of the alkyne-containing NGR2 with Cy5.5-N3 in a quantitative yield within 15 min. The laser confocal microscopy revealed that binding of Cy5.5-NGR2 to CD13 receptor is target-specific as demonstrated in CD13-positive HT-1080 cells, CD13-negative MCF-7 cells, and a blocking study in HT-1080 cells. For in vivo optical imaging, Cy5.5-NGR2 exhibited rapid HT-1080 tumor targeting at 0.5 h postinjection (pi), and highest tumor-to-background contrast at 2 h pi. The CD13-specific tumor accumulation of Cy5.5-NGR2 was accomplished by a blocking study with unlabeled NGR peptide in HT-1080 tumor bearing mice. The tumor-to-muscle ratio of Cy5.5-NGR2 at 2 h pi reached 2.65 ± 0.13 in the non-blocking group vs. 1.05 ± 0.06 in the blocking group. The results from ex vivo imaging were consistent with the in vivo findings. We concluded that Cy5.5-NGR2 constructed by bioorthogonal click chemistry is a promising molecular probe, not only allowing the NIR optical imaging of CD13 overexpressed tumors, but also having the potential to facilitate noninvasive monitoring of CD13-targeted tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NIRF:

Near-infrared fluorescence

PET:

Positron emission tomography

SPECT:

Single photon emission computed tomography

CT:

Computed tomography

MRI:

Magnetic resonance imaging

APN:

Aminopeptidase N

NGR:

Asparagine–glycine–arginine

HPLC:

High-performance liquid chromatography

PBS:

Phosphate-buffered saline

DBCO:

Dibenzocyclooctyne

NHS:

N-Hydroxysuccinimide

TFA:

Trifluoroacetic acid

DMSO:

Dimethyl sulfoxide

DAPI:

4′,6-Diamidino-2-phenylindole

PFA:

Paraformaldehyde

Pi:

Postinjection

ROI:

Region-of-interest

18F-FDG:

18F-Fluorodeoxyglucose

PK:

Pharmacokinetics

References

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science (New York, NY) 279(5349):377–380

    Article  CAS  Google Scholar 

  • Atreya R, Waldner MJ, Neurath MF (2010) Molecular imaging: interaction between basic and clinical science. Gastroenterol Clin North Am 39(4):911–922

    Article  PubMed  Google Scholar 

  • Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH (2001) CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97(3):652–659

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Chen X (2010) Design and development of molecular imaging probes. Curr Top Med Chem 10(12):1227–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen K, Chen X (2011a) Integrin targeted delivery of chemotherapeutics. Theranostics 1:189–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen K, Chen X (2011b) Positron emission tomography imaging of cancer biology: current status and future prospects. Semin Oncol 38(1):70–86

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen K, Conti PS (2010) Target-specific delivery of peptide-based probes for PET imaging. Adv Drug Deliv Rev 62(11):1005–1022

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res 64(21):8009–8014

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Wang X, Lin W, Shen K-F, Yap LP, Hughes LD, Conti PS (2012a) Strain-promoted catalyst-free click chemistry for rapid construction of 64Cu-labeled PET imaging probes. ACS Med Chem Lett 3(12):1019–1023

    Article  CAS  Google Scholar 

  • Chen K, Yap LP, Park R, Hui X, Wu K, Fan D, Chen X, Conti PS (2012b) A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice. Amino Acids 42(4):1329–1337

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, Hughes LD, Park R, Conti PS (2013) Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm 10(1):417–427

    Article  CAS  PubMed  Google Scholar 

  • Debets MF, van Berkel SS, Schoffelen S, Rutjes FP, van Hest JC, van Delft FL (2010) Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3 + 2) cycloaddition. Chem Commun (Camb) 46(1):97–99

    Article  CAS  Google Scholar 

  • Debets MF, van Berkel SS, Dommerholt J, Dirks AT, Rutjes FP, van Delft FL (2011) Bioconjugation with strained alkenes and alkynes. Acc Chem Res 44(9):805–815

    Article  CAS  PubMed  Google Scholar 

  • Ellis LM, Liu W, Ahmad SA, Fan F, Jung YD, Shaheen RM, Reinmuth N (2001) Overview of angiogenesis: biologic implications for antiangiogenic therapy. Semin Oncol 28(5 Suppl 16):94–104

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Rojas L, Rangel R, Salameh A, Edwards JK, Dondossola E, Kim YG, Saghatelian A, Giordano RJ, Kolonin MG, Staquicini FI, Koivunen E, Sidman RL, Arap W, Pasqualini R (2012) Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci USA 109(5):1637–1642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, Yamaoka Y, Miyake M (2002) Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122(2):376–386

    Article  CAS  PubMed  Google Scholar 

  • Ikeda N, Nakajima Y, Tokuhara T, Hattori N, Sho M, Kanehiro H, Miyake M (2003) Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res 9(4):1503–1508

    CAS  Google Scholar 

  • Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620–2640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Kuwano M, Fukushi J, Okamoto M, Nishie A, Goto H, Ishibashi T, Ono M (2001) Angiogenesis factors. Intern Med 40(7):565–572

    Article  CAS  PubMed  Google Scholar 

  • Luan Y, Xu W (2007) The structure and main functions of aminopeptidase N. Curr Med Chem 14(6):639–647

    Article  CAS  PubMed  Google Scholar 

  • Negussie AH, Miller JL, Reddy G, Drake SK, Wood BJ, Dreher MR (2010) Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release Off J Control Release Soc 143(2):265–273

    Article  CAS  Google Scholar 

  • Nwe K, Brechbiel MW (2009) Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm 24(3):289–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    CAS  PubMed  Google Scholar 

  • Raymond SB, Skoch J, Hills ID, Nesterov EE, Swager TM, Bacskai BJ (2008) Smart optical probes for near-infrared fluorescence imaging of Alzheimer’s disease pathology. Eur J Nucl Med Mol Imaging 35(Suppl 1):S93–S98

    Article  PubMed  Google Scholar 

  • Sakatani K, Kashiwasake-Jibu M, Taka Y, Wang S, Zuo H, Yamamoto K, Shimizu K (1997) Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence. J Neurosurg 87(5):738–745

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Jacobs A, Breakefield XO, Weissleder R (2004) Molecular imaging of gene therapy for cancer. Gene Ther 11(15):1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Teranishi J, Ishiguro H, Hoshino K, Noguchi K, Kubota Y, Uemura H (2008) Evaluation of role of angiotensin III and aminopeptidases in prostate cancer cells. Prostate 68(15):1666–1673

    Article  CAS  PubMed  Google Scholar 

  • Tung CH (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76(5):391–403

    Article  CAS  PubMed  Google Scholar 

  • von Wallbrunn A, Waldeck J, Holtke C, Zuhlsdorf M, Mesters R, Heindel W, Schafers M, Bremer C (2008) In vivo optical imaging of CD13/APN-expression in tumor xenografts. J Biomed Optics 13(1):011007

    Article  Google Scholar 

  • Wagner HN Jr (2008) Advancing a molecular theory of disease. J Nucl Med 49(8):15N–34N

    PubMed  Google Scholar 

  • Wang RE, Niu Y, Wu H, Amin MN, Cai J (2011) Development of NGR peptide-based agents for tumor imaging. Am J Nucl Med Mol Imaging 1(1):36–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168–1171

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    Article  CAS  PubMed  Google Scholar 

  • Wunderbaldinger P, Turetschek K, Bremer C (2003) Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. Eur Radiol 13(9):2206–2211

    Article  PubMed  Google Scholar 

  • Xing Y, Zhao J, Conti PS, Chen K (2014) Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4(3):290–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the USC Department of Radiology, the Major Program of National Natural Science Foundation of China (Grant No. 81230033), the National Basic Research and Development Program of China (Grant No. 2011CB707704), and the Major Research Instrumentation Program of National Natural Science Foundation of China (Grant No. 81227901).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Wang or Kai Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Xing, Y., Wang, J. et al. Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide. Amino Acids 46, 1547–1556 (2014). https://doi.org/10.1007/s00726-014-1727-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1727-x

Keywords

Navigation